电厂凝结水精处理

合集下载

一次典型的发电厂凝结水精处理树脂泄漏原因分析及对策

一次典型的发电厂凝结水精处理树脂泄漏原因分析及对策

摘要:火力发电厂凝结水精处理系统一般采用进口树脂,价格高、购买周期长。

当凝结水精处理系统发生树脂泄漏时,不仅会造成树脂浪费,还会影响机组的正常运行;泄漏的树脂可能堵塞给水泵滤网,造成给水泵跳闸,引发停机;树脂进入热力系统时还可能引起机组热力系统严重腐蚀,导致金属过热和爆管事故,威胁机组的安全运行。

鉴于此,针对一次典型的发电厂凝结水精处理树脂泄漏事件进行了全面分析,制定了相应的防范对策,为其他电厂避免火力发电机组出现类似问题提供了一定的指导。

关键词:火力发电厂;凝结水精处理;树脂泄漏0 引言火力发电机组参数提高,对水质要求也越来越严格,由于凝汽器的渗漏和泄漏、系统中金属腐蚀产物的污染、返回水夹带杂质等因素的影响,热电厂凝结水存在着不同程度的污染,因此,对凝结水进行处理已是大型火电厂水处理一个极为重要的环节。

提高汽水品质最常用的措施就是采用凝结水精处理装置,最常见的凝结水精处理系统是前置过滤器加高速混床的中压凝结水精处理系统。

凝结水精处理系统可以连续除去凝结水中的杂质,提高给水质量;缩短机组启动时间,降低汽包锅炉的排污量,节省能耗和经济成本;可在凝汽器微量泄漏时,保障机组安全连续运行,除去漏入的盐分及悬浮杂质,使维护人员有时间采取查漏、堵漏措施;严重泄漏时,可保证机组按预定程序停机。

但凝结水精处理系统树脂泄漏不仅会造成树脂浪费,增加运行成本,还会影响机组的正常运行;泄漏的树脂可能堵塞给水泵滤网,造成给水泵跳闸,引发停机;由于树脂主要成分为有机物,树脂泄漏进入热力系统后这些有机物会在炉管壁上生成碳质沉积物,常导致金属过热和爆管事故;树脂中的有机物在高温作用下还会产生挥发性酸,进入汽轮机时会引起汽轮机腐蚀。

凝结水精处理系统树脂泄漏的原因有很多,主要有水帽变形损坏、水帽滤元绕丝间隙超标、水帽安装后与多孔板结合面不严密、树脂捕捉器滤元损坏、滤元绕丝间隙超标、阀门关闭不严等。

鉴于此,本文针对一次典型的发电厂凝结水精处理树脂泄漏事件进行了全面分析,制定了相应的防范对策,为其他电厂避免火力发电机组出现类似问题提供了一定的指导。

最新现代电厂的凝结水精处理

最新现代电厂的凝结水精处理

现代电厂的凝结水精处理《电厂锅炉设备及原理》课程论文课题名称现代电厂的凝结水精处理学生姓名学号系、年级专业2013年 12 月 5 日现代电厂的凝结水精处理摘要:在现代核电、热力发电厂中,需要大量高纯水,作为压水反应堆、电厂锅炉给水之用。

凝结水精处理系统,对目前的国内电厂机组而言,是更为重要的一个辅助系统。

凝结水精处理混床投运是否正常,关键还待再生系统的选择,再生系统致关重要。

要彻底将阴、阳树脂分离开,再进行分别再生。

再生系统对树脂设有光电检测系统,以利达到阴、阳树脂更有利分离起到一定的作用。

这是“锥斗分离”和“光电检测”的专利所在。

关键词:凝结水精处理树脂“锥斗分离”再生树脂的光电检测正文:凝结水精处理装置首先应用于20世纪60年代和70年代,广安电厂是20世纪90年代中期新建工程,能否借鉴国外的最新技术,且有成熟运行经验用于广安电厂。

1996年,据有关资料介绍,在大亚湾核电站、秦皇岛电厂,在国外只有三十多家电站使用普获专利的“锥斗分离”(CONESEP)技术经验,用于广安电厂的凝结水精处理再生系统。

由于对凝结水精处理了解初浅,仅从有关资料介绍的先进性,将“锥斗分离”技术选用在广安电厂的应用,简述如下:1 全面认识凝结水精处理的意义中国的电网很大,高参数,大容量机组相继推出,对凝结水精处理也有更高的要求。

