中考数学实际问题总结归纳
中考数学中的概率与统计实际问题解决思路实例总结

中考数学中的概率与统计实际问题解决思路实例总结概率与统计是中学数学中的一个重要内容,它不仅是数学的一部分,也是日常生活中经常遇到的实际问题的解决思路。
在中考中,概率与统计常常会出现在选择题、应用题等题型中,考察学生解决实际问题的能力。
本文将通过几个实例来总结中考数学中概率与统计问题的解决思路。
实例一:掷骰子游戏小明和小李玩一个掷骰子的游戏,规则是谁先掷出6点谁就赢。
他们轮流掷骰子,小明先掷。
如果小明掷到6点,则小明胜利;如果小明掷到1~5点,则轮到小李掷骰子。
假设掷到6点和1~5点的概率相等,求小明获胜的概率。
解决思路:首先分析每一次掷骰子的可能结果:小明掷到6点的概率为1/6,小李掷到6点和小明掷到1~5点的概率均为1/6。
则小明胜利的概率等于小明掷到6点的概率加上小明掷到1~5点后小李再掷到6点的概率。
由于小明与小李轮流掷骰子,所以两者的胜率相等。
则小明获胜的概率为1/6 + 1/6 * 1/6 = 7/36。
实例二:统计调查某中学为了解学生对校园环境的评价情况,进行了一次校园调查,调查对象为全校学生。
调查结果如下:学生总数2000人,其中喜欢校园环境的有1500人,不喜欢的有300人,其他无意见的有200人。
现在需要根据调查结果回答以下问题:学生喜欢校园环境的概率是多少?学生不喜欢校园环境的概率是多少?解决思路:根据调查结果,我们可以得到喜欢校园环境的学生有1500人,不喜欢校园环境的学生有300人。
而总学生数为2000人。
学生喜欢校园环境的概率等于喜欢校园环境的学生数除以总学生数,即1500/2000 = 0.75。
同理,学生不喜欢校园环境的概率等于不喜欢校园环境的学生数除以总学生数,即300/2000 = 0.15。
通过以上两个实例,我们可以看出解决概率与统计问题的思路是分析情况并计算概率。
概率的计算可以通过确定样本空间、事件和事件发生的可能性来进行。
在解决问题时,需要注意概率的公式和概率的加法、乘法原理的应用。
中考数学必考题型分析及解题策略总结

中考数学必考题型分析及解题策略总结一、必考题型分析1、线段、角的计算与证明问题中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
2、图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。
在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
3、动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
4、一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。
5、多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。
这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。
中考数学高频考点突破:实际问题与二次函数——拱桥问题

中考数学高频考点突破:实际问题与二次函数——拱桥问题一、选择题1.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行( )A.2.76米B.7米C.6米D.6.76米2.如图是拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y=−0.01(x−20)2+4,桥拱与桥墩AC的交点C恰好位于水面,且AC⊥x轴,若OA=5米,则桥面离水面的高度AC为( )A.5米B.4米C.2.25米D.1.25米3.如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面 1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A.4√3米B.5√2米C.2√13米D.7米二、填空题4.如图所示是一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的髙度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.5.一个拱形桥架可以近似看做是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成的.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45∘,AC1=4米,点D2的坐标为(−13,−1.69),则桥架的拱高OH=米.6.