【2014年】中考数学二轮精品复习试卷(图形的对称、平移与旋转)含答案解析

合集下载

【中考宝典】2014年中考数学真题分类汇编:七、图形与变换

【中考宝典】2014年中考数学真题分类汇编:七、图形与变换

第七单元图形与变换一、尺规作图、视图与投影(一)尺规作图1. (2014湖州)如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是( B )A.①②③B.①②④C.①③④ D.②③④解析:根据作图过程可知:PB=CP,∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确;∵∠ABC=90°,∴PD∥AB,∴E为AC的中点,∴EC=EA,∵EB=EC,∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确,故正确的有①②④,故选B.2.(2014河北)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是( D )A.B.C.D.解析:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC,故选D.3.(2014绍兴)用直尺和圆规作△ABC,使BC=a,AC=b,∠B=35°,若这样的三角形只能作一个,则a,b间满足的关系式是sin35°=或b≥a.解析:如图所示:若这样的三角形只能作一个,则a,b间满足的关系式是:①当AC⊥BC时,即sin35°=②b≥a.4.(2014梅州)如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于12AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE,则:(1)∠ADE=90°;(2)AE = EC;(填“=”“>”或“<”)(3)当AB=3,AC=5时,△ABE的周长= 7 .解析:(1)∵由作图可知,MN是线段AC的垂直平分线,∴∠ADE=90°.(2)∵MN是线段AC的垂直平分线,∴AE=EC.(3)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,=,∴4∵AE=CE,∴△ABE的周长=AB+BC=3+4=714.(2014天津)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.5.(2014无锡)(1)如图1,Rt△ABC中,∠B=90°,AB=2BC,现以C为圆心、CB长为半径画弧交边AC于D,再以A为圆心、AD为半径画弧交边AB于E.求证:=.(这个比值叫做AE与AB的黄金比.)(2)如果一等腰三角形的底边与腰的比等于黄金比,那么这个等腰三角形就叫做黄金三角形.请你以图2中的线段AB为腰,用直尺和圆规,作一个黄金三角形ABC.(注:直尺没有刻度!作图不要求写作法,但要求保留作图痕迹,并对作图中涉及到的点用字母进行标注)(1)证明:∵Rt△ABC中,∠B=90°,AB=2BC,∴设AB=2x,BC=x,则AC=x,∴AD=AE=(﹣1)x,∴==.(2)解:底与腰之比均为黄金比的等腰三角形,如图:.6.(2014•广东)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.7.(2014•白银)如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA解:(1)如图所示,DE就是要求作的AB边上的垂直平分线;(2)证明:∵DE是AB边上的垂直平分线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.8、(2014兰州)如图,在△ABC中,先作∠BAC的角平分线AD交BC于点D,再以AC边上的一点O为圆心,过A、D两点作⊙O(用尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)解:如图所示,作出角平分线AD,作AD的中垂线交AC于点O,作出⊙O,∴⊙O为所求作的圆.例3、(6分)(2014白银)如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.规范解答:(1)解:如图,DE就是要求作的AB边上的中垂线;(2)证明:∵DE是AB边上的中垂线,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°-∠A=90°-30°=60°,∴∠CBD=∠ABC-∠ABD=60°-30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.(二)三视图1.(2014东营)下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( B )A.B.C.D.解析:从俯视图可以看出直观图的各部分的个数,可得出左视图前面有2个,中间有3个,后面有1个,即可得出左视图的形状.故选B.2.(2014•长沙)下列几何体中,主视图、左视图、俯视图完全相同的是(C)A.圆锥B.六棱柱C.球D.四棱锥解析:A、圆锥的主视图、左视图、俯视图分别为等腰三角形,等腰三角形,圆及圆心,;B、六棱柱的主视图、左视图、俯视图分别为四边形,四边形,六边形;C、球的主视图、左视图、俯视图分别为三个全等的圆;D、四棱锥的主视图、左视图、俯视图分别为三角形,三角形,四边形;故选C.3.(2014•泰州)一个几何体的三视图如图所示,则该几何体可能是(C)A.B.C.D.解析:由主视图和左视图可以得到该几何体是圆柱和小圆锥的复合体,由俯视图可以得到小圆锥的底面和圆柱的底面完全重合.故选C.4.(2014•呼和浩特)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为(B)A.60πB.70πC.90πD.160π解析:观察三视图发现该几何体为空心圆柱,其内径为3,外径为4,高为10,所以其体积为10×(42π﹣32π)=70π,故选B.5.(2014潍坊)一个几何体的三视图如图,则该几何体是(D)A.B.C.D.解析:由三视图可知,该组合体的上部分为圆台,下部分为圆柱,只有D符合题意,6.(2014•威海)用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,下列四种摆放方式中不符合要求的是(D)A.B.C.D.解析:A、此几何体的主视图和俯视图都是“”字形;B 、此几何体的主视图和左视图都是;C 、此几何体的主视图和左视图都是;D 、此几何体的主视图是,俯视图是,左视图是,故选D.7.(2014淄博)如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是( D )A. S1>S2>S3B.S3>S2>S1C.S2>S3>S1D.S1>S3>S2解析:主视图的面积是三个正方形的面积,左视图是两个正方形的面积,俯视图是一个正方形的面积,S1>S3>S2,故选D.8.(2014黔东南)在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为 5 .解析: 底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有5个小正方体组成,故答案为5.9.(2014湖州)如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是 .解析: 从上面看三个正方形组成的矩形,矩形的面积为1×3=3.10.(2014•扬州)如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm )可以得出该长方体的体积是 18 cm 3.解析:观察其视图知:该几何体为立方体,且立方体的长为3,宽为2,高为3,故其体积为:3×3×2=18.故选D .(三)展开与折叠1.(2014汕尾)如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是( D ) A .我 B.中 C .国 D .梦解析:发挥想象力,把展开图折成正方体,可得“我”对“中”,“的”对“国”,“你”对“梦”,故选D 。

2014年全国中考数学试题----旋转试题(含答案)

2014年全国中考数学试题----旋转试题(含答案)

