倒易点阵和晶体的衍射方向共20页

合集下载

第二部分倒易点阵和晶体衍射-总结与习题指导教学文稿

第二部分倒易点阵和晶体衍射-总结与习题指导教学文稿

第二部分倒易点阵和晶体衍射-总结与习题指导教学文稿第二部分倒易点阵和晶体衍射-总结与习题指导竭诚为您提供优质文档/双击可除第二部分倒易点阵和晶体衍射-总结与习题指导篇一:第十二章习题答案new1、分析电子衍射与x衍射有何异同?答:相同点:①都是以满足布拉格方程作为产生衍射的必要条件。

②两种衍射技术所得到的衍射花样在几何特征上大致相似。

不同点:①电子波的波长比x射线短的多,在同样满足布拉格条件时,它的衍射角很小,约为10-2rad。

而x射线产生衍射时,其衍射角最大可接近2。

②在进行电子衍射操作时采用薄晶样品,增加了倒易阵点和爱瓦尔德球相交截的机会,使衍射条件变宽。

③因为电子波的波长短,采用爱瓦尔德球图解时,反射球的半径很大,在衍射角θ较小的范围内反射球的球面可以近似地看成是一个平面,从而也可以认为电子衍射产生的衍射斑点大致分布在一个二维倒易截面内。

④原子对电子的散射能力远高于它对x射线的散射能力,故电子衍射束的强度较大,摄取衍射花样时曝光时间仅需数秒钟。

2、倒易点阵与正点阵之间关系如何?倒易点阵与晶体的电子衍射斑点之间有何对应关系?答:倒易点阵是与正点阵相对应的量纲为长度倒数的一个三维空间点阵,通过倒易点阵可以把晶体的电子衍射斑点直接解释成晶体相对应晶面的衍射结果,可以认为电子衍射斑点就是与晶体相对应的倒易点阵某一截面上阵点排列的像。

关系:①倒易矢量ghkl垂直于正点阵中对应的(hkl)晶面,或平行于它的法向nhkl②倒易点阵中的一个点代表正点阵中的一组晶面③倒易矢量的长度等于点阵中的相应晶面间距的倒数,即ghkl=1/dhkl④对正交点阵有a*//a,b*//b,c*//c,a*=1/a,b*=1/b,c*=1/c。

⑤只有在立方点阵中,晶面法向和同指数的晶向是重合的,即倒易矢量ghkl是与相应指数的晶向[hkl]平行⑥某一倒易基矢量垂直于正交点阵中和自己异名的二基矢所成平面。

3、用爱瓦尔德图解法证明布拉格定律。

第二章 晶体学基本理论

第二章 晶体学基本理论
第四十一页,共55页
2.7.1 倒易点阵定义
倒易点阵: 是用 a*. b*和c*基矢量描述的三维空间,与a.b.c描
述的正空间互为倒易
倒易点阵满足 a*b=a*c=b*a=b*c=c*.a=c*.b=0---(1) a*a = b*b = c*.c =1--- (2)
第四十二页,共55页
2.7.1 倒易点阵定义
这些空间位向性质完全相同的晶面属于同族等同晶 面,用{hkl}表示
例如:立方晶系中
{ 1 0 0 } ( 1 0 0 ) ( 0 1 0 ) ( 0 0 1 )
{ 1 1 1 } ( 1 1 1 ) ( 1 1 1 ) ( 1 1 1 ) ( 1 1 1 )
第二十八页,共55页
晶向指数的确定
由原点o指向任意一个倒易结点所连接的矢量hakblchkl为整数倒易矢量的方向垂直正点阵的hkl面或平行于晶面的法线hkl晶体点阵经过倒易变换建立相应的倒易点阵晶体中的晶面与其对应倒易点阵结点的关系立方晶系倒易点阵示意图立方晶系倒易点阵100110010001011021020120121101102uvw倒易结点的指数用它所代表的晶面的面指数表示272倒易点阵的性质则正点阵中的晶面在倒易点阵中可以用一个倒易结点表示273倒易点阵的几何意义正点阵中的一组平行晶面hkl相当于倒易点阵中的一个该组晶面间距的倒数
上还有一个阵点,
阵点坐标 000 , 110,101,011
22 2 2 22
第十七页,共55页
强调:晶体结构和空间点阵的区别
空间点阵是晶体中质点排列的几何学抽象,用以 描述和分析晶体结构的周期性和对称性,由于各阵点 的周围环境相同,它只能有14中类型
晶体结构是晶体中实际质点(原子、离子或 分子)的具体排列情况,它们能组成各种类型的 排列,实际存在的晶体结构是无限的

倒易点阵与晶体衍射

倒易点阵与晶体衍射

利用透射电镜进行物相形貌观察(如图2-12中的各种结果)仅是一种较为直接的应用,透射电镜还可得到另外一类图像---电子衍射图(图2-15所示)。

图中每一斑点都分别代表一个晶面族,不同的电子衍射谱图又反映出不同的物质结构。

图2-15 金蒸发膜的多晶和钢中Mo23C6单晶的电子衍射花样按照一定规则进行分析,我们可以标定出每一斑点对应的晶面指数,再由标准物质手册,可以查出这两种物质分别是金的多晶体和Mo23C6单晶碳化物。