闵行体育公园的圆形喷水池的水柱(如图1),如果曲线APB表示落点B离点O最远的一条水流(如图2),其上的水珠的高度y(米)关于水平距离x(米)的函数解析式,那么圆形水池的半径至少为米时,才能使喷出的水流不落在为y=−x2+4x+94水池外.三、解答题7.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.(1) 求抛物线的解析式;(2) 一辆货运卡车高4.5m,宽2.4m,它能通过该隧道吗?8.如图是一个抛物线形拱桥示意图,已知河床宽度AB=40米,拱桥高度为10米.(1) 建立适当的坐标系,并求出抛物线的解析式;(2) 若测量得拱桥内水面宽度为28米,求拱桥内的水深.9.已知一条隧道的截面如图所示,它的上部是一个半圆,下部是一个矩形,且矩形的一条边长为2.5m.(1) 写出隧道截面的面积y(m2)与截面上部半圆的半径x(m)之间的函数表达式;(2) 当隧道截面上部半圆的半径为2m时,隧道截面的面积约是多少(精确到0.1m2)?10.桂林红桥位于桃花江上,是桂林两江四湖的一道亮丽的风景线,该桥的部分横截面如图所示,上方可看作是一个经过A,C,B三点的抛物线,以桥面的水平线为x轴,经过抛物线的顶点C与x轴垂直的直线为y轴,建立平面直角坐标系,已知此桥垂直于桥面的相邻两柱之间的距离为2米(图中用线段AD,FG,CO,BE等表示桥柱),CO=1米,FG=2米.(1) 求经过A,B,C三点的抛物线的函数解析式;(2) 求桥柱AD的高度.11.有一个抛物线形蔬菜大棚,将其截面放在如图所示的平面直角坐标系中,抛物线可以用函数y=ax2+bx来表示,已知OA=8米,距离O点2米处的棚高BC为9米.4(1) 求该抛物线的解析式;(2) 若借助横梁DE(DE∥OA)建一个门,要求门的高度为1.5米,则横梁DE的长度是多少米?12.如图,在喷水池的中心A处竖直安装一个水管AB.水管的顶端安有一个喷水管,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m.水柱落地点D离池中心A处3m,建立适当的平面直角坐标系,解答下列问题.(1) 求水柱所在抛物线的函数解析式;(2) 求水管AB的长.13.如图为一座桥的示意图,已知桥洞的拱形是抛物线.当水面宽为12m时,桥洞顶部离水面4m.(1) 建立平面直角坐标系,并求该抛物线的函数表达式.(2) 若水面上升1m,水面宽度将减少多少?14.如图①,一个横截面为抛物线形的隧道,其底部的宽AB为8m,拱高为4m,该隧道为双向车道,且两车道之间有0.4m的隔离带,一辆宽为2m的货车要安全通过这条隧道,需保持其顶部与隧道间有不少于0.5m的空隙,以AB的中点O为原点,按如图②所示建立平面直角坐标系.(1) 求该抛物线对应的函数关系式;(2) 通过计算说明该货车能安全通过的最大高度.15.秋风送爽,学校组织同学们去颐和园秋游,昆明湖西堤六桥中的玉带桥非常令人喜爱,如图所示,玉带桥的桥拱是抛物线形,水面宽度AB=10m,桥拱最高点C到水面的距离为6m.(1) 建立适当的平面直角坐标系,求抛物线的表达式;(2) 现有一艘游船高度是 4.5m,宽度是4m,为了保证安全,船顶距离桥拱顶部至少0.5m,通过计算说明这艘游船能否安全通过玉带桥.16.如图是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1) 经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填“方案一”“方案二”或“方案三”),则B点坐标是,求出你所选方案中的抛物线的表达式.(2) 因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.17.如图,隧道的截面由抛物线ADC和矩形AOBC构成,矩形的长OB是12m,宽OA是4m.拱顶D到地面OB的距离是10m.若以O原点,OB所在的直线为x轴,OA所在的直线为y轴,建立直角坐标系.(1) 画出直角坐标系xOy,并求出抛物线ADC的函数表达式;(2) 在抛物线型拱壁E,F处安装两盏灯,它们离地面OB的高度都是8m,则这两盏灯的水平距离EF是多少米?18.如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起,据试验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1) 求足球开始飞出到第一次落地时,该抛物线的解析式.(2) 足球第一次落地点C距守门员多少米?(取4√3≈7)(3) 运动员乙要在第二个落地点D抢到足球,他应再向前跑多少米?(取2√6≈5)答案一、选择题1. 【答案】D【解析】设该抛物线的表达式为 y =ax 2,把 x =10,代入表达式得 −4=a ×102,解得 a =−125,故此抛物线的表达式为 y =−125x 2,∵ 桥下水面宽度不得小于 18m ,∴ 令 x =9 时,可得 y =−125×81=−3.24(m ), 此时水深 6+4−3.24=6.76(m ), 即桥下水深 6.76m 时正好通过, ∴ 超过 6.76m 时则不能通过.2. 