教你怎么做电感的选型

合集下载

技术大牛教你电感如何选型

技术大牛教你电感如何选型

技术⼤⽜教你电感如何选型器件选型是硬件⼯程师的基本⼯作,本⽂主要从电感的⼯艺和应⽤出发,介绍电感如何选型。

⼀、电感的基本原理电感,和电容、电阻⼀起,是电⼦学三⼤基本⽆源器件;电感的功能就是以磁场能的形式储存电能量。

以圆柱型线圈为例,简单介绍下电感的基本原理如上图所⽰,当恒定电流流过线圈时,根据右⼿螺旋定则,会形成⼀个图⽰⽅向的静磁场。

⽽电感中流过交变电流,产⽣的磁场就是交变磁场,变化的磁场产⽣电场,线圈上就有感应电动势,产⽣感应电流:电流变⼤时,磁场变强,磁场变化的⽅向与原磁场⽅向相同,根据左⼿螺旋定则,产⽣的感应电流与原电流⽅向相反,电感电流减⼩;电流变⼩时,磁场变弱,磁场变化的⽅向与原磁场⽅向相反,根据左⼿螺旋定则,产⽣的感应电流与原电流⽅向相同,电感电流变⼤。

以上就是楞次定律,最终效果就是电感会阻碍流过的电流产⽣变化,就是电感对交变电流呈⾼阻抗。

同样的电感,电流变化率越⾼,产⽣的感应电流越⼤,那么电感呈现的阻抗就越⾼;如果同样的电流变化率,不同的电感,如果产⽣的感应电流越⼤,那么电感呈现的阻抗就越⾼。

所以,电感的阻抗于两个因素有关:⼀是频率;⼆是电感的固有属性,也就电感的值,也称为电感。

根据理论推导,圆柱形线圈的电感公式如下:可以看出电感的⼤⼩与线圈的⼤⼩及内芯的材料有关。

实际电感的特性不仅仅有电感的作⽤,还有其他因素,如:· 绕制线圈的导线不是理想导体,存在⼀定的电阻;· 电感的磁芯存在⼀定的热损耗;· 电感内部的导体之间存在着分布电容。