可见,利用电子衍射图也可以分析未知的物相。

电子衍射原理和X射线衍射原理是完全一样的,但较之其还有以下特点:1.电子衍射可与物像的形貌观察结合起来,使人们能在高倍下选择微区进行晶体结构分析,弄清微区的物象组成;2.电子波长短,使单晶电子衍射斑点大都分布在一二维倒易截面内,这对分析晶体结构和位向关系带来很大方便;3.电子衍射强度大,所需曝光时间短,摄取衍射花样时仅需几秒钟。

下面我们就来讨论为什么透射电镜中的电子束可以产生上述衍射花样----电子衍射原理。

电子衍射原理已知,当波长为l 的单色平面电子波以入射角θ照射到晶面间距为d的平行晶面组时,各个晶面的散射波干涉加强的条件是满足布拉格关系:2dsinθ =nλ(11)式中n=0,1,2,3,4….,称为衍射级数,为简单起见,至考虑n=1的情况,即可将布拉格方程写成2dsinθ =l 或更进一步写成:( )这一关系的几何意义为布拉格角的正玄函数为直角三角形的对边(1/d)与斜边(2/λ)之比,而满足上式关系的点的集合是以1/λ为半径,以2/λ为斜边的球的所有内接三角形的顶点---球面上所有的点均满足布拉格条件。

可以想象,AO'为入射电子束方向,它照射到位于O点处的晶体上,一部分透射出去,一部分使晶面间距为d的晶面发生衍射,在OG方向产生衍射束。

由于该表示方法首先由爱瓦尔德(Ewald)提出,故亦称为爱瓦尔德球。

图 2-16 爱瓦尔德球图解如果我们要想判断一个特定的晶面能否产生衍射,或者衍射的方向如何,可以假想将这个晶面放在球心O处,沿其法线方向从O'点出发,射出一长度为1/d的射线,其与球面相交处若能满足布拉格关系(入射角等于反射角),则说明其衍射成立,反之,说明不满足衍射条件。

半导体物理-晶体衍射和倒易点阵

半导体物理-晶体衍射和倒易点阵
3、截距为无限大,相应的指数就是零;
4、若一个晶面截晶轴与原点的负侧,则相应的指数就是负的,在其上方放置
负号作为标记,例如 (hkl)
2.1 晶体结构22
• 练习:证明在立方晶体中,[hkl]晶向垂直于 (hkl)晶面

(0,0,a/l)
平面方程
x + y + z =1 a/h a/k a/l
(a/h,0,0)
-当来自这些平行原子平面的反射发生相长干涉时,就会得出衍 射束。
-假设为弹性散射,反射后X射线的能量不改变
θ
θ
2d sinθ = nλ
θ
d
-只对某些θ值,才会产生强反射束
d sinθ
-点阵周期性导致布喇格定律
2.2 晶体衍射和倒易点阵3
2.2.2 倒易点阵
-晶体性质的周期性
r T
=
uar
+
r vb
-以周期为a的一维周期函数n(x)的处理为例
-将n(x)展开为含有余弦和正弦的傅立叶级数
n(x) = n0 + ∑[Cp cos(2πpx / a) + Sp sin(2πpx / a)] p>0
-p是正整数;Cp、Sp是实常数,称为展开式的傅立叶系数
-幅角中的2π/a保证n(x)具有周期a,即n(x+a)=n(x)
CsCl 结构 简单立方+CsCl
2.1 晶体结构25
2.1.5 常见晶体结构范例
C
A
A
B
A
1
1 2
A 面心立方
A
位置B
2B
位置C
c / a = 8 = 1.633 3
A 六角密堆积结构 (He晶体)

倒易点阵和晶体的衍射方向共22页文档

倒易点阵和晶体的衍射方向共22页文档
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
Байду номын сангаас倒易点阵和晶体的衍射方向
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
谢谢

第四章--倒易点阵及晶体衍射方向

第四章--倒易点阵及晶体衍射方向

第四章 倒易点阵及晶体衍射方向1. 布拉格定律一定波长的 X 射线或入射电子与晶体试样相互作用 , 可以用布拉格定律来表征产生衍射的条件。

图 4.1 布拉格定律的几何说明如图 4.1, 设平行电子束σ0入射到晶体中面间距为 d hkl 的晶体面网组 (hkl), 在人射波前 SS' 处 , 两电子波位相相同, 如果左边一支波经历波程 PA+AD = n λ,n 为包括零的整数 , 则两支波离开晶体后达到新波前 TT' 时 , 将具有相同的位相 , 相干结果可以达到衍射极大; 反之, 若 PA+AD ≠ n λ, 则达到TT' 时, 它们位相不同 , 不能相干得到衍射极大。