【答案】C3. 【答案】B【解析】建立如图所示的平面直角坐标系,则 MN =4 米,EF =14 米,BC =10 米,DO =32 米,设大孔所在抛物线的解析式为 y =ax 2+32(a ≠0),∵BC =10 米, ∴ 点 B (−5,0),∴0=a ×(−5)2+32, ∴a =−350,∴ 大孔所在抛物线的解析式为 y =−350x 2+32,设点 A (b,0),则设顶点为 A 的小孔所在抛物线的解析式为 y =m (x −b )2, ∵EF =14 米,∴ 点 E 的横坐标为 −7, ∴ 点 E 的坐标为 (−7,−3625),当 m (x −b )2=−3625 时,解得 x 1=65√−1m +b ,x 2=−65√−1m +b , ∵MN =4 米, ∴∣∣∣∣65√−1m +b −(−65√−1m +b)∣∣∣∣=4, ∴m =−925,∴ 顶点为 A 的小孔所在抛物线的解析式为 y =−925(x −b )2,∵ 大孔水面宽度为 20 米,∴ 当 x =−10 时,y =−92, ∴−92=−925(x −b )2, ∴x 1=5√22+b ,x 2=−5√22+b ,∴ 当大孔水面宽度为 20 米时,单个小孔的水面宽度 =∣∣∣(5√22+b)−(−5√22+b)∣∣∣=5√2(米). 故选B .二、填空题4. 【答案】 36【解析】如图所示:设在 10 秒时到达 A 点,在 26 秒时到达 B , ∵10 秒时和 26 秒时拱梁的高度相同,∴A ,B 关于对称轴对称,则从 A 到 B 需要 16 秒,则从 A 到 D 需要 8 秒, ∴ 从 O 到 D 需要 10+8=18 秒, 从 O 到 C 需要 2×18=36 秒.5. 【答案】 7.24【解析】设抛物线 D 1OD 8 的解析式为 y =ax 2,将 x =−13,y =−1.69 代入,可得 a =−1100.因为横梁 D 1D 8=C 1C 8=AB −2AC 1=36 m ,所以点 D 1 的横坐标是 −18,代入 y =−1100x 2,得 y =−3.24. 因为 ∠A =45∘,所以 D 1C 1=AC 1=4 m ,所以 OH =3.24+4=7.24 m .6. 【答案】 92三、解答题7. 【答案】(1) 根据题意,A (−4,2),D (4,2),E (0,6),设抛物线的解析式为 y =ax 2+6(a ≠0),把 A (−4,2) 或 D (4,2) 代入得 16a +6=2,得 a =−14,抛物线的解析式为 y =−14x 2+6.(2) 根据题意,把 x =±1.2 代入解析式,得 y =5.64, ∵5.64>4.5,∴ 货运卡车能通过.【解析】(1) 方法二:设解析式为y=ax2+bx+c,代入A,D,E三点坐标得{16a−4b+c=216a+4b+c=2c=6,得{a=−14b=0c=6,抛物线的解析式为y=−14x2+6.8. 【答案】(1) 建立如图所示坐标系,设抛物线铁板式为y=ax2;由题意得,B(20,−10),∴−10=202a,解得a=−140,∴y=−140x2.(2) 由题意得,点D横坐标为28÷2=14,当x=14时,y=−140×142=−4.9,−4.9−(−10)=5.1.∴拱桥内的水深5.1米.9. 【答案】(1) y与x之间的函数表达式是y=12πx2+5x;(2) 当x=2时,y=12π×22+5×2=2π+10≈16.3(m2).所以隧道截面上部半圆的半径为2m时,隧道截面的面积约是16.3m2.10. 【答案】(1) 由题意可知:点C的坐标为(0,1),点F的坐标为(−4,2).设抛物线的函数解析式为y=ax2+c,所以{1=c,2=16a+c,解得{a=116,c=1.所以抛物线的函数解析式为y=116x2+1.(2) 点A的横坐标为−8,当x=−8时,y=5,所以桥柱AD的高度为5米.11. 【答案】(1) 由题意可得,抛物线经过(2,94),(8,0),故{64a+8b=0,4a+2b=94,解得{a=−316,b=32,故拋物线的解析式为y=−316x2+32x.(2) 由题意可得,当y=1.5时,1.5=−316x2+32x,解得x1=4+2√2,x2=4−2√2,故DE=x1−x2=4+2√2−(4−2√2)=4√2(米).12. 【答案】(1) 以池中心A为原点,竖直安装的水管为y轴,与水管垂直的方向为x轴建立平面直角坐标系.由于在距池中心的水平距离为1m时达到最高,高度为3m,则设抛物线的解析式为y =a (x −1)2+3,代入 (3,0),求得 a =−34, 故所求的函数解析式为 y =−34(x −1)2+3(0≤x ≤3).(2) 令 x =0,则 y =94=2.25.