因此,需要⽤⼀个较为复杂的模型来表⽰实际电感,常⽤的等效模型如下:等效模型形式可能不同,但要能体现损耗和分布电容。

根据等效模型,可以定义实际电感的两个重要参数。

⾃谐振频率(Self-Resonance Frequency)由于Cp的存在,与L⼀起构成了⼀个谐振电路,其谐振频率便是电感的⾃谐振频率。

在⾃谐振频率前,电感的阻抗随着频率增加⽽变⼤;在⾃谐振频率后,电感的阻抗随着频率增加⽽变⼩,就呈现容性。

电力电子技术中的电感器选型准则

电力电子技术中的电感器选型准则

电力电子技术中的电感器选型准则电力电子技术中的电感器在各种应用中发挥着重要作用,如逆变器、变频器、稳压器等。

电感器的选型对电路性能和稳定性至关重要。

本文将从电感器的基本原理、选型参数和选型准则等方面进行论述,以帮助读者理解电感器的选型过程。

1. 电感器的基本原理电感器是一种用来储存电能的被动元件,它主要由线圈和磁芯组成。

当电流通过线圈时,会在线圈中产生磁场,进而储存了一定的电能。

电感器的基本原理是根据电路中的电流和磁场之间的相互关系来工作的。

2. 电感器的选型参数在进行电感器的选型时,需要考虑以下几个主要参数:2.1 电感值电感值是电感器的一个重要参数,它表示了电感器的电感量大小。

在选型过程中,需要根据电路的需求决定所需的电感值范围。

2.2 额定电流额定电流是指电感器能够承受的最大电流值,在选型时需要根据电路中的最大电流确定电感器的额定电流。

2.3 电感器尺寸电感器的尺寸也是选型时需要考虑的因素之一。

通常情况下,电感器的尺寸越小,对于电路板的空间占用就越小。

2.4 电感器的频率特性电感器的频率特性也是选型过程中需要关注的参数。

不同类型的电感器对频率的响应不同,需要根据电路的频率范围选择合适的电感器。

3. 电感器的选型准则在进行电感器的选型时,可以按照以下几个准则进行选择:3.1 电感器的电感值应满足电路的要求。

在根据电路需求确定电感值范围后,选择电感器时应确保其电感值在这个范围内。

3.2 电感器的额定电流应大于电路中的最大电流。

选型时应注意电感器的额定电流是否能够承受电路中的最大电流,以保证电感器的正常工作。

3.3 考虑电感器的尺寸与电路板空间的匹配。

根据电路板的空间限制,选择合适尺寸的电感器,以确保电路板的整体布局紧凑。

3.4 考虑电感器的频率特性与电路频率的匹配。

根据电路的频率范围,选择具有合适频率特性的电感器,以确保电感器在电路中能够正常工作。

4. 总结电感器在电力电子技术中起着重要作用,选型准则的合理应用可以确保电路的性能和稳定性。

电感选型基本要领

电感选型基本要领

电感选型基本要领
电感选型必需向客户了解到如下信息:
A).产品的应用场合;
B).标称感量及误差要求;
C).谐振频率(F0)及品质因素;
D).电路中额定工作电流(Irat);
E).电路峰值电压(Irms);
F).电感工作时四周环境温度;
G).安装尺寸要求(如脚距Pitch、本体外围尺寸等);
H).客户的生产工艺力量(产品安装信息).
电感选型的基本原则:
A).以低成本,节省使用空间为基本原则;
B).电感选择时必需充分考虑电路工作频率、电流、温度波动对电感参数性能的影响(电感选择其电气参数必需留有合理的余量);
C).必需结合整机产品平安、安规、环保论证及防护性能。

电感规格书查阅的重点:
1.了解电感封装规格、外型尺寸;
2.了解电感基本静态电气参数及测试条件:
A).标称电感量及误差;
B).额定电流;
C).最大直流电阻值(D.C.R);
D).品质因素(Q值)及谐振频率(F0)(针对高频电感);
E).绝缘电阻及耐压要求.
3.了解电感动态工作性能:
3.1 电感量vs 频率;
3.2 电感量vs 工作电流;
3.3 电感量vs 工作环境温度;
3.4 表面温升vs 工作电流。