水是火力发电机组机炉间能量传递的唯一介质,为此,它对机组安全、经济作用是很大的,特别是凝结水的质量(相对于整个汽水系统)是起决定作用的。

例如元宝山电厂1号机组凝结水系统正常投入运行,10年后割管检查垢量不到100 g/m2,可以不清洗。

而另一个电厂也是引进机组,运行不到半年,锅炉大量暴管,凝结水处理没有正常投入运行是主要原因之一。

认识凝结水处理的作用只是一种备用措施,并不认为其必不可少,当看到钛管也有泄漏时,做为一种防漏设施,它才成为必需,这是其一的防漏设施。

其二,更重要的是:汽水在机炉间的不同参数和形态在循环,不可避免在推带溶解的各种金属盐类和泄漏其它盐类杂质(包括凝汽器泄漏、换热器、水箱、加药泵等部位),尽可能是微量的,是不间断的和可积存的,都是可能形成危害的。

凝结水精处理解决方案

凝结水精处理解决方案

凝结水精处理解决方案Fine Treatment of Condensed Water⏹简介凝结水精处理是大容量、高参数发电机组中一种特有的水处理方式。

其目的主要是去除凝结水中的金属腐蚀产物如铁、铜的氧化物,以及水中的微量溶解盐。

凝结水精处理系统的正常投运对保证机组水汽品质,缩短新机组一启动时间,提高机组凝汽器泄露的保护能力,处长机组酸洗周期都有其实际意义。

凝结水精处理通常采用以下2种方式:体外再生深层混床;粉末树脂覆盖过滤器。

⏹体外再生深层混床系统深层混床需要体外再生,体外再生技术是利用阴阳树脂比重、粒径的差异,并彩光电控制,对树脂进行水力反洗分层,将阴、阳树脂彻底分离,使交叉污染率降到极低水平,达到长周期制取超纯水的效果。

◆技术特性●操作安全简便可靠●排除分离后阴阳树脂过渡区的危害●阴阳树脂交叉污染率小于0.1%●失效树脂卸出率超过99.9%●混床在氨穿透后,能在氨型周期正常运行●混床运行周期可达40-70天●有效应对凝汽器的少量泄露,去除腐蚀产物及带入的杂质◆前置过滤及高速混床系统●去除凝结水中的SiO2、Na+、Cl-等杂质●防止热力系统腐蚀产物带进锅炉●实现氨化运行◆再生系统●树脂分离塔:完全彻底分离阳阴树脂●阴树脂再生塔:彻底再生阴树脂并使树脂得到彻底的清洗●阳树脂再生塔:彻底再生阳树脂并使树脂得到彻底的清洗●废水树脂捕捉器:防止再生系统跑树脂●回收水箱:节约自用水◆程控系统●PLC程控:CRT画面和键盘对于工艺参数自动监控●可设置自动、远操和就地手操功能,实现无扰平滑切换●可实现无人值守⏹粉末树脂覆盖过滤器系统目前,国内大型火力发电厂凝结水精处理通常采用传的混床系统,有的在混床之前加前置过滤或阳床,这种系统存在设备投资高、占地大、运行管理复杂、维护费用昂贵,而且需要酸碱再生失效树脂产生排废等诸多问题。

因此引进一种系统简单、投资少、占地小、运行经济而又不存在酸碱废水问题的凝结水精处理工艺就是电厂节省成本、提高效率的一种有效途径。

凝结水精处理

凝结水精处理

第一节系统说明发电厂的凝结水有汽轮机凝汽器凝结水、汽轮机附属热力系统中加热疏水(蒸汽凝结水)。

凝结水是给水中最优良的组成部分,通常也是给水组成部分中数量最大的。

凝结水同补给水汇合后成为锅炉的补水,所以保证凝结水和补给水的水质是使给水水质良好的前提。

凝结水是由蒸汽凝结而成的,水质应该是极纯的,但是实际上这些凝结水往往由于以下原因而有一定程度的污染:1 在气轮机凝汽器的不严密处,有冷却水漏入汽轮机凝结水中。

2 因凝结水系统及加热器疏水系统中,有的设备和管路的金属腐蚀产物而污染了凝结水。

一、凝汽器的漏水冷却水从汽轮机凝汽器不严密的地方进入汽轮机的凝结水中,是凝结水中含有盐类物质和硅化合物的主要来源,也是这类杂质进入给水的主要途径之一。

凝汽器的不严密处,通常出现在用来固定凝汽器管子与管板的连接部位(或称固接处)。

即使凝汽器的制造和安装质量较好,在机组长期运行的过程中,由于负荷和工况变动的影响,经常受到热应力和机械应力的作用,往往使管子与管板固接处的严密性降低,因此通过这些不严密处渗入到凝结水中的冷却水量就加大。