故水管 AB 的长为 2.25 m .13. 【答案】(1) 以 C 为坐标原点建立坐标系,则 A (−6,−4),B (6,−4),C (0,0),设 y =ax 2,把 B (6,−4) 代入上式,36a +4=0,解得:a =−19,∴y =−19x 2.(2) 令 y =−3 得:−19x 2=−3,解得:x =±3√3, ∴ 若水面上升 1 m ,水面宽度将减少 12−6√3.14. 【答案】(1) 如图,A (−4,0),C (0,4),设抛物线的解析式为 y =ax 2+k (a ≠0),由题意,得 {16a +k =0,k =4,解得 {a =−14,k =4,∴ 抛物线的解析式为 y =−14x 2+4.(2) 2+0.42=2.2,当 ∣x ∣=2.2 时,y =−14×2.22+4=2.79,2.79−0.5=2.29(m ).答:该货车能够安全通行的最大高度为 2.29 m .15. 【答案】(1) 以 AB 的中点为原点,建立如下的坐标系, 则点 C (0,6),点 B (5,0).设函数的表达式为 y =ax 2+c =ax 2+6(a ≠0),将点 B 的坐标代入上式,得 0=25a +6,解得 a =−625,故抛物线的表达式为 y =−625x 2+6.(2) 设船从桥的中心进入,则其最右侧点的横坐标为 2,当 x =2 时,y =−625x 2+6=−625×4+6=12625=5.04,船的顶部高为 4.5,4.5+0.5=5<5.04,故顶部通过符合要求,故这艘游船能安全通过玉带桥.16. 【答案】(1) 方案二;(10,0);由题意知,抛物线的顶点坐标为 A (5,5),且经过点 O (0,0),B (10,0), 设抛物线的解析式为 y =a (x −5)2+5(a ≠0),把点 (0,0) 代入,得 0=a (0−5)2+5,解得a=−15.∴抛物线的解析式为y=−15(x−5)2+5.(2) 在方案二的前提下,由题意知,当x=5−3=2时,−15(x−5)2+5=165,所以水面上涨的高度为165米.17. 【答案】(1) 画出直角坐标系xOy,如图:由题意可知,抛物线ADC的顶点坐标为(6,10),A点坐标为(0,4),可设抛物线ADC的函数表达式为y=a(x−6)2+10,将x=0,y=4代入得:a=−16,∴抛物线ADC的函数表达式为y=−16(x−6)2+10.(2) 由y=8得:−16(x−6)2+10=8,解得:x1=6+2√3,x2=6−2√3,则EF=x1−x2=4√3,即两盏灯的水平距离EF是4√3米.18. 【答案】(1) 根据题意,可设足球开始飞出到第一次落地时,抛物线的解析式为y=a(x−6)2+4,将点A(0,1)代入,得36a+4=1,解得a=−112,∴足球开始飞出到第一次落地时,该抛物线的解析式为y=−112(x−6)2+4.(2) 令y=0,得−112(x−6)2+4=0,解得x1=4√3+6≈13,x2=−4√3+6<0(舍去),∴足球第一次落地点C距守门员13米.(3) 如图,足球第二次弹起后的水平距离为CD,根据题意知CD=EF(即相当于将抛物线AEMFC向下平移了2个单位),∴−112(x−6)2+4=2,解得x1=6−2√6,x2=6+2√6,∴CD=x2−x1=4√6≈10(米),∴BD=13−6+10=17(米).答:运动员乙要在第二个落地点D抢到足球,他应再向前跑17米.。
中考数学核心考点强化突破函数的实际应用问题含解析

中考数学核心考点强化突破:函数的实际应用问题类型1 方案与最值问题1.江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.解析:(1)设每台大型收割机1小时收割小麦x 公顷,每台小型收割机1小时收割小麦y 公顷,根据题意得:⎩⎪⎨⎪⎧x +3y =1.42x +5y =2.5,解得:⎩⎪⎨⎪⎧x =0.5y =0.3.答:略. (2)设大型收割机有m 台,总费用为w 元,则小型收割机有(10-m)台,根据题意得:w =300×2m+200×2(10-m)=200m +4000.∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元,∴⎩⎪⎨⎪⎧2×0.5m+2×0.3(10-m )≥8200m +4000≤5400解得:5≤m≤7,∴有三种不同方案.∵w=200m +4000中,200>0,∴w 值随m 值的增大而增大,∴当m =5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.2.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m .设饲养室长为x(m ),占地面积为y(m 2).(1)如图1,问饲养室长x 为多少时,占地面积y 最大?