4.了解电感的牢靠性(机械强度、环境测试、持续耐久测试等)试验定义的条件及详细要求。

5.了解电感制程装配及焊接条件定义(可焊性测试、耐焊接热测试)。

6.环保法律法规符合状况查询(欧盟RoHS、Reach以及无卤等要求)。

如何选择适合的电感

如何选择适合的电感

如何选择适合的电感电感是一种常见的电子元件,广泛应用于各种电路中。

选择适合的电感对于电路的正常运行至关重要。

本文将介绍如何选择适合的电感,并给出一些建议。

一、了解电感的基本概念和特性电感是指电流变化时所产生的自感电动势,通常由线圈或线圈组成。

电感的单位是亨利(H),常用的子单位有微亨(μH)和纳亨(nH)。

电感的特性包括电感值、品质因数、最大电流等。

二、确定电感的使用环境和要求在选择适合的电感之前,需要了解电路的使用环境和对电感的要求。

比如工作频率范围、电流大小、容忍功率损耗等。

只有明确这些要求,才能更好地选择适合的电感。

三、选择合适的电感类型1. 通用型电感:通用型电感适用于大部分一般性电路,具有较好的频率响应和磁饱和特性。

在选择时,需要根据要求确定合适的电感值和容忍功率损耗。

2. 高频电感:高频电感适用于工作频率较高的电路,具有较低的内阻和较小的耦合电容。

在选择时,需要考虑电感的高频响应和磁芯材料的磁导率。

3. 低频电感:低频电感适用于工作频率较低的电路,通常具有较高的电感值和较高的耦合电容。

在选择时,需要考虑电感的低频特性和磁芯材料的饱和电流。

四、选择适当的电感参数1. 电感值:根据电路的需求确定合适的电感值,可以通过仿真软件或实验验证得到。

一般来说,电感值越大,电感所储存的能量越多,但也会增加电感本身的大小和成本。

2. 容忍功率损耗:不同的电感具有不同的功率损耗特性。

在选择时,需要根据电路的功率需求和效率要求来确定合适的容忍功率损耗。

3. 最大电流:电感的最大电流是指电感能够承受的最大电流值。

在选择时,需要根据电路的工作电流来确定合适的最大电流。

五、考虑其它因素除了上述参数外,还有一些其他因素需要考虑:1. 尺寸和重量:根据电路的空间限制和重量要求,选择适合的电感尺寸和重量。

2. 成本:根据预算确定合适的电感。

3. 可靠性:选择可靠性较高的品牌和供应商。

六、参考实例以下是一些常见应用场景下的电感选择建议:1. 高频应用:对于高频应用,建议选择高频电感,具有较低的内阻和较小的耦合电容。

功率电感选型注意事项

功率电感选型注意事项

一:针对实际情况进行选型
一般我们用到功率电感都会有特定的工作环境或者对于功率电感的大小、焊盘的相应要求,结合实际情况我们找大小适合的功率电感能够对于我们的实际需求起到帮助作用,当然我们除了要注意到尺寸、焊盘问题外,还要考虑到具体的外部环境影响,这样才能够让功率电感获得工作状态。