根据对许多大型机组的凝汽器所作的检查得知:在正常运行条件下,随着凝汽器的结构和运行工况的不同,渗入到凝结水中的冷却水量有很大的差别;严密性很好的凝汽器,可以做到渗入的冷却水量为汽轮机额定负荷时凝结水量的0.005%-0.02%。

就是说,即使在正常运行条件下,冷却水也是或多或少地渗入到凝结水中,这种情况称之为凝汽器渗漏。

当凝汽器地管子因制造地缺陷或者因为腐蚀出现裂纹、穿孔和破损时,当管子与管板地固接不良或者固接处地严密性遭到破坏时,那么由于冷却水进入到凝结水中而使凝结水水质劣化的现象就更加显著。

这种现象称为凝汽器泄漏。

凝汽器泄漏时进入凝结水的冷却水量比正常情况下高的多。

随着冷却水进入凝结水中的杂质,通常有Ca2+、Mg2+、Na+、HCO3-、Cl-、SO42-,以及硅化合物和有机物等。

由于进入凝汽器的蒸汽是汽轮机的排汽,其中杂质的含量非常少,所以汽轮机凝结水中的杂质含量,主要决定于漏入冷却水的量和其杂质的含量。

火电厂凝结水精处理文档

火电厂凝结水精处理文档

凝结水精处理凝结水一般是指锅炉产生的蒸汽在汽轮机做功后,经循环冷却水冷却凝结的水。

由于热力系统不可避免的存在水汽损失,需向热力系统补充一定量的补给水(除盐水箱来水)。

主要包括:汽轮机内蒸汽做功后的凝结水、小机凝结水、低加疏水和锅炉补给水。

凝结水精处理装置在主凝结水系统流程如下:凝汽器→凝结水泵→前置过滤器→高速混床装置→汽封加热器→低压加热器→除氧器。

前置过滤器作用前置过滤器主要去除凝结水中铁、铜氧化物以及机组启动初期的一些悬浮物等物质。

缩短机组投运时间。

延长了树脂运行周期和使用寿命。

图4-1 前置过滤器结构示意图高速混床作用混床内装有阳树脂和阴树脂的混合树脂。

凝结水中的阳离子与阳树脂反应而被除去,阴离子与阴树脂反应而被除去。

树脂失效后,阳树脂用盐酸再生,阴树脂用氢氧化钠再生。

主要除去水中的盐类物质(即各种阴、阳离子),另外还可以除去前置过滤器漏出的悬浮物和胶体等杂质。

图4-2 高速混床结构示意图旁路系统凝结水精处理设置过滤器和混床两级旁路系统(过滤器旁路、混床旁路),每级旁路系统均应允许通过最大的凝结水流量,过滤器旁路系统和混床旁路系统应各设置1个电动阀,能连续可调节通过0~100%的凝结水量。

两级旁路系统旁路阀门均设置运行检修手动阀。

混床旁路系统的阀门可接受根据水温,压差等信号进行自动操作的控制指令,也可在DCS上进行手动操作。

也可在就地进行手动操作。

在遇到下列情况之一时,过滤器旁路系统应能自动打开(1) 前置过滤器进出口压差:>0.12MPa(2) 进口凝结水水温:≥70℃时在遇到下列情况之一时,混床旁路系统应能自动打开(1) 运行混床出水电导率、二氧化硅含量超标(2) 进口凝结水水温:≥70℃(3) 精处理混床的进出口压差:>0.35MPa(4) 精处理系统进口压力:>4.5MPa体外再生系统高速混床失效后应停止运行进行再生,树脂的再生采用体外再生。

体外再生就是离子交换和树脂的再生在不同的设备中分别进行,简化了高速混床内部的结构,在混床本体上无需设置酸、碱的管道,可以避免因偶然发生的事故而使酸或碱混入凝结水系统,从而保证正常运行。

电厂凝结水精处理系统步序优化分析

电厂凝结水精处理系统步序优化分析

创新观察—420—电厂凝结水精处理系统步序优化分析张海峰(国电铜陵发电有限公司,安徽 铜陵 244000)引言:应用凝结水精处理系统能够有效去除凝结水中溶解的各种微量矿物质,维护给水系统稳定运行。