(2)如图2,现要求在图中所示位置留2 m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2 m 就行了.”请你通过计算,判断小敏的说法是否正确.解:(1)∵y =x ·50-x 2=-12(x -25)2+6252,∴当x =25时,占地面积最大,即饲养室长x 为25 m 时,占地面积y 最大;(2)∵y =x ·50-(x -2)2=-12(x -26)2+338,∴当x =26时,占地面积最大,即饲养室长x 为26 m 时,占地面积y 最大;∵26-25=1≠2,∴小敏的说法不正确.3.(2017·河南)学校“百变魔方”社团准备购买A,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意得:⎩⎪⎨⎪⎧2x +6y =1303x =4y ,解得:⎩⎪⎨⎪⎧x =20y =15. 答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个.(2)设购进A 种魔方m 个(0≤m≤50),总价格为w 元,则购进B 种魔方(100-m)个,根据题意得:w 活动一=20m×0.8+15(100-m)×0.4=10m +600;w 活动二=20m +15(100-m -m)=-10m +1500.当w 活动一<w 活动二时,有10m +600<-10m +1500,解得:m <45;当w 活动一=w 活动二时,解得:m =45;当w 活动一>w 活动二时,解得:45<m≤50.综上所述:当45<m≤50时,选择活动一购买魔方更实惠;当m =45时,选择两种活动费用相同;当m >45时,选择活动二购买魔方更实惠.类型2 建立函数模型问题4.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B 和落水点C 恰好在同一直线上,点A 至出水管BD 的距离为12 c m ,洗手盆及水龙头的相关数据如图2所示,现用高10.2 cm 的圆柱型水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E,则点E 到洗手盆内侧的距离EH 为__24-82__cm .解:建立如图的直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ =MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12-8=4,由BQ∥CG可得,△ABQ∽△ACG,∴BQCG=AQAG,即4CG=1236,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=-320x2+95x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=-320x2+95x+24,解得x1=6+82,x2=6-82(舍去),∴点E的横坐标为6+82,又∵ON=30,∴EH=30-(6+82)=24-8 2.5.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000 kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t 天后的质量为m(kg ),销售单价为y 元/ kg .根据以往经验可知:m 与t 的函数关系为m =⎩⎪⎨⎪⎧20000(0≤t≤50)100t +15000(50<t≤100);y 与t 的函数关系如图所示. ①分别求出当0≤t≤50和50<t≤100时,y 与t 的函数关系式;②设将这批淡水鱼放养t 天后一次性出售所得利润为W 元,求当t 为何值时,W 最大?并求出最大值.(利润=销售总额-总成本)解:(1)由题意,得:⎩⎪⎨⎪⎧10a +b =30.420a +b =30.8,解得⎩⎪⎨⎪⎧a =0.04b =30. (2)①当0≤t≤50时,设y 与t 的函数解析式为y =k 1t +n 1,将(0,15)、(50,25)代入,可求得y 与t 的函数解析式为:y =15t +15;当50<t≤100时,设y 与t 的函数解析式为y =k 2t +n 2,将点(50,25)、(100,20)代入,可求得y 与t 的函数解析式为:y =-110t +30;②由题意,当0≤t≤50时,W =20000(15t +15)-(400t +300000)=3600t,∵3600>0,∴当t =50时,W 最大=180000(元);当50<t≤100时,W =(100t +15000)(-110t +30)-(400t +300000)=-10(t -55)2+180250,∵-10<0,∴当t =55时,W 最大=180250(元).综上所述,放养55天时,W 最大,最大值为180250元.。