另外我们还可以参考功率电感的实际使用场合,比如DC-DC回路或CPU 电路,都有对应的功率电感与之对应。

二:根据具体环境进行选择
不同的设备或者装置所给予功率电感的对应条件不同,比如一些情况下回路中电流的大小确定,则可以根据这一条件进行选择。

再或者一些情况下电路的设计会对功率电感有相应的要求,那么我们可以结合具体情况来判断电感的额定电流及相应的速度,进而选择适合的功率电感。

电感讲解及选取技巧

电感讲解及选取技巧

电感讲解及选取技巧电感是电路中常用的电子元件之一,它主要用于储存和传递电能。

通过电感产生的磁通量产生的感应电动势,可以使电感具有储存能量的特性。

在实际应用中,电感有多种类型和参数,选取适合的电感对电路性能至关重要。

下面将介绍电感的基本原理、常见类型以及选取技巧。

一、电感的基本原理电感是利用线圈(或绕组)中的电流通过线圈产生的磁通量产生的感应电动势来储存和传递电能。

根据法拉第电磁感应定律,当通过线圈的电流发生变化时,会在线圈中产生感应电动势,这个感应电动势会阻碍电流的变化。

简而言之,电感通过存储磁场能量来储存和传递电能。

二、电感的类型1.铁芯电感:线圈绕在铁芯上,用来增加磁通量和电感值。

铁芯电感具有较高的能量储存和较小的尺寸,适用于高能量要求的应用。

2.空心电感:无铁芯,由线圈直接绕在空心线圈上。

空心电感具有较小的电感值,适合低能量应用。

3.自支撑电感:无铁芯,线圈绕在一起并连接,形成自支撑结构。

自支撑电感具有较高的电感值和自阻抗,适合高频应用。

三、电感的选取技巧1.电感值的选取:根据电路要求和电感器的特性来选择合适的电感值。

一般来说,大电感值可用于低频电路和能量储存,小电感值可用于高频电路和信号传输。

在选择电感值时,还要考虑电感器的容忍电流和最大磁通量等参数。

2.额定电流的选取:根据电路设计的最大电流来选择合适的额定电流。

电感器的额定电流是指在额定条件下能稳定工作的电感器。

过大或者过小的额定电流都可能导致电感器失效或电容上升温度过高。

3.尺寸和封装:根据实际应用的空间限制和布局要求来选择合适的尺寸和封装形式。

电感器的尺寸和封装形式会对电感值、电容和自阻抗等参数产生影响。

4.频率特性和损耗:根据电路工作频率和损耗要求来选择合适的电感器。

电感器的频率特性和损耗会对电路性能产生影响,所以需要在选取时进行合理的考虑。

5.价格和供应:根据预算和可获得的供应来选择合适的电感器。

不同品牌和型号的电感器价格可能会有很大差异,同时是否能够长期供应也是选取时需要考虑的因素之一综上所述,电感作为一种常见的电子元件,在电路中起着重要的作用。

DCDC电感选型指南

DCDC电感选型指南

DCDC电感选型指南DC/DC电感是直流-直流转换电路中的重要元件,主要用于存储和传递能量。

选用合适的电感对于电路的性能和效率至关重要。

本文将为您介绍DC/DC电感的选型指南,帮助您在设计中选择正确的电感。

1.了解电路工作条件在选择电感之前,首先需要了解电路的工作条件。

这包括输入电压范围、输出电压范围、输出电流范围以及开关频率等。

根据这些参数可以确定电感所需的工作模式(连续模式或间断模式)和承载能力。

2.确定电感的额定电流电感的额定电流是电感能够承受的最大电流。

在计算额定电流时,需要考虑开关频率、电感的内阻和温度等因素。

一般来说,额定电流应大于或等于电路中的最大输出电流,以确保电感工作在安全范围内。

3.选择合适的工作模式根据电路的工作参数,确定电感的工作模式。

连续模式适用于较低的开关频率和较小的电流波动,而间断模式适用于较高的开关频率和较大的电流波动。

选择合适的工作模式可以提高电路的效率和稳定性。

4.计算电感值根据电路的输入电压范围、输出电压范围和开关频率,可以计算出所需的电感值。

一般来说,电感值越大,电感能存储的能量就越多。

但是,较大的电感值也会带来较大的尺寸和成本。

所以需要在尺寸、成本和性能之间进行权衡。

5.选择合适的磁芯材料DC/DC电感通常采用磁芯来增加电感的存储能量。

选择合适的磁芯材料可以提高电感的效率和性能。

常见的磁芯材料包括铁氧体、烧结铁氧体、金属材料等。

不同的磁芯材料具有不同的磁导率、饱和磁感应强度、磁阻等特性。

根据电路要求选择适合的磁芯材料。

6.考虑温升和寿命在选择电感时,需要考虑电感的温升和寿命。

温升是指电感在工作过程中的温度升高,而寿命是指电感的使用寿命。

高温会影响电感的性能和寿命。

因此,在选择电感时,需要考虑电感的温升和寿命要求,选择合适的电感。

7.参考厂商规格书最后,在选型过程中,可以参考厂商的规格书和应用手册。

规格书通常提供了电感的详细性能参数、选型指南和使用注意事项等信息。

如何选择合适的电感