2014年全国中考数学试题----旋转试题1. (2014•龙岩)如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△ED C.当点B的对应点D恰好落在AC上时,∠CAE=.【解析】解:∵△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC,点B的对应点D恰好落在AC上,∴∠BCA=180°﹣70°﹣30°=80°,AC=CE,∴∠BCA=∠DCE=80°,∴∠CAE=∠AEC=100°×=50°.故答案为:50°.2. (2014•兰州)如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C′,则点B转过的路径长为()A.B.C.D.π【解析】解:∵在△ABC中,∠ACB=90°,∠ABC=30°,AB=2,∴cos30°=,∴BC=ABcos30°=2×=,∵将△ABC绕直角顶点C逆时针旋转60°得△A′B′C′,∴∠BCB′=60°,∴点B转过的路径长为:=π.故选:B.3. (2014•广东)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于.【解析】解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.4. (2014年广西南宁)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△P AB的周小最小,请画出△P AB,并直接写出P的坐标.【解析】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△P AB如图所示,P(2,0).5. (2014•毕节地区)在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.【解析】解:(1)△AB1C1如图所示;(2)如图所示,A(0,1),C(﹣3,1);(3)△A2B2C2如图所示,B2(3,﹣5),C2(3,﹣1).5. (2014•黔东南州)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D 恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.B.C.D.1【解析】解:∵∠B=60°,∴∠C=90°﹣60°=30°,∵AC=,∴AB=×=1,∴BC=2AB=2,由旋转的性质得,AB=AD,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.故选D.6. (2014•遵义)如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.1【解析】解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故选C.7. (2014•哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C 顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6B.4C.3D.3【解析】解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.8. (2014年黑龙江龙东地区)已知△ABC中,M为BC的中点,直线m绕点A旋转,过B、M、C分别作BD⊥m于D,ME⊥m于E,CF⊥m于F.(1)当直线m经过B点时,如图1,易证EM=CF.(不需证明)(2)当直线m不经过B点,旋转到如图2、图3的位置时,线段BD、ME、CF之间有怎样的数量关系?请直接写出你的猜想,并选择一种情况加以证明.【解析】解:(1)如图1,∵ME⊥m于E,CF⊥m于F,∴ME∥CF,∵M为BC的中点,∴E为BF中点,∴ME是△BFC的中位线,∴EM=CF.(2)图2的结论为:ME=(BD+CF),图3的结论为:ME=(CF﹣BD).图2的结论证明如下:连接DM并延长交FC的延长线于K又∵BD⊥m,CF⊥m∴BD∥CF∴∠DBM=∠KCM在△DBM和△KCM中,∴△DBM≌△KCM(ASA),∴DB=CK DM=MK由题意知:EM=FK,∴ME=(CF+CK)=(CF+DB)图3的结论证明如下:连接DM并延长交FC于K又∵BD⊥m,CF⊥m∴BD∥CF∴∠MBD=∠KCM在△DBM和△KCM中,∴△DBM≌△KCM(ASA)∴DB=CK,DM=MK,由题意知:EM=FK,∴ME=(CF﹣CK)=(CF﹣DB).9. (2014•莆田)如图,点B在x轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB饶点O按顺时针方向旋转120°得到△OA′B′,则点A′的坐标是()A.(2,﹣2)B.(2,﹣2)C.(2,﹣2)D.(2,﹣2)【解析】解:∵∠ABO=90°,∠A=30°,OA=4,∴∠AOB=60°,OB=OA=2,AB=OB=2,∴A点坐标为(2,2),∵△OAB饶点O按顺时针方向旋转120°得到△OA′B′,∴∠A′OA=120°,OA′=OA=4,∴∠A′OB=60°,∴点A′和点A关于x轴对称,∴点A′的坐标为(2,﹣2).故选B.10. (2014•黄石)正方形ABCD在直角坐标系中的位置如下图表示,将正方形ABCD绕点A顺时针方向旋转180°后,C点的坐标是()【解析】解:AC=2,则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,则OC′=3,故C′的坐标是(3,0).故选B.11. (2014•随州)在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.A E∥BC B.∠ADE=∠BDCC.△BDE是等边三角形D.△ADE的周长是9【解析】解:∵△ABC是等边三角形,∴∠ABC=∠C=60°,∵将△BCD绕点B逆时针旋转60°,得到△BAE,∴∠AEB=∠C=60°,∴AE∥BC,故选项A正确;:∵△ABC是等边三角形,∴AC=AB=BC=5,∵△BAE△BCD逆时针旋旋转60°得出,∴AE=CD,BD=BE,∠EBD=60°,∴AE+AD=AD+CD=AC=5,∵∠EBD=60°,BE=BD,∴△BDE是等边三角形,故选项C正确;∴DE=BD=4,∴△AED的周长=AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∠ADE=∠BDC,∴结论错误的是B,故选B.12. (2014•咸宁)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n 度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.【解析】解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,∴AC=DC,∠A=60°,∴△ADC是等边三角形,∴∠ACD=60°,∴n的值是60;(2)四边形ACFD是菱形;理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC,∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,∴四边形ACFD是菱形.13. (2014•襄阳)如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG.(1)求证:EF∥CG;(2)求点C,点A在旋转过程中形成的,与线段CG所围成的阴影部分的面积.【解析】(1)证明:在正方形ABCD中,AB=BC=AD=2,∠ABC=90°,∵△BEC绕点B逆时针旋转90°得到△ABF,∴△ABF≌△CBE,∴∠F AB=∠ECB,∠ABF=∠CBE=90°,AF=EC,∴∠AFB+∠F AB=90°,∵线段AF绕点F顺时针旋转90°得线段FG,∴∠AFB+∠CFG=∠AFG=90°,∴∠CFG=∠F AB=∠ECB,∴EC∥FG,∵AF=EC,AF=FG,∴EC=FG,∴四边形EFGC是平行四边形,∴EF∥CG;(2)解:∵AD=2,E是AB的中点,∴FE=BE=AB=×2=1,∴AF===,由平行四边形的性质,△FEC≌△CGF,∴S△FEC=S△CGF,∴S阴影=S扇形BAC+S△ABF+S△FGC﹣S扇形F AG,=+×2×1+×(1+2)×1﹣,=﹣.14. (2014•宜昌)如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB.6πC.3πD.π【解析】解:的长=π.故选D.15. (2014•衡阳)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.【解析】解:(1)∵∠ACB=90°,点D为AB的中点,∴CD=AD=BD=AB,∴∠ACD=∠A=30°,∴∠ADC=180°﹣30°×2=120°,∴∠ADE=∠ADC﹣∠EDF=120°﹣90°=30°;(2)∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴△BCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在△DPM和△DCN中,,∴△DPM∽△DCN,∴=,∵=tan∠ACD=tan30°,∴的值不随着α的变化而变化,是定值.16. (2014•邵阳)如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是.【解析】解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,,∴△AOB≌△OA′B′(AAS),∴OB′=AB=4,A′B′=OB=3,∴点A′的坐标为(﹣4,3).故答案为:(﹣4,3).17. (2014•永州)在同一平面内,△ABC和△ABD如图①放置,其中AB=B D.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DF A,如图②,请完成下列问题:(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;(2)连接EF,CD,如图③,求证:四边形CDEF是平行四边形.【解析】(1)解:四边形ABDF是菱形.理由如下:∵△ABD绕着边AD的中点旋转180°得到△DF A,∴AB=DF,BD=F A,∵AB=BD,∴AB=BD=DF=F A,∴四边形ABDF是菱形;(2)证明:∵四边形ABDF是菱形,∴AB∥DF,且AB=DF,∵△ABC绕着边AC的中点旋转180°得到△CEA,∴AB=CE,BC=EA,∴四边形ABCE为平行四边形,∴AB∥CE,且AB=CE,∴CE∥FD,CE=FD,∴四边形CDEF是平行四边形.18. (2014年湖南张家界)利用对称变换可设计出美丽图案,如图,在方格纸中有一个顶点都在格点上的四边形,且每个小正方形的边长都为1,完成下列问题:(1)图案设计:先作出四边形关于直线l成轴对称的图形,再将你所作的图形和原四边形绕0点按顺时针旋转90°;(2)完成上述图案设计后,可知这个图案的面积等于.【解析】解:(1)如图所示:(2)面积:(5×2﹣2×1×﹣2×1×﹣3×1××2)×4=20,故答案为:20.19. (2014•苏州)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B′,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)【解析】解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,).故选C.20. (2014•无锡)在直角坐标系中,一直线a向下平移3个单位后所得直线b经过点A(0,3),将直线b绕点A顺时针旋转60°后所得直线经过点B(﹣,0),则直线a的函数关系式为()A.y=﹣x B.y=﹣x C.y=﹣x+6 D.y=﹣x+6【解析】解:设直线AB的解析式为y=kx+b,∵A(0,3),B(﹣,0),∴,解得,∴直线AB的解析式为y=x+3.由题意,知直线y=x+3绕点A逆时针旋转60°后得到直线b,则直线b经过A(0,3),(,0),易求直线b的解析式为y=﹣x+3,将直线b向上平移3个单位后得直线a,所以直线a的解析式为y=﹣x+3+3,即y=﹣x+6.故选C.21. (2014年江苏徐州)在平面直角坐标系中,将点A(4,2)绕原点逆时针方向旋转90°后,其对应点A′的坐标为.【解析】解:如图A′的坐标为(﹣2,4).故答案为:(﹣2,4).22. (2014年江苏盐城)如图,在矩形ABCD中,AB=,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是__________.【解析】解:∵在矩形ABCD中,AB=,AD=1,∴tan∠CAB==,AB=CD=,AD=BC=,∴∠CAB=30°,∴∠BAB′=30°,∴S△AB′C′=×1×=,S扇形BAB′==,S阴影=S△AB′C′﹣S扇形BAB′=﹣.故答案为:﹣.23. (2014•扬州)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.【解析】(1)解:FG ⊥E D .理由如下:∵△ABC 绕点B 顺时针旋转90°至△DBE 后,∴∠DEB =∠ACB ,∵把△ABC 沿射线平移至△FEG ,∴∠GFE =∠A ,∵∠ABC =90°,∴∠A +∠ACB =90°, ∴∠DEB +∠GFE =90°,∴∠FHE =90°,∴FG ⊥ED ;(2)证明:根据旋转和平移可得∠GEF =90°,∠CBE =90°,CG ∥EB ,CB =BE ,∵CG ∥EB ,∴∠BCG +∠CBE =90°,∴∠BCG =90°,∴四边形BCGE 是矩形,∵CB =BE ,∴四边形CBEG 是正方形.24. (江西)如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形。