避免铁、铜、钠、氯等少量的固定溶解物以及悬浮物和凝结水精处理系统中的金属发生反应作用,从而破坏凝结水精处理系统或者造成积盐沉积在系统的管道管壁中,降低给水系统效率。

一、电厂凝结水精处理系统(高塔法)工艺阐述电厂凝结水精处理系统的最终运行效果主要取决于树脂分离再生方案的选择。

目前,最为常见的凝结水精处理系统树脂分离再生方法是高塔分离法。

高塔分离法和浓碱浮选法、氨化法、锥体分离法以及中间抽出法相比,设计原理简单,能够高效运行凝结水精处理系统。

通过利用水力分层原理、阴阳树脂比重以及树脂粒径差异实现阴阳树脂的分离。

凝结水精处理系统一般包括前置过滤器单元、高速混床单元以及再生单元等。

机组启动初期,电厂需要在前置过滤器单元配置2台50%的中压前置过滤器,用于处理凝结水中的过量铁离子,投运初期反洗周期短,待机组实现稳定运行,铁离子数值趋于稳定后,反洗周期恢复正常值[1]。

需要注意的是,操作前置过滤器需要采用DCS 程控步序控制,禁止手操。

在高速混床单元配置3台中压高速混床单元及再循环泵1台,当运行混床出现数据指标异常时,投入备用混床运行,与此同时,失效混床则会退出运行解列。

当凝结水精处理系统中的凝结水温度超过55摄氏度时,或者当凝结水精处理系统旁路差压大于0.35MPa 时,旁路门将会自动开启,确保整个凝结水精处理系统的正常运行。

再生单元是低压单元,实现树脂分离再生。

二、电厂凝结水精处理系统步序的优化策略(一)混床升压步序优化 电厂凝结水精处理采用中压运行以及体外再生系统。

每台机组均会设置混床和自动旁路。

每台机组旁还设有再循环泵,在高速混床刚投入运行时,能够通过再循环泵实现高速混床的循环正洗。

凝结水精处理一般采用中压凝结水混床系统,具体而言主要包括前置过滤器和高速混床的串连,再生系统内含分离塔、阴塔和阳塔,此外还有酸碱设备、热水罐、罗茨风机以及冲洗水泵等基本设备。

电厂化学凝结水精处理篇

电厂化学凝结水精处理篇

电厂化学凝结水精处理篇第一章总则1.1凝结水精处理的目的凝结水在形成过程中会因为凝汽器渗漏或泄漏、热力系统腐蚀、汽机负荷变化等原因受到不同程度的污染。

凝结水是给水的主要组成部分,为了提高给水水质,适应我厂亚临界高参数大容量机组对给水水质的严格要求,不仅需要对锅炉补给水进行净化除盐处理以及对炉水进行加药调节处理,还需对凝结水进行深化处理,彻底除去凝结水中的各种盐份、胶体、金属氧化物、悬浮物等杂质,从而保证给水的高纯度,保证机组在凝汽器发生少量泄漏时,能满负荷运行;在较大泄漏时,能给予申请停机所需时间。

1.2系统概况我厂二期2×300MW机组对全容量凝结水进行除盐处理,凝结水处理采用中压系统。

每台机组各有一个混床单元,配备两台高速混床(含旁路与再循环),正常情况下两台混床均处于连续运行状态,设备没有备用。

每台混床出口设置树脂捕捉器,确保破碎树脂不会被带入热力系统。

每台高速混床处理水量正常为380m3/h,最大流量为456m3/h,机组正常运行时,两台混床流量达760 m3/h,可满足单台300MW机组凝结水量的处理。

混床设计温度50℃,正常运行温度≤50℃,装填树脂允许温度为55℃,设计压力为3.5 Mpa。

每台机组还设置有一台再循环泵,同时设置一个可调节旁路阀。

混床为球形高速混床,采用美国陶氏公司的中压大孔均粒树脂。

阳树脂为型号MonoplusSP112H,阴树脂为MonoplusMP500,阳、阴树脂体积比为3:2。

两个混床单元共用一套体外再生装置,设计压力为0.6 Mpa,再生系统采用FULLSEP高塔分离法,具有较高的分离度,可以保证阴阳树脂分离后,使阴树脂中的阳树脂和阳树脂中的阴树脂的交叉污染保证值小于0.1%,可满足氨化运行对树脂高分离度的要求。