中考数学中的概率与统计实际问题解决方法总结

中考数学中的概率与统计实际问题解决方法总结概率与统计是中考数学中的重要考点之一,也是实际生活中常用的数学知识。
本文将总结中考数学中概率与统计相关知识,并提供解决实际问题的方法。
一、概率的计算方法概率是指事件发生的可能性大小。
在中考数学中,通常以公式的方式计算概率。
以一个简单的例子来说明,假设有一个有10个红球和5个蓝球的袋子,从中任意取一球,求取到红球的概率。
用P表示概率,则P(取到红球) = 红球的个数÷总球数 = 10÷(10+5) = 10/15 = 2/3。
二、统计的基本方法统计是指通过观察、记录和分析数据,对现象进行描述和归纳的过程。
在中考数学中,常用的统计方法有频数统计、频率统计、平均数、中位数、众数等。
其中,平均数是常见的统计指标之一,计算平均数的公式为:平均数 = 总数之和 ÷数据个数。
举例来说,某学生在5次模拟考试中的分数分别为80、85、90、92、95,计算这5次模拟考试的平均分数,即 (80+85+90+92+95) ÷ 5 = 88.4。
三、实际问题解决方法在实际生活中,概率与统计的知识可以帮助我们解决很多问题。
举例来说,我们可以通过统计分析历年中考数学题目的命题方向,分析重点考点,得出备考策略。
又或者我们可以利用概率知识来解决实际问题,如购买彩票的中奖概率、天气预报的准确度等。
除此之外,概率与统计知识还可以应用于商业领域。
比如,在生产过程中,统计产品的不合格率,来评估产品的质量水平;在市场营销中,通过对顾客购买行为的统计分析,预测和满足消费者的需求。
总之,中考数学中的概率与统计知识不仅仅是为了应付考试,更是为了培养我们在实际生活中解决问题的能力。
通过学习概率与统计,我们可以更好地理解和应用数据,提高我们的决策能力和问题解决能力。
希望本文总结的实际问题解决方法能够对您有所帮助。
九年级数学中考数学复习实际问题(销售问题)大题复习

【三角函数】1、(2013年天津市,23)天塔是天津市的标志性建筑之一.某校数学兴趣小组要测量天塔的高度.如图,他们在点A 处测得天塔的最高点C 的仰角为︒45,再往天塔方向前进至点B 处测得最高点C 的仰角为︒54,AB =112m .根据这个兴趣小组测得的数据,计算天塔的高度CD (tan36≈︒0.73,结果保留整数).2、已知不等臂跷跷板AB 长4m ,如图①,当AB 的一端A 碰到地面时,AB 与地面的夹角为α;如图②,当AB 的另一端B 碰到地面时,AB 与地面的夹角为β.求跷跷板AB 的支撑点O 到地面的高度OH.(用含α、β的式子表示)。
【应用题】3、(2012新疆乌鲁木齐,19,12分)水果店第一次用500元购进某种水果,由于销售状况良好,该店又用1650元购时该品种水果,所购数量是第一次购进数量的3倍,但进货价每千克多了0.5元.(1)第一次所购水果的进货价是每千克多少元?(2)水果店以每千克8元销售这些水果,在销售中,第一次购进的水果有5%的损耗,第二次购进的水果有2%的损耗.该水果店售完这些水果可获利多少元?4.在水果店里,小李买了5kg 苹果,3kg 梨,老板少要2元,收了50元;老王买了11kg 苹果,5kg 梨,老板按九折收钱,收了90元。
该店的苹果和梨的单价各是多少元?5.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米?450 540C DB A6.某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(太)与销售单价x(元)满足=-+,w x280设销售这种台灯每天的利润为y(元)。
(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时.每天的利润最大?最大利润是多少?(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润.应将销售单价定为多少元?7、.某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元,从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去就设备维护费或新设备购进费)某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应返回金额.注:300~400表示消费金额大于300元且小于或等于400元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如,若购买标价为400元的商品,则消费金额为320 元,获得的优惠额为400×(1-80%)+30=110(元)(1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?9、2010年5月中央召开了新疆工作座谈会,为实现新疆跨越式发展和长治久安,作出了重要战略决策部署.为此我市抓住机遇,加快发展,决定今年投入5亿元用于城市基础设施维护和建设,以后逐年增加,计划到2012年当年用于城市基础设施维护与建设资金达到8.45亿元。