2014年中考数学二轮专题复习试卷:圆(含答案)

2014年中考数学二轮专题复习试卷:圆(含答案)

(第5题)2014年中考数学二轮专题复习试卷:圆(时间:120分钟满分:120分)、选择题(本大题共15个小题,每小题 3分,共45分) 1.( 2013湖南岳阳)两圆半径分别为 3 cm 和7 cm ,当圆心距d=10 cm 时,两圆的位置关系A. 外离B.内切C.相交 D .外切2. (2013 重庆)如图,P 是O O 外一点,PA 是O O 的切线,PO=26 cm , PA=24 cm ,则O O的周长为() 连接EC .若AB=8, CD=2,则EC 的长为()4. ( 2013福建厦门)如图所示,在O O 中,AB=AC , / A =30 °则/ B=()A.150 °B.75 °C.60 °D.15 °5. (2013贵州遵义)如图,将边长为 1 cm 的等边三角形 ABC 沿直线I 向右翻动(不滑动),点B 从开始到结束,所经过路径的长度为()A.18 n cmB.16 n cmA. 2,15B.8C. 2.10D . 2 13A. cm? 2 B ,2 牛)cm C. cm 3D.3 cmO(第7题)7. (2013四川内江)如图,半圆 O 的直径AB=10 cm ,弦AC=6 cm , AD 平分/ BAC ,则AD的长为()A.4、、5 cm B35 cm C.5,5 cmD.4 cm8. (2013山东青岛)直线l 与半径为r 的O O 相交,且点O 到直线I 的距离为6,贝U r 的取值范围是() A.r v 6B.r=6C.r > 6D.r >69. 如图,把O O i 向右平移8个单位长度得O O 2,两圆相交于 A,B ,且0亦丄O 2A ,则图中阴A. — 4和一3之间B.3和4之间C. — 5和一4之间D.4和5之间11. (2013 重庆)如图,P 是O O 外一点,PA 是O O 的切线,PO=26 cm , PA=24 cm ,则O O的周长为() 12.(2012山东烟台)如图,O O 1,O O,O O 2的半径均为2cm,O O 3,O 04的半径均为1 cm ,O O与其他4个圆均相外切,图形既关于 O 1O 2所在直线对称,又关于 O 3O 4所在直线对称,则四边形O 1O 4O 2O 3的面积为() 2 2 2 2A.12 cmB.24 cmC.36 cmD.48 cmA.12 cmB.10 cmC.8 cmD.6 cmA.18 n cmB. 16 n cmC. 20 n cmD. 24 n cm影部分的面积是()OP 的长为半径画弧,交 x 轴的负半轴于点 A ,则点A 的横坐标介于()(第12题) (第13题) (第14题)13. 如图,在 Rt A ABC 中,/ C=90 ° AC=6,BC=8, O O 为厶ABC 的内切圆,点 D 是斜边 AB 的中点,贝U tan / ODA 的值为()B 乜3C.、.3D.214. (2012浙江宁波)如图,用邻边长分别为a,b (a<b )的矩形硬纸板裁出以a 为直径的两个半圆,再裁出与矩形较长边、两个半圆均相切的两个小圆 .把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽 (拼接处材料忽略不计),则a 与b 满足的关系式是()亦+ 1B.ba2D.b 二、、2a15. ( 2013湖北襄阳)如图,以 AD 为直径的半圆O 经过Rt A ABC 斜边AB 的两个端点,交直角 边AC 于点E,B 、E 是半圆弧的三等分点,弧 BEB —3 二 9 r 3.3 2 D.- 2 3二、填空题(本大题共6个小题,每小题 3分,共18分) 16. (2012江苏扬州)已知一个圆锥的母线长为 10 cm,将侧面展开后所得扇形的圆心角是 144 °则这个圆锥的底面圆的半径是 _________ cm.17. ( 2013湖南株洲)如图,AB 是O O 的直径,/ BAC =42 °点D 是弦AC 的中点,则/ DOCA.b 二,3a C.b2的长为彳「则图中阴影部分的面积为A.-9 3 3 3C 2 2的度数是 _______ 度.19. (2013贵州遵义)如图,OC 是O O 的半径,AB 是弦,且OC 丄AB ,点P 在O O 上,/APC=26 °则/ BOC = 21. (2013湖北孝感)用半径为 10 cm ,圆心角为216 的扇形做成一个圆锥的侧面,则这个三、解答题(本大题共5个小题,共57分) 22. (本小题满分10分)(2013江苏镇江)如图 1 , Rt A ABC 中,/ ACB=90 ° AB=5, BC=3,点D 在边 AB 的延 长线上,BD=3,过点D 作DE 丄AB ,与边AC 的延长线相交于点 E ,以DE 为直径作O O 交 AE 于点F .(1) 求O O 的半径及圆心 O 到弦EF 的距离;(2) 连接CD ,交O O 于点G (如图2).求证:点 G 是CD 的中点.23. (本小题满分10分)42°13第17题图 第18题图18. (2013湖北襄阳)如图,水平放置的圆柱形排水管道的截面直径是1 m ,其中水面的宽AB 为0.8 m ,则排水管内水的深度为m .20. (2013重庆)如图圆锥的高为cm .勺半圆与对角线 AC4的正方形ABCD.(结果保留nO交于点E , P(2013广东梅州)如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2 .(1)求线段EC的长;(2)求图中阴影部分的面积.24. (本小题满分10分)(2012浙江温州)如图,△ ABC中,/ ACB=90 °,D是边AB上一点,且/ A=2 / DCB.E是BC边上的一点,以EC为直径的O O经过点D.(1)求证:AB是O O的切线;(2)若CD的弦心距为1, BE=E0,求BD的长.25. (本小题满分12分)(2013广东)如图所示,O 0是Rt A ABC的外接圆,/ ABC=90°, 弦BD = BA, AB=12, BC=5, BE 丄DC 交DC延长线于点E.(1 )求证:/ BCA=Z BAD ;(2 )求DE的长;(3)求证:BE是O 0的切线.26. (本小题满分15分)(2012浙江杭州)如图,AE切O 0于点E, AT交O 0于点M , N,线段0E交AT于点C, 0B 丄AT 于点B,已知/ EAT=30 °,AE =3i3,MN =2.22.(1)求/ COB的度数;(2)求O 0的半径R;⑶点F在O 0上(FME是劣弧),且EF=5,把△ OBC经过平移、旋转和相似变换后, 使它的两个顶点分别与点E, F重合•在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在O 0上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△ 0BC的周长之比参考答案1.D2.C3.D4.B5.C7.A 8.C 9.B 10.A 11.C13.D 14.D 15.D16.417.48 18.0.2 19.52 20.10- n 21.8 22.解:(1)vZ ACB=90 °AB=5, BC=3 ,由勾股定理得:AC=4,■/ AB=5, BD=3 ,••• AD =8,•••/ ACB=90° DE 丄AD,• / ACB = Z ADE,•••/ A= / A,•△ ACB s\ ADE,BC AC ABDE AD AE3 4 5DE 8 AE,•DE=6, AE=10 ,即O O的半径为3;过O作OQ丄EF于Q,则/ EQO= / ADE=90°,•••/ QEO= / AED ,•△ EQO EDA ,EO OQAE " AD,3 OQ■ _ __■ ■ — 110 8•- OQ =2.4 ,即圆心O到弦EF的距离是2.4;(2)连接EG ,•/ AE=10 , AC=4 ,•CE=6 ,•CE=DE=6 ,•/ DE为直径,•/ EGD=90°,•EG 丄CD,•••点G为CD的中点.E E/• AB =AE =4, ••• EC=CD — DE =4 - 2I _3;AD 1 (2)••• sin DEA 二AE 2•••/ DEA=30° ,•••/ EAB=30° , •图中阴影部分的面积为:S 扇形 FAB_S DAE - S 扇形 EAB 2 2=90 2 2込-30 ・=±-2、E360 2360 3 24. (1)证明:连接OD.•••/ DOB=2/ DCB,/A=2/ DCB, •••/ A= /DOB.又•••/ A+ / B=90°,•••/ DOB+ / B=90° ,•••/ BDO=90°,• OD 丄AB,「. AB 是O O 的切线.(2)解:过点 O 作OM 丄CD 于点M,1••9D=OE=BE= —BO 2 ,/ BDO =90°,•••/ DBO=30°,Z DOB=60°.23•解: A B D (1)v 在矩形 ABCD 中,AB=2DA ,A HDDA=2,1DCO= —/ DOB,2•••/ DCO=30°,又••• OM 丄CD,OM=1 ,•OC=2OM=2,•OB=4,OD=2,•BD=OB・cos / DBO 4 汇—=2^32•BD的长为2 \ 3.25. (1)证明:在O O中,•••弦BD = BA,且圆周角/ BCA和/ BAD分别对BA和BD,•/ BCA=Z BAD.(2)解:T BE丄DC,• / E=90°.又•••/ BAC= / EDB,Z ABC=90°•△ ABC DEB,AB ACDE "BD '在Rt A ABC 中,/ ABC=90°, AB=12, BC=5,•由勾股定理得:AC=13 ,12 13 144,DE .DE 12 13(3)证明:如图,连接OB,•/OA=OB,AZ OAB =Z OBA.•/ BA=BD,•/ OBD = Z OBA.又/ BDC = / OAB= / OBA,•/ OBD= / BDC.•OB // DE ,•/ OBE = Z DBE + Z OBD=90°.即BE丄OB于B,所以BE是O O的切线.26. 解:(1)T AE 切O O 于点E,•AE 丄CE,又OB丄AT,•••/ AEC=/ CBO=90°又/ BCO= /ACE,•△ AEC OBC,又/ A=30° ,•••/ COB= / A=30° .⑵•/ AE=3、、3, / A=30 °•••在Rt A AEC 中,ECtan A=tan 30 ,AE即EC=AE tan 30 °3.•/ OB丄MN,「. B为MN的中点,又MN=2、、22,•MB =」MN = .22.2连接。