由图 4.1 可知,PA+AD =2d hkl sin θ=n λ (4.1)此即布拉格方程,n 称为衍射级数。

式(4.1)也可以写成:λθ=⎪⎭⎫⎝⎛sin 2n d hkl (4.1a)因为 d hkl /n=d nh, nk, hl ,故可把n 级 (hkl) 反射看成是与 (hkl) 平行 但面网间距缩小 n 倍的、 (nh, nk, nl) 的一级反射。

这样 , 布拉格方程可以写成一般形式 :λθ=sin 2hkl d (4.1a) 还可以写成下述形式:λθ/2/1sin hkld =(4.1b) 只要满足布拉格方程 , 就获得了产生衍射极大的条件。

式 (4.1a) 中 d hkl 为晶体中晶面组 (hkl) 的晶面间距;λ为入射电子束的波长;θ为人射电子束方向相对于晶面 (hkl) 的掠射角。

2. 倒易点阵2.1 倒易点阵定义 (1)倒易点阵:若已知晶体点阵的单位矢量 a 、b 、c, 可以定义倒易点阵的单位矢量a *、b *、c *,该点阵的方向矢量垂直于同名指数的晶体平面, 它的大小等于同名指数晶面间距的倒数,该点阵称为倒易点阵。

(2)正点阵与倒易点阵和基矢量的相互关系:图4.2 正点阵与倒易点阵和基矢量的相互关系取一晶体单胞 , 如图 4.2, 晶体点阵的单位矢量为 a 、b 和 c , 相应点阵的 6 个参数是a 、 b 、 c 、α、β和 γ。

第1章倒易点阵及电子衍射基础ppt课件

第1章倒易点阵及电子衍射基础ppt课件

单晶C-ZrO2
多晶Au
非晶
准晶(quasicrystals)
FIGURE 2.13. Several kinds of DPs obtained from a range of materials in a conventional 100-kV TEM: (A) amorphous carbon, (B) an Al single crystal, (C) polycrystalline Au, (D) Si illuminated with a convergent beam of electrons. In all cases the direct beam of electrons is responsible for the bright intensity at the center of the pattern and the scattered beams account for the spots or rings that appear around the direct beam.
1.1.2 晶体学点群 对称要素 晶体的宏观对称性是按宏观点对称操作所构成的点群来进
行分类的。 群,是代数理论中的抽象概念,满足一定条件的一些元素
的集合。
晶体的独立宏观对称要素共有8种,即
1,2,3,4,6,i,m,4
对称中心的国际符号 形象法表示
等效位置,+、—号表示正反面, ,左右手的变化
对称的极图表示
2) 电子衍射产生斑点大致分布在一个二维倒易截面内,晶体 产生的衍射花样能比较直观地反映晶体内各晶面的位向。 因为电子波长短,用Ewald图解时,反射球半径很大,在衍 射角很小时的范围内,反射球的球面可近似为平面。

2.4倒易点阵、晶带

2.4倒易点阵、晶带
OP 1 d hkl
这样的点阵就称为倒易点阵。
❖ 倒易点阵是描述晶体结构的一种数学抽象方法,倒易点阵本 身是一种几何构图,它和空间点阵具有倒易关系。一个实在 的晶体点阵经过一定转化导出一套抽象点阵,这个抽象点阵 的每一个阵点和实在点阵中的一个点阵平面有相对应的倒易 关系。
❖ 倒易点阵的衍射理论是一般的衍射理论,它是了解射线在晶 体中的衍射几何和解释晶体射线衍射图谱的强有力工具,因 此学习倒易点阵可为以后的有关课程作基础准备,而在本章 中倒易点阵使晶面取向、晶带、晶面间距等问题更容易描述。
晶面间距愈大,该晶面上的 原子排列愈密集;晶面间距 最大的面总是阵点(或原子) 最密排的晶面。 晶面间距愈小,该晶面上的原子排列愈稀疏。 正是由于不同晶面和晶向上的原子排列情况不同,使晶体表现 为各向异性。
晶面间距公式的推导:从
Z
C
原点作(h k l)晶面的法线,
γ
N
则法线被最近的(h k l)面所
h : k : l cos : cos : cos
如图:ON为晶面(hkl)的法线,ON与该晶面交于D点;OA、OB、OC
分别为(hkl)在X、Y、Z轴上的截距;ON与X、Y、Z轴之间的夹角分
别为α、β、γ;cosα、cosβ、cosγ就是法线ON的方向余弦。立方点阵中
晶胞的三个基矢相等,设其为a,则根据晶面指数的确定方法可知:
同一晶带轴中的所有晶面的共同特点是:所有晶面 的法线都与晶带轴垂直 。
根据倒易点阵的性质,晶面(h k l)的法线方向
平行于倒易矢量 ha kb lc
ua vb wc• ha kb lc 0
上式展开就是晶体学中十分重要的晶带方程
hu + kv + lw = 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档