2023年初中数学中考考点归纳双向细目表

2023年初中数学中考考点一、代数1. 一元一次方程与一元一次不等式 1.1 解一元一次方程1.2 解一元一次不等式2. 整式2.1 整式的加减2.2 整式的乘除3. 因式分解3.1 提公因式法3.2 积因式分解4. 分式4.1 分式的加减4.2 分式的乘除二、几何1. 相似三角形1.1 判定相似三角形 1.2 相似三角形的性质2. 平行线与三角形2.1 平行线的性质2.2 三角形内角和3. 圆3.1 圆的性质3.2 圆内接四边形4. 三角形4.1 三角形的外角性质 4.2 三角形的面积计算三、函数与图像1. 一次函数1.1 一次函数的性质 1.2 一次函数图像2. 二次函数2.1 二次函数的性质2.2 二次函数图像3. 绝对值函数3.1 绝对值函数的性质 3.2 绝对值函数图像四、统计与概率1. 统计1.1 统计量的计算1.2 统计图的绘制2. 概率2.1 基本概率事件2.2 条件概率的计算五、解析几何1. 直线与圆1.1 直线与圆的位置关系 1.2 直线与圆的性质2. 空间图形2.1 空间图形的投影2.2 空间图形的体积计算六、实际问题1. 实际问题的解决方法1.1 将实际问题转化为数学问题1.2 利用数学方法解决实际问题2. 实际问题的综合运用2.1 结合多种数学知识解决实际问题 2.2 实际问题综合运用的技巧七、综合练习1. 综合练习题1.1 完形填空题1.2 阅读理解题2. 综合练习题解析2.1 完形填空题解析2.2 阅读理解题解析以上便是2023年初中数学中考的考点归纳双向细目表,同学们在备考中可根据此表进行有针对性的复习和练习,以取得更好的考试成绩。
2023年初中数学中考考点归纳双向细目表随着2023年初中数学中考的逐渐临近,同学们将面临着对数学知识的系统复习和全面梳理。
为了帮助同学们更好地备战数学中考,以下将就上文所述的考点进行更加详细的探讨和扩充。
一、代数代数是数学中的重要分支,它涵盖了一元一次方程与一元一次不等式、整式、因式分解和分式等内容。
中考数学实际应用问题及答案

中考实际应用题1. 为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m-3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过164万元,问最多购买A型污水处理器多少台?并求购买A型最多时每月处理污水量的吨数.2. 某厂家生产甲、乙两种零部件,已知甲种零部件每件的成本比乙种零部件每件的成本多1500元,且投入40000元生产甲种零部件的件数和投入28000元生产乙种的件数相同.(1)求甲、乙两种零部件每件成本各是多少元?(2)如果两种零部件共生产70件,该集团至少要投入290000元,那么,甲种零部件至少生产多少件?3. 某家电商场今年1月份开始销售一批某品牌液晶电视,1月份每台按所标价格销售,售出40台,2月份商场搞降价促销活动,每台降价400元销售,这样2月份比1月份多售出10台,销售款比1月份多40000元.(1)求这批电视1月份每台标价是多少元?(2)进入3月份,公司又按1月份所标价格的九折销售,将这批电视全部售出,销售款总量超过568600元,求这批电视最少有多少台?4. 为了解决农民工子女入学难的问题,哈市建立了一套进城农民工子女就学的保障机制,其中一项就是免交“借读费”。
据统计,2013年秋季有5000名农民工子女进入主城区中小学学习,预测2014年秋季进入主城区中小学学习的农民工子女将比2013年有所增加,其中小学增加20%,中学增加30%,这样,2014年秋季将新增1160名农民工子女在主城区中小学学习。
(1)如果按小学每生每年收“借读费”500元,中学每生每年收“借读费”1000元计算,求2014年新增的1160名中小学生共免收多少“借读费”?(2)如果小学每40名学生配备2名教师,中学每40名学生配备3名教师,若按2014年秋季入学后,农民工子女在主城区中小学就读的学生人数计算,一共需要配备多少名中小学教师?5. 冰雪大世界决定在寒假期间举办学生专场游园会,入场券分为团体票和零售票,其中团体票占总票数的23,已知一张团体票比一张零售票少20元,买20张团体票和买15张零售票所花的钱是相同的.(1)求每张团体票和零售票各为多少元钱?(2)在第一周内,共售出团体票的35,售出零售票的一半;如果在第二周内,团体票按每张80元出售,并计划在该周内售出全部余票,那么零售票应按每张多少元定价才能使第二周的票款与第一周的票款收入持平?