如何选择合适的电感

如何选择合适的电感电感是一种常见的电子元件,广泛应用于各种电路中。

选择合适的电感对于电路的性能和稳定性至关重要。

本文将详细介绍如何选择合适的电感。

一、了解电感的基本概念在选择合适的电感之前,我们首先要了解电感的基本概念和工作原理。

电感是指电流变化时,由于自感现象而产生的电磁感应现象。

它可以将变化的电流转化为磁场储存起来,然后再将储存的能量释放出来。

二、确定电感的工作频率范围电感的工作频率范围是选择合适电感的首要考虑因素。

不同类型的电感适用于不同范围的频率。

例如,铁氧体电感适用于高频范围,而铜线电感适用于中频范围。

因此,在选择电感时,我们需要明确电路的工作频率,并选择相应的电感类型。

三、考虑电感的电流容量电流容量也是选择电感的重要因素之一。

电感的电流容量决定了其在电路中所能承受的最大电流。

如果电感的电流容量小于电路中所需的电流,电感可能会过载,导致电感损坏或电路故障。

因此,在选择电感时,我们需要根据电路中的最大电流需求来确定电感的电流容量。

四、考虑电感的尺寸和重量电感的尺寸和重量也是选择合适电感时需要考虑的因素。

不同尺寸和重量的电感适用于不同的应用场景。

对于空间受限的电路,我们需要选择小尺寸、轻量级的电感。

而对于要求较高的功率传输电路,我们可能需要选择尺寸较大、重量较重的电感。

因此,在选择电感时,我们需要根据实际应用场景来确定电感的尺寸和重量。

五、了解电感的材料和结构电感的材料和结构也会对其性能产生影响。

常见的电感材料包括铁氧体、铜线等。

不同的材料具有不同的磁导率和电阻特性,因此会影响电感的效率和损耗。

此外,电感的结构也会影响其自感特性和磁场耦合效应。

了解电感的材料和结构有助于我们选择符合需求的电感。

六、考虑电感的质量和价格电感的质量和价格也是选择电感时需要综合考虑的因素。

质量较好的电感通常具有较低的电阻和较高的自感,从而能够提供更好的性能。

然而,高质量的电感通常价格也较高。

因此,在选择电感时,我们需要根据实际需求平衡质量和价格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.电感的认识
按结构可分积层结构和线圈结构,平常比较常见的有铁氧体磁珠(FERRITE BEAD),多层积层电感,绕线式电感,COMMON CHOKE,POWER DIVIDER,Transformer
2.电感器的规范叙述
例子:
1 FERRITE BEAD ①②③④
Ex. FERRITE BEAD 0201 240OHM100mA BLM03AG241SMD
①COMPONENT SIZE
②IMPEDANCE
③RATED CURRENT 額定電流
④VENDOR PART NUMBER
2 INDUCTOR/CHOKE ①②③④⑤Ex. INDUCTOR 1uH15A 15% Mohm DIP Ex. CHOKE
①INDUCTANCE
②RATED CURRENT
③INDUCTANCE TOLANCE
④DC RESISTANCE 直流阻抗值
⑤PACKAGE TYPE
3 INDUCTOR CHIP ①②③④⑤Ex. INDUCTOR CHIP 1.8uH 270mA 10% 1.2OHM 2016
①INDUCTANCE
②RATED CURRENT
③INDUCTANCE TOLANCE
④DC RESISTANCE
⑤PACKAGE TYPE
4 CHOKE ①②③④⑤Ex. CHOKE 0.4uH 40A 10% 0.65mOHM RT
①INDUCTANCE
②RATED CURRENT
③INDUCTANCE TOLANCE
④DC RESISTANCE
⑤PACKAGE TYPE ST/RT
3.按参数选型
-电感量L 电感元件自感应能力的一种物理量
-允许偏差电感量的允许偏差
-感抗电感对交流电流阻碍作用的大小
-品质因数线圈质量的一个物理量,这个要看产品设计要求,线圈的Q值越高,回路损耗越小
-分布电容线圈的匝与匝,线圈与屏蔽罩间,线圈与底版间存在的电容称为分布电容,分布电容的存在使线圈的Q值减小,稳定性变差
-直流阻抗电感的直流阻抗
-额定电流允许长时间通过的电感元件的直流电感值
在这里介绍一下电感和磁珠的区别
电感是储能元件,而磁珠是能量转换(消耗)器件。

电感多用于电源滤波回路,
侧重于抑止传导性干扰;磁珠多用于信号回路,主要用于EMI 方面。

磁珠用来吸
收超高频信号,象一些RF 电路,PLL,振荡电路,含超高频存储器电路(DDR,SD
RAM,RAMBUS 等)都需要在电源输入部分加磁珠,而电感是一种储能元件,用在L
C 振荡电路、中低频的滤波电路等,其应用频率范围很少超过50MHz。