初三数学图形的对称平移与旋转试题答案及解析

初三数学图形的对称平移与旋转试题答案及解析

初三数学图形的对称平移与旋转试题答案及解析1.如图,在△ABC中,AC=BC=8,∠C=90°,点D为BC中点,将△ABC绕点D逆时针旋转45°,得到△A′B′C′,B′C′与AB交于点E,则S四边形ACDE=.【答案】28【解析】由题意可得:∠B=∠BDE=45°,BD=4,则∠DEB=90°,∴BE=DE=2,∴S△BDE=×2×2=4,∵S△ACB=×AC×BC=32,∴S四边形ACDE =S△ACB﹣S△BDE=28.【考点】旋转的性质2.在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.【答案】(1)作图见解析;(2)作图见解析;(3)6.【解析】(1)以点O为圆心,以OE为半径画弧,与y轴正半轴相交于点M,以OD为半径画弧,与x轴负半轴相交于点N,连接MN即可.(2)以M为圆心,以AC长为半径画弧与x轴负半轴相交于点A′,B′与N重合,C′与M重合,然后顺次连接即可.(3)设OE=x,则ON=x,作MF⊥A′B′于点F,判断出B′C′平分∠A′B′O,再根据角平分线上的点到角的两边距离相等和角平分线的对称性可得B′F=B′O=OE=x,F C′="O" C′=OD=3,利用勾股定理列式求出A′F,然后表示出A′B′、A′O,在Rt△A′B′O中,利用勾股定理列出方程求解即可.试题解析:解:(1)△OMN如图所示.(2)△A′B′C′如图所示.(3)设OE=x,则ON=x,如答图,过点M作MF⊥A′B′于点F,由作图可知:B′C′平分∠A′B′O,且C′O⊥O B′,∴B′F=B′O=OE=x,F C′="O" C′=OD=3,∵A′C′=AC=5,∴.∴A′B′=x+4,A′O=5+3=8.在Rt△A′B′O中,,解得x=6.∴OE=6.【考点】1.作图(旋转和平移变换);2.旋转和平移变换的性质;3.勾股定理;4.方程思想的应用.3.如图所示,△ABC在平面直角坐标系中,将△ABC向下平移5个单位得到△A1B1C1,再将△A1B1C1绕点o顺时针旋转90°得到△A2B2C2,请作出△A1B1C1和△A2B2C2;【答案】作图见解析.【解析】将A、B、C分别向下平移5个单位,顺次连接可得△A1B1C1,找到A1、B1、C1,关于点O的中心对称点,顺次连接可得△A2B2C2.试题解析:所作图形如下所示:【考点】1.作图-旋转变换;2.作图-平移变换.4.如图,在平面直角坐标系中,作出△ABC关于x轴对称的△A1B1C1,并写出C1点的坐标,并计算四边形ABC1C的面积.【答案】作图解析;C1(-1,-1),8.【解析】根据网格结构找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;再根据平面直角坐标系写出点C1的坐标.试题解析:△A1B1C1如图所示,点C1(-1,-1).四边形ABC1C的面积=18-×1×4-×2×2-×3×4=8.考点: 轴对称变换.5.如图,在平面直角坐标系中,每个小正方形的边长为1cm,△ABC各顶点都在格点上,点A,C的坐标分别为(﹣1,2)、(0,-1),结合所给的平面直角坐标系解答下列问题:(1)AC的长等于;(2)画出△ABC向右平移2个单位得到的△,则A点的对应点的坐标是;(3)将△ABC绕点C按逆时针方向旋转90°,画出旋转后的△,则A点对应点的坐标是。