中压除盐系统和低压再生系统的连接树脂管道上装有带筛网的压力安全阀,筛网可以泄放压力而不让树脂漏过。

该系统程控部分由两台可编程控制器、主控盘、可编程计算机系统软件组成。

凝结水精处理技术方案

凝结水精处理技术方案
提高水质标准:通过凝结水精处理,可以将水质指标控制在更高的标准范围内,满足环保要 求。
目标:提高凝结水品质,满足电厂运行要求 原则:安全可靠、技术先进、经济合理
确定凝结水精处理系统的 工艺流程和设备配置
安装和调试凝结水精处理 设备
对凝结水进行预处理,包 括过滤和除盐等操作
对凝结水进行后处理,包 括除氧和加药等操作
投资成本高:需要引进先进的设备和材料,增加了项目的投资成本
技术难度大:凝结水精处理技术方案涉及多个学科领域,技术难度较大,需要专业 技术人员进行操作和维护
运行成本高:由于技术难度大,需要专业的技术人员进行操技术方案适用于特定的水质和水量,对于不同水质和 水量需要进行调整和优化,适用范围有限
提高能源利用效率,促进 节能减排
汇报人:
监控和调整凝结水精处理 系统的运行参数,确保水 质达标
凝结水进入凝结 水箱
凝结水通过水泵 送入过滤器
过滤器去除凝结 水中的杂质和颗
粒物
凝结水通过树脂 交换器去除盐分
和离子
凝结水通过除氧 器去除氧气
凝结水通过热回 收系统回收热量
离子交换器: 去除凝结水中 的盐分和杂质, 保证水质合格
过滤器:去除 凝结水中的颗 粒物和悬浮物, 保证水质清洁
投资成本:凝结 水精处理技术方 案的初始投资成 本较高,但长期 运营成本较低。
运行费用:该技 术方案的运行费 用较低,包括化 学药品消耗、设
备维护等。
经济效益:凝结水 精处理技术方案能 够提高热力系统的 热效率和设备可靠 性,从而降低能耗 和维修费用,提高
整体经济效益。
回收期:该技术 方案的回收期较 短,一般在2-3 年内即可收回初
混床:将凝结 水中的阴阳离 子去除,进一
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5-混床;6一凝结水升压泵;7-冷却水循环泵;8调压水轮机:
9一旁路调节阀;10一散热器
带表面式凝汽器的间接空冷系 统工艺流程
1-汽轮机;2-表面式凝汽器;3-凝结水泵; 4-除铁过滤器、 5-凝结水升压泵;6-膨胀水箱;7-.循环水泵,8-空冷塔
中压球型混床的内部结构
双流速水帽的结构和工作过程 示意图
(a)运行时,(b)反洗时
锥体分离塔
1一底部配水装置,2一出脂管3一窥视窗
高塔分离塔结构
1一布水装置;2一阴树脂区;3一混脂区; 4-阳树脂区; 5一配/排水装置; 6一树脂位控制开关,7-窥视窗
混床底部结构
覆盖过滤器在凝结水精处理系 统中的工艺流程
(a)覆盖过滤器系统;
覆盖过滤器在凝结水精处理系 统中的工艺流程
( b})盖过滤器+混床系统
直接空冷系统工艺流程
1一空冷凝汽器2一凝结水箱3一凝结水泵4除铁 过滤器;5一混床;6一凝结水升压泵;7一冷却风机
带混合式凝汽器的问接空冷系统 工艺流程
l一汽轮机;2一混合式凝汽器;3-凝结水泵;4一除铁过滤器;
1一筒体;2一励磁线圈;3一填料
微孔滤元过滤器的结构
1-人孔2-上部滤元固定装置3-滤元; 4-进水装置
5-滤元螺纹接头: 6-布气管;7-出水装置
A-进水口 b-出水口 c-进气口 d-排气口
树脂捕捉器结构
1一集水双流速水帽,2一树脂层13一布水水帽4一多孔板: 5-挡水板;6.一 进水裙圈;7-平衡管; 8-蝶形多孔板;9-蝶形板 a一进水口;b一进 脂口;c-人孔,d-出脂口, e一出水口,f一视镜g一排污口
第五章 电厂凝结水精处理
低压凝水处理装置在热力系 统中的连接方式
1-凝汽器;2-凝结水泵;3-凝结水精处理装置:4-凝结水升压泵;5-低压加热器
中压凝结水处理装置在热力系 统中的连接方式
1-凝气器;2-凝结水泵;3-凝结水精处理装置;4-低压加热器
覆盖过滤器 结构示意图
高梯度电磁过滤器的结构
相关文档
最新文档