为便携式电源应用选择电感,需要考虑的最重要的三点是:尺寸大小、尺寸大小,第三还是尺寸大小。

移动电话的电路板面积十分紧俏珍贵,随着MP3 播放器、电视和视频等各种功能被增加到电话中时,尤其如此。

功能增加也将增加电池的电流消耗量。

因此,以前一直由线性调节器供电或直接连接到电池上的模块需要效率更高的解决方案。

实现更高效率解决方案的第一步是采用磁性降压转换器。

正如其名称所暗示的,这时需要一个电感。

电感的主要规格除尺寸大小外,还有开关频率下的电感值、线圈的直流阻抗(DCR)、额定饱和电流、额定rms 电流、交流阻抗(ESR)以及Q 因子。

根据应用的不同,电感类型的选择¯¯屏蔽式或非屏蔽式也是很重要的。

类似于电容中的直流偏置,厂商A 的2.2ìH 电感可能与厂商B 的完全不同。

在相关温度范围内电感值与直流电流的关系是一条非常重要的曲线,必需向厂商索取。

在这条曲线上可以查到额定饱和电流(ISAT)。

ISAT 一般定义为电感值降量为
额定值的30%时的直流电流。

某些电感生产商没有规定ISAT。

他们可能之给出了温度高于环境温度40 ?C 时的直流电流。

DCR 引起传导损耗,在输出电流较高时影响效率。

ESR 随工作频率的提高而增加,在输出电流较小时影响占主导地位的开关损耗。

ESR 与Q 因子成正比。

相同频率下,低ESR 电感的Q 因子更高。

在电感满足所有其它规格时,为什么系统设计人员还应考虑ESR 和Q 因子呢?当开关频率超过2MHz 时,必需格外关注电感的交流损耗。

规格说明书中列出比较的不同厂商的电感的ISAT 和DCR 在开关频率下可能有极为不同的交流阻抗,导致轻负载下显著的效率差异。

这一点对提高便携式电源系统中电池的寿命至为重要,因为系统大部分的时间是处于睡眠、待机或低功率模式下的。

由于电感生产厂商很少提供ESR 和Q 因子信息,设计人员应该主动向他们索取。

厂商给出的电感与电流关系也往往只限于25 ?C,故应该索取工作温度范围内的相关数据。

最坏情况一般是85 ?C。

给出了各种电感的交流阻抗与频率的关系。

考虑一个降压转换器的例子,其规格参数如下:FSW
=2MHz,VIN=5.5V,L=2.2 ìH,VOUT=1.5V,I=0 到600MA,ÄI=289MA (计算值)。

4.供应商的选择
根据公司的合格供应商进行选择,由于各公司选择供应商的要求不尽相同,供应商的选择也有差异。

现提供业界一些供应商清单
台系:
-Chilisin(power inductor,common choke smd有优势)
-乾坤电子(Cyntec)(power choke 有优势)
- TRIO (inductor DIP 有优势)
-TAI-TECH(power inductor有优势)
-美磊(maglayers)
-Magic (美桀)
-DELTA(台达)
-峰瑞电感
-耕興(SPORTON)
-jantek
-帛汉(网络通讯产品专用之滤波器、变压器有优势)
日系和欧美系:
-vishay
-tdk
- TOKO
- Coilcraft
-Sumida
- Taiyo
-Panasonics
-Abracon
-ACME
-API
-AVX
-BOURNS
-COOPER BUSSMANN
-EPCOS
-HAMMOND
-JARO
-JOHANSON
-LAIRD
-MAXIM
-MURATA
-Newava
-Panasonic
-pulse
-Schaffner
大陆
-顺络(推荐)
- Microgate
-创晨电子-Tronson(transfer 有优势)-南宏
-丰华。

相关文档
最新文档