中考数学专题复习《平移与轴对称变换》测试卷-附带答案

中考数学专题复习《平移与轴对称变换》测试卷-附带答案

中考数学专题复习《平移与轴对称变换》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________ 解题要点剖析轴对称平移旋转是平面几何的三大变换.平移由两大要素构成:①平移的方向②平移的距离.平移有如下性质:①平移前后图形的形状大小不变只是位置发生改变即平移前后的图形全等②平移前后图形的对应点所连的线段平行且相等③平移前后图形的对应线段平行且相等对应角相等.轴对称有如下重要性质:①成轴对称的两个图形全等②如果两个图形成轴对称那么对称轴是对称点连线的垂直平分线.以几何变换为背景或通过几何变换解决问题的几何综合题在中考中比较常见.前者主要根据已知条件和变换性质辨析图形中的数量关系和位置关系关注对应线段重组后的三角形寻找变化中的不变量.后者则根据图形中相对分散的条件和待解决的具体问题寻找合适的几何变换方式将条件集中在重组后的图形中研究图形间的数量关系和位置关系.在平移变换中关注平移过程生成的平行四边形在轴对称变换中关注对应点连线被对称轴垂直平分这一重要结论.此外对非对称图形一般可利用平移变换将分散的条件集中对于对称图形则优先考虑利用轴对称变换将分散条件集中.经典考题解析例1 (北京)在正方形ABCD 中 BD 是一条对角线点 P 在射线CD 上(与点C,D 不重合),连接AP,平移△ADP,使点D 移动到点C 处,得到△BCQ,过点Q作QH⊥BD,垂足为点 H,连接AH,PH.(1) 若点 P 在线段CD 上,如图 7-1 所示.①依题意补全图7-1;②判断AH 与PH 的数量关系与位置关系并加以证明(2)若点 P 在线段CD 的延长线上,且∠AHQ=152°,正方形 ABCD 的边长为1,请写出求 DP 长的思路.(可以不写出计算结果)思路分析 (1)利用平移性质可得DP=CQ.由题意可知△DHQ是等腰直角三角形(轴对称图形) 又由 DP=CQ 连接CH 显然根据等腰三角形的轴对称性可证得PH=CH.再根据正方形的轴对称性,可得AH=CH,由上可得AH=PH.(2)根据条件画图参考第(1)问的解题思路依然连接CH.由. ∠AHQ=152°,可得∠AHB=62°,进而可求得∠DAH=∠DCH=17°.通过作高,构造以∠DCH 为一内角的直角三角形解该直角三角形建立方程可求得 DP 长.规范解答解:(1) ①补全的图如图7﹣2(1)所示.②AH=PH,AH⊥PH.如图图7-2(2)所示,连接CH.∵四边形 ABCD 是正方形,QH⊥BD,∴∠HDQ=45°.∴△DHQ是等腰直角三角形.∵DP=CQ,在△HDP与△HQC中,∴{DH=QH,∠HDP=∠HQC,DP=QC,∴△HDP≌△HQC.∴ PH=CH,∠HPC=∠HCP.∵ BD 是正方形ABCD 的对称轴,∴AH=CH=PH,∠DAH=∠HCP=∠HPC.∴∠DAH+∠DPH=∠HPC+∠DPH=180°.∴∠AHP=180°-∠ADP=90°.∴AH=PH,AH⊥PH.(2) 如图图7-2(3)所示,连接CH.∵四边形ABCD 是正方形,QH⊥BD,∴∠HDQ=45°.∴△DHQ是等腰直角三角形.∵△BCQ 由△ADP 平移而成,∴ PD=CQ.过点 H 作HR⊥PC,垂足为点 R.∵∠AHQ=152°,∴∠AHB=152°−90°=62°.∴∠DAH=62°−45°=17°.设DP=x,则DR=HR=RQ=1−x2.∵tan17∘=HRCR ,即tan17∘=1−x21+x2,∴x=1−tan17∘1+tan17∘.解后反思本题通过平移得对应线段相等.根据已知条件作图得轴对称图形利用图形的轴对称性解决相关证明和计算问题.事实上许多几何综合题都以轴对称图形(如等腰直角三角形等边三角形正方形等)为背景解决此类问题一定要关注图形“天然”的轴对称性然后寻找图形间其他的数量关系和位置关系.例2如图7-3所示,在Rt△ABC 中,∠C=90°,点 D,E 分别为CB,CA 延长线上的点,BE 与AD 的交点为点 P,BD=AC,AE=CD,求∠APE 的度数.思路分析通过准确作图测量可以发现∠APE=45° 通过这一结论联想到等腰直角三角形但显然图形中并无等腰直角三角形可以考虑构造.条件“BD=AC AE=CD” 相等线段无公共端点条件相对分散所以考虑平移将分散条件集中.规范解答如图7-4 所示将线段BD 沿BE 方向平移BE 线段长得线段EQ.连接DQ,AQ,可知四边形 BEQD 是平行四边形,E Q∥CD,DQ∥BE,BD=EQ.∵∠C=90°,∴∠AEQ=90°,即∠C=∠AEQ.∵ BD=AC,∴ EQ=CA.又∵AE=CD,∴△CAD≌△EQA.∴AD=AQ,∠CDA=∠EAQ.∵在 Rt△ABC中,∠C=90°,∴∠CAD+∠CDA=90°.∴∠CAD+∠EAQ=90°.∴∠DAQ=90°.∴△QAD 是等腰直角三角形,∠AQD=∠ADQ=45°.∵DQ∥BE,∴∠APE=∠ADQ=45°.解后反思本例已知条件中除了已知∠C=90°外无其他已知角而要求∠APE 的度数显然仅通过角度间的简单计算与等值代换无法求解.而条件“BD=AC AE=CD”比较分散故考虑平移从而将条件集中改变图形结构构造出与90°(已知)有关的特殊三角形(如等腰直角三角形) 进而产生其他角(如本例中的45°角) 再寻找这些角与∠APE的联系.当然平移的方式是比较多的但整体的解题思路是一致的.其他方法举例:若将AE 沿A:D 方向平移AD 线段长,得线段DQ,连接BQ,EQ,BQ与AD交点为点M(见图7-5(1)).易证四边形A EQD 是平行四边形,AE=DQ=CD,可证△CAD≌△DBQ,∠QBD+∠CDA=∠QBD+∠DQB=90°,即∠BMP=90°.由AD∥EQ,可证△EQB 是等腰直角三角形,则∠APE=∠PEQ=45°.还可将线段CA 沿CD 方向平移CD 线段长,得线段DQ,连接BQ,AQ,EQ(见图7-5(2)).可得等腰直角三角形BDQ 和等腰直角三角形EAQ.可证△BEQ∽△DAQ,易得∠APE=∠AQE=45°.例3 (大连)如图7-6(1)所示,四边形ABCD 的对角线AC,BD 相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1) 填空:∠BAD 与∠ACB 的数量关系为 ;(2)求mn的值(3) 将△ACD 沿CD 翻折,得到△A′CD(见图7-6(2)),连接BA',与CD 相交于点P.若CD=√5+12,求 PC的长.思路分析 (1) 在△ABD 中根据三角形的内角和定理即可得出结论:∠BAD+ ∠ACB=180°.(2) 如图7-7(1)所示,作DE‖AB交AC 于点E.由. △OAB≅△OED,可得AB=DE,OA=OE,设AB=DE=CE=x,OA=OE=y,由△EADO△ABC,推出EDAC =AEAB=DACB=mn,可得xx+2y=2yx,整理为4y²+2xy−x²=0,即(2yx)2+2yx−1=0,求出2yx的值即可解决问题.(3) 如图2所示,作DE∥AB交AC 于点E.想办法证明. △PA′DO△PBC,可得A′DBC =PDPC=√5−12,可得PD+PCPC=√5+12,即PDPC=√5+12,由此即可解决问题.规范解答 (1)在△ABD中.∵∠BAD+∠ABD+∠ADB=180°,又∵∠ABD+∠ADB=∠ACB,∴∠BAD+∠ACB=180°.(2) 如图7-7(1)所示,作DE∥AB 交AC 于点E.∴∠OBA=∠ODE.又∵OB=OD,∠AOB=∠DOE,∴△OAB≌△OED.∴AB=DE,OA=OE.∴CE=OC−OE=OC−OA=AB=ED.设AB=DE=CE=x,OA=OE=y.∴∠EDA+∠DAB=180°,∠BAD+∠ACB=180°∴∠EDA=∠ACB.∵∠DEA=∠CAB,∴△EAD∽△ABC.∴EDAC =AEAB=DACB=mn.∴xx+2y =2yx.∴4y²+2xy−x²=0.∴(2yx )2+2yx−1=0.∴2yx =−1+√52负根舍去).∴mn =√5−12.(3) 如图图7-7(2)所示,作DE∥AB 交AC于点E.由(1)可知,DE=CE.又由翻折,得∠DCA=∠DCA',∴∠EDC=∠ECD=∠DCA'.∴ DE∥CA'∥AB.∴∠ABC+∠A'CB=180°.∵△EAD∽△ABC,∴∠DAE=∠ABC=∠DA'C.∴∠DA'C+∠A'CB=180°.∴ A'D∥BC.∴△PA'D∽△PBC.∴A′DBC =PDPC=√5−12.∴PD+PCPC =√5+12,即CDPC=√5+12.∵CD=√5+12,∴ PC=1.