(3)在(2)的条件下,若该专场的入场卷共发行了1500张,主办方准备拿出全部票款的10%进行“为贫困山区的孩子购买学习用具”的慈善公益活动.已知每套A型图书50元,每套B型图书40元.该地区需要两种图书共260套.则最多可以购买多少套A型图书?6. 丑小鸭电器超市购进A、B两种型号的电风扇进行销售,若一台A种型号的进价比一台B 种型号的进价多30元,用2000元购进A种型号的数量是用3400元购进B种型号的数量的一半.(1)求每台A种型号和B种型号的电风扇进价分别是多少元?(2)该超市A种型号电风扇每台售价260元,B种型号电风扇每件售价l90元,超市根据市场需求,决定再采购这两种型号的电风扇共30台,若本次购进的两种电风扇全部售出后,总获利不少于1400元,求该超市本次购进A种型号的电风扇至少是多少台?7.在国道202公路改建工程中,某路段长4000米,由甲乙两个工程队拟在30天内(含30天)合作完成,已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每人每天的工作量相同,乙工程队每人每天的工作量相同),甲工程队1天、乙工程队2天共修路200米;甲工程队2天,乙工程队3天共修路350米.(1)试问甲乙两个工程队每天分别修路多少米?(2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队需各做多少天?最低费用为多少?8. 电动自行车已成为市民日常出行的首选工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学实际问题总结归纳
数学是一门应用广泛的学科,它贯穿了我们生活的方方面面。
在中
考中,数学实际问题常常成为考试的一部分。
解决实际问题需要我们
将数学知识与实际情境相结合,灵活运用数学思维方法。
本文将对中
考数学实际问题进行总结归纳,帮助同学们更好地应对考试。
一、问题分类
为了更好地总结中考数学实际问题,我们可以将其分为以下几个分类:
1.几何问题:涉及到图形的周长、面积、体积等计算。
在解决几何
问题时,首先要熟悉各种图形的性质,掌握计算周长、面积、体积的
公式,然后将实际问题转化为数学问题。
2.比例问题:涉及到比例关系的问题,如物品的比价、速度的比较等。
解决比例问题需要掌握比例的性质,能够正确地建立比例关系,
灵活运用各种比例方法。
3.数据统计问题:涉及到数据的整理、分析和统计。
解决数据统计
问题需要学会收集、整理和分析数据,对数据进行合理的处理和解读。
4.函数问题:涉及到函数的概念、性质和应用。
解决函数问题需要
掌握函数的定义、图像、运算和应用等知识,能够准确地描述函数关系,灵活运用函数的性质和定理。
二、解题方法
针对不同的问题分类,我们可以采用不同的解题方法。
下面以几何问题和比例问题为例,介绍一些解题方法。
1.几何问题解题方法:
(1)几何问题中,首先要熟悉各种图形的性质和特点。
比如,对于矩形,要知道其两对边分别相等,对角线相等等性质。
(2)掌握计算几何图形的周长、面积、体积等公式,并能够正确运用公式解决实际问题。
比如,计算矩形的面积就是长度乘以宽度。
(3)在解决实际问题时,要将问题转化为数学问题。
比如,如果题目是求二维图形的面积,我们要将实际问题中的长度或宽度与数学公式中的变量对应起来,建立数学模型。
2.比例问题解题方法:
(1)正确理解比例的含义和性质。
比例是指两个或多个量之间的相对关系,可以表示为等比例关系或相等比例关系。
(2)能够正确建立比例关系,并灵活运用各种比例方法。
比如,在求物品的比价时,可以通过设未知数、列方程、解方程等方法解决问题。
(3)在解决实际问题时,要注意单位换算。
比如,如果题目中给出的物品价格单位是每千克,而你需要计算价格的总值,就要将单位换算为每克。
三、解题技巧
除了掌握各种解题方法外,还有一些解题技巧可以帮助我们更好地
解决实际问题。
1.审题准确:在解决实际问题时,首先要认真阅读题目,理解问题
的要求和条件。
可以用自己的话重新描述题目,确保自己理解准确。
2.逻辑清晰:解决实际问题需要我们合理地安排思路和步骤,确保
解题过程的逻辑清晰。
可以将问题拆解为多个小问题,逐个解决。
3.思维灵活:实际问题的解决过程并非一成不变,需要我们根据具
体情况进行分析,灵活选择合适的解题方法。
有时候,可以尝试从反
面思考问题,寻找不同的解决思路。
4.反复检查:在解决实际问题后,要对结果进行反复检查,确保计
算准确无误。
可以用不同的方法验证结果,避免漏算或算错。
四、总结归纳
中考数学实际问题是考察同学们综合运用数学知识和解决实际问题
的能力。
通过对实际问题的分类、解题方法和解题技巧的总结,我们
可以更好地应对中考数学实际问题,提高解题的准确性和效率。
在解决实际问题时,我们需要灵活运用数学知识与实际情境相结合,理清问题的逻辑,合理选择解题方法,并反复检查结果。
相信通过不
断的练习和积累,我们一定能够在中考中取得好成绩!。