解后反思本例第(3)问中要关注轴对称变换后图形的不变量.同时在解答第(3)问中可延续解决第(2)问中的方法.事实上在许多综合题中前一个问题的解题思路或得出的结论往往对后一个问题的解决有提示作用.例4 (徐州)将边长为6的正三角形纸片 ABC 按顺序进行两次对折展平后得折痕AD,BE(见图7-8(1)),点O为其交点.(1)探究 AO到OD 的数量关系并说明理由(2)如图7-8(2)所示,若点 P,N 分别为BE,BC上的动点.①当 PN+PD 的长度取得最小值时,求 BP 的长度;②如图7-8(3)所示,若点Q在线段BO上,BQ=1,则QN+NP+PD 的最小值=思路分析(1) 根据等边三角形的性质,得∠BAO=∠ABO=∠OBD=30°,则AO=OB 根据直角三角形的性质即可得到结论.(2) ①如图7-9(1)所示,作点 D 关于BE 的对称点. D′,过点D′作D′N⊥BC,垂足为点 N 交BE 于点P 则此时 PN+PD 的长度取得最小值根据线段垂直平分线定理得BD=BD′,推出△BDD'是等边三角形得到BN=12BD=32,于是得到结论.②如图7﹣9(2)所示,作点Q关于BC的对称点( Q′,作点 D 关于BE 的对称点D′,连接Q′D′,此时QN+NP+PD的长度取得最小值.根据轴对称的定义得到∠Q'BN=∠QBN=30°,∠QBQ'=60°,得到△BQQ'为等边三角形, △BDD′为等边三角形解直角三角形即可得到结论.规范解答解:(1)AO=2OD.理由:∵△ABC 是等边三角形,∴∠BAO=∠ABO=∠OBD=30°.∴ AO=OB.∵ BD=CD,∴ AD⊥BC.∴∠BDO=90°.∴OB=2OD.∴OA=2OD.(2) 如图7-9(1)所示,作点 D 关于BE 的对称点. D′,过点D′作D′N⊥BC,垂足为点N 交BE于点P 则此时PN+PD的长度取得最小值.∵ BE 垂直平分. DD′,∴BD=BD′,∵∠ABC=60°,∴△BDD′是等边三角形.∴BN=12BD=32.∵∠PBN=30°,∴BNPB =√32,∴PB=√3.(3) 如图7-9(2)所示,作点 Q 关于BC 的对称点( Q′,作点 D 关于 BE 的对称点. D′,连接Q′D′,此时QN+NP+PD的长度取得最小值.根据轴对称的定义可知∠Q′BN=∠QBN=30°,∠QBQ′=60°,∴△BQQ′为等边三角形△BDD′为等边三角形.∴∠D′BQ′=90°.∴在Rt△D′BQ′中, D′Q′=√32+12=√10.∴QN+NP+PD的最小值为√10.解后反思利用轴对称模式可以解决一类路径最短问题:即利用轴对称将部分线段等量转化使问题转化为“已知两个定点确定最佳路径使两定点间的连线最短” 利用“两点之间线段最短”这一基本事实求解.显然在此过程中轴对称起到了将已知条件向待解问题做有效沟通的桥梁的作用.例5 (泰州)对给定的一张矩形纸片ABCD 进行如下操作:先沿CE 折叠使点 B落在CD 边上(见图7-10(1)),再沿CH 折叠,这时发现点 E 恰好与点 D 重合(见图7-10(2)).(1)根据以上操作和发现求CDAD的值(2)将该矩形纸片展开.①如图7-10(3)所示折叠该矩形纸片使点C 与点H 重合折痕与AB 相交于点P 再将该矩形纸片展开.求证:∠HPC=90°;②不借助工具利用图7-10(4)探索一种新的折叠方法找出与图7-10(3)中位置相同的点 P 要求只有一条折痕且点 P 在折痕上请简要说明折叠方法(不需说明理由).思路分析(1) 由图7–10(1)可得△BCE 是等腰直角三角形,则CE=√2BC,由图7--10(2)可得CE=CD,而AD=BC,即可得( CD=√2AD,即CDAD=√2.(2)①由翻折,可得PH=PC,即PH²=PC²,依据勾股定理可得AH²+AP²=BP²+BC²,进而得AP=BC,再根据 PH=CP,∠A=∠B= 90°,即可得Rt△APH≅Rt△BCP,进而可得∠CPH=90°.②由AP=BC=AD,可得△ADP 是等腰直角三角形,PD 平分∠ADC,故沿着过点D 的直线翻折使点 A 落在CD 边上此时折痕与AB 的交点即为P 由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,进而得CP.平分∠BCE 故沿着过点 C 的直线折叠使点 B 落在CE上此时折痕与AB 的交点即为点P.规范解答解:(1)由图7-10(1),得∠BCE=12∠BCD=45∘.又∵∠B=90°,∴△BCE 是等腰直角三角形.∴BCEC =cos45∘=√22,即CE=√2BC.由图7-10(2),得CE=CD,而AD=BC,∴CD=√2AD.=√2.∴CDAD(2)①设AD=BC=a,则. AB=CD=√2a,BE=a,∴AE=(√2−1)a.如图7-11(1)所示,连接EH,则∠CEH=∠CDH=90°.∵∠BEC=45°,∠A=90°,∴∠AEH=45°=∠AHE.∴AH=AE=(√2−1)a.设AP=x,则BP=√2a−x,由翻折,得PH=PC,即PH²=PC²,∴AH²+AP²=BP²+BC²,即[(√2−1)a]2+x2=(√2a−x)2+a2.解得x=a,即AP=BC.又∵ PH=CP,∠A=∠B=90°,∴ Rt△APH≌Rt△BCP.∴∠APH=∠BCP.又∵ Rt△BCP 中,∠BCP+∠BPC=90°,∴∠APH+∠BPC=90°.∴∠CPH=90°.②折法一:如图7-11(2)所示,由AP=BC=AD,可得△ADP 是等腰直角三角形,PD 平分∠ADC 故沿着过点 D 的直线翻折使点 A 落在 CD 边上此时折痕与AB 的交点即为点P.折法二:如图7-11(3)所示,由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH.又∵∠DCH=∠ECH,∴∠BCP=∠PCE,即CP 平分∠BCE.故沿着过点C 的直线折叠使点 B 落在CE上此时折痕与AB 的交点即为P.解后反思折叠是一种对称变换它属于轴对称折叠前后图形的形状和大小不变对应边和对应角相等.解题时常常设要求的线段长为x 然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度选择适当的直角三角形运用勾股定理列出方程并求出答案.全真模拟训练1. (苏州)如图所示,正方形ABCD 的边AD 与矩形EFGH 的边FG 在一条直线上,将正方形ABCD 以1cm/s的速度沿 FG 方向移动移动开始前点 A 与点 F 重合.在移动过程中边AD 始终与边FG 在一条直线上连接CG 过点 A 作CG 的平行线交线段GH 于点P,连接PD.已知正方形 ABCD 的边长为 1 cm,矩形 EFGH 的边FG,GH 的长分别为4 cm 3c m.设正方形移动时间为x(s),线段GP 的长为y (cm),其中( 0≤x≤2.5.(1)试求出y关于x 的函数关系式并求出. y=3时相应x 的值(2)记△DGP的面积为S₁,△CDG的面积为S₂..试说明S₁−S₂是常数(3) 当线段 PD 所在直线与正方形ABCD 的对角线AC 垂直时求线段 PD 的长.2.如图所示已知在△ABC中,点 D,E 是BC 边上的两点,. BD=CE,,连接AD,AE.求证:AB+AC>AD+AE.3. 已知在 Rt△ABC 中,∠ACB=90°,AC=4,BC=2,D 是AC 边上的一个动点,将△ABD 沿BD 所在直线折叠,使点 A 落在点 P 处.(1) 如图(1)所示,若点 D 是AC 中点,连接PC.①写出 BP,BD 的长;②求证:四边形 BCPD 是平行四边形(2)如图(2)所示,若 BD=AD,过点P 作PH⊥BC交BC 的延长线于点H,求PH 的长.4. (北京)如图所示,在△ABC 中,∠BAC=2∠ACB,点 D 是△ABC 内的一点,且AD=CD,BD=BA.探究∠DBC 与∠ABC度数的比值.请你完成下列探究过程:先将图形特殊化得出猜想再对一般情况进行分析并加以证明.(1) 当∠BAC=90°时依问题中的条件补全图.观察图形 AB 与AC 的数量关系为当推出∠DAC=15°时可进一步推出. ∠DBC的度数为可得到∠DBC与∠ABC度数的比值为(2) 当∠BAC≠90°时请你画出图形研究∠DBC与∠ABC度数的比值是否与(1)中的结论相同写出你的猜想并加以证明.5. (北京)如图所示,在正方形ABCD 中,点E 是边AB 上的一动点(不与点A,B 重合),连接DE,点A 关于直线DE 的对称点为F,连接EF 并延长交BC 于点G,连接DG,过点E作. EH⊥DE交DG 的延长线于点H,连接 BH.(1) 求证: GF=GC;(2)用等式表示线段 BH 与AE 的数量关系并证明.。

2014年中考数学二轮精品复习试卷(点、线、面、角)含解析

2014年中考数学二轮精品复习试卷(点、线、面、角)含解析

2014年中考数学二轮精品复习试卷:点、线、面、角学校:___________姓名:___________班级:___________考号:___________1、如图,AB//CD,∠CDE=1400,则∠A的度数为A.1400B.600C.500D.4002、如图,直线a、b、c、d,已知c⊥a,c⊥b,直线b、c、d交于一点,若∠1=500,则∠2等于【】A.600B.500C.400D.3003、如图,AB平行CD,如果∠B=20°,那么∠C为【】A.40°B.20°C.60°D.70°4、已知∠A=65°,则∠A的补角的度数是A.15°B.35°C.115°D.135°5、如图,直线a∥b,∠1=70°,那么∠2的度数是A.50°B.60°C.70°D.80°6、如图,AC∥DF,AB∥EF,点D、E分别在AB、AC上,若∠2=50°,则∠1的大小是A.30°B.40°C.50°D.60°7、如图,直线l1∥l2,则∠α为【】A.150°B.140°C.130°D.120°8、如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC 的外角,则∠1+∠2+∠3等于A.90°B.180°C.210°D.270°9、如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是A.∠1=∠3 B.∠5=∠4 C.∠5+∠3=180°D.∠4+∠2=180°10、如图,AB∥CD,AD平分∠BAC,若∠BAD=700,那么∠ACD的度数为【】A.400B.350C.500D.45011、已知∠A=650,则∠A的补角等于【】A.1250B.1050C.1150D.95012、如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=40°,则∠2等于A.130°B.140°C.150°D.160°13、如图,下列条件中能判定直线l1∥l2的是【】A.∠1=∠2 B.∠1=∠5 C.∠1+∠3=180°D.∠3=∠514、下列图形中,由AB∥CD,能使∠1=∠2成立的是【】A.B.C.D.15、(2013年四川南充3分)下列图形中,∠2>∠1的是【】A.B.C.则D.16、如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称17、已知:如图,下列条件中不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°18、如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于A.35°B.70°C.110° D.145°19、一个多边形的每个内角均为108°,则这个多边形是A.七边形B.六边形C.五边形D.四边形20、在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是A.1B.1或C.1或D.或二、填空题()21、命题“对顶角相等”的条件是.22、如图,三角板的直角顶点在直线l上,看∠1=40°,则∠2的度数是.23、如图,直线a和直线b相交于点O,∠1=50°,则∠2=.24、如图,已知直线a∥b,∠1=35°,则∠2= .25、如图,将一个宽度相等的纸条沿AB折叠一下,如果∠1=130º,那么∠2= .26、如图,两直线a、b被第三条直线c所截,若∠1=50°,∠2=130°,则直线a、b的位置关系是 .27、若∠A的补角为78°29′.则∠A=.28、如图,∠AOB=90°,∠BOC=30°,则∠AOC=°.29、如图,直线AB、CD相交于点O,若∠BOD=40°,OA平分∠COE,则∠AOE=.30、如图,已知:AB∥CD,∠C=25°,∠E=30°,则∠A=.31、如图,AB∥CD,AE=AF,CE交AB于点F,∠C=110°,则∠A=°.32、如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA 上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线上.33、如图,直线,被直线所截,若∥,∠1=40°,∠2=70°,则∠3= 度34、如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D= 度35、如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.三、计算题()36、如图:点A、C、E、B、D在一直线上,AB=CD,点E是CB的中点,若AE=10,CB=4,请求出线段BD的长。

2014中考真题分类图形的平移旋转,折叠与对称解读

2014中考真题分类图形的平移旋转,折叠与对称解读

平移旋转折叠与对称专题训练一、选择题1.(2014•福建泉州)正方形的对称轴的条数为()A.1B.2C.3D.42.(2014•新疆)如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是()A.B.2C.D.23.(2014•舟山)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm4.(2014•邵阳)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A甲方案用铁丝最少 B.一方案用铁丝最少C.丙用铁丝最少D.三种方案用铁丝一样5.(2014•孝感)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(-2,0)C.(2,10)或(-2,0)D.(10,2)或(-2,0)6.(2014•四川自贡)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B .C.D.7.(2014·浙江金华)如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B的度数是( )A.70°B.65°C.60°D. 55°8. (2014•四川巴中)下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B. C.D.9.(2014•山东枣庄)将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A.x>4 B.x>-4 C.x>2 D.x>-210. (2014•山东潍坊)下列标志中不是中心对称图形的是( )11. (2014•山东烟台)下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.12.(2014•山东烟台)如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是A.(1,1)B.(1,2)C.(1,3)D.(1,4)13.已知:如上右图△ABC中,BM,CN是∠ABC,∠ACB的平分线,且AM⊥BM于M,AN⊥CN于N,说明:MN∥BC14. (2014年贵州黔东南)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5B.1.5C.D.115.(2014•遵义)如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A. 2﹣B.C. ﹣1D.116. (2014•江苏苏州)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B′,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)17. (2014•江苏徐州)顺次连接正六边形的三个不相邻的顶点.得到如图的图形,该图形A.既是轴对称图形也是中心对称图形B.是轴对称图形但并不是中心对称图形C.是中心对称图形但并不是轴对称图形D.既不是轴对称图形也不是中心对称图形18.(2014•四川南充)下列几何体的主视图既是中心对称图形又是轴对称图形的是()A.B.C.D.19.(2014•四川遂宁)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C 顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30°B.60°C.90°D.150°20. (2014•山东聊城)如上右图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5 B.5.5 C.6.5 D.7二、填空题21 (2014•四川巴中)如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△A0B绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是.22. (2014山东济南)如图,将边长为12的正方形ABCD 是沿其对角线AC 剪开,再把ABC ∆沿着AD 方向平移,得到C B A '''∆,当两个三角形重叠的面积为32时,它移动的距离A A '等于________.23.(2014•四川宜宾)如上右图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B ′重合,AE 为折痕,则EB ′=-------.23.(2014•四川宜宾)在平面直角坐标系中,将点A (﹣1,2)向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点C 的坐标是 .24.( 2014•广东)如下左图,△ABC 绕点A 顺时针旋转45°得到△A ′B ′C ′,若∠BAC =90°,AB =AC =,则图中阴影部分的面积等于 .25.(2014年四川资阳)如上右图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE =3,点Q 为对角线AC 上的动点,则△BEQ 周长的最小值为 .A D CB A D’ B ’CC ’ 第22题图10.(2014•济宁)如图(1),有两个全等的正三角形ABC和ODE,点O、C分别为△ABC、△DEO的重心;固定点O,将△ODE顺时针旋转,使得OD经过点C,如图(2),则图(2)中四边形OGCF与△OCH面积的比为.26.(2014•四川南充)如下左图,在四边形ABCD中,AB=CD,M、N分别是BC、AD的中点,BA及MN的延长线相交于P,CD及MN的延长线相交于Q,求证:∠APN=∠DQN27.(2014•广东梅州)如上右图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.28.(2014•珠海)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC 交于点H.(1)求BE的长;(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.三、解答题29. (2014•四川巴中)如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(﹣2,4),B(﹣2,1),C(﹣5,2).(1)请画出△ABC关于x轴对称的△A1B1C1.(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C2,请画出△A2B2C2.(3)求△A1B1C1与△A2B2C2的面积比,即:=(不写解答过程,直接写出结果).30.(2009.泰安)如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,沿△ABC的中线CM将△CMA 折叠,使点A落在点D处,若CD恰好与MB垂直,则tanA的值为.31.(2014年湖北咸宁))如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.y O x C N B P M A 32..(2014•甘肃兰州,第27题10分)给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC 绕顶点B 按顺时针方向旋转60°得到△DBE ,连接AD ,DC ,CE ,已知∠DCB=30°.①求证:△BCE 是等边三角形;②求证:DC 2+BC 2=AC 2,即四边形ABCD 是勾股四边形.33.如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结AC BC A C 、,、两点的坐标分别为(30)A -,、(03)C ,,且当4x =-和2x =时二次函数的函数值y 相等.(1)求实数a b c ,,的值;(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.。

2014年各地中考数学试卷解析版分类精品汇编平移旋转与对称

2014年各地中考数学试卷解析版分类精品汇编平移旋转与对称

2014年各地中考数学试卷解析版分类汇编平移旋转与对称一、选择题1. (2014•四川巴中)下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B. C.D.考点:轴对称图形和中心对称图形的识别.分析:根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解答:A、是轴对称图形,不是中心对称图形.故本选项错误;B、不是轴对称图形,也不是中心对称图形.故本选项错误;C、是轴对称图形,也是中心对称图形.故本选项正确;D、是轴对称图形,不是中心对称图形.故本选项错误.故选C.点评:考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2. (2014•山东枣庄)将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A.x>4 B.x>﹣4 C.x>2 D.x>﹣2考点:一次函数图象与几何变换分析:利用一次函数平移规律得出平移后解析式,进而得出图象与坐标轴交点坐标,进而利用图象判断y>0时,x的取值范围.解答:解:∵将一次函数y=x的图象向上平移2个单位,∴平移后解析式为:y=x+2,当y=0,则x=﹣4,x=0时,y=2,如图:∴y>0,则x的取值范围是:x>﹣4,故选:B.点评:此题主要考查了一次函数图象与几何变换以及图象画法,得出函数图象进而判断x的取值范围是解题关键.3. (2014•山东潍坊)下列标志中不是中心对称图形的是( )考点:中心对称图形.分析:根据中心对称图形的概念对各选项分析判断后利用排除法求解.解答:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是不中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:C.点评:本题考查了中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.中心对称图形是要寻找对称中心,旋转180度后两部分重合.4. (2014•山东烟台)下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:轴对称图形和中心对称图形的识别.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5. (2014•山东烟台)如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)考点:平面直角坐标系与旋转.分析:先根据旋转的性质得到点A的对应点为点A′,点B的对应点为点B′,再根据旋转的性质得到旋转中心在线段AA′的垂直平分线,也在线段BB′的垂直平分线,即两垂直平分线的交点为旋转中心.解答:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△A′B′C′,∴点A的对应点为点A′,点B的对应点为点B′,作线段AA′和BB′的垂直平分线,它们的交点为P(1,2),∴旋转中心的坐标为(1,2).故选B.点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.6. (2014•江西抚州)下列安全标志图中,是中心对称图形的是解析:选B. ∵A、C、D是轴对称图形.7. (2014山东济南)下列图案既是轴对称图形又是中心对称图形的是【解析】图A为轴对称图但不是中心对称图形;图B为中心对称图但不是轴对称图形;图C既不是轴对称图也不是中心对称图形;图D既是轴对称图形又是中心对称图形.8.(2014•山东聊城)如图,在平面直角坐标系中,将△ABC绕点P旋转180°,得到△A1B1C1,则点A1,B1,C1的坐标分别为()A.A1(﹣4,﹣6),B1(﹣3,﹣3),C1(﹣5,﹣1)B.A1(﹣6,﹣4),B1(﹣3,﹣3),C1(﹣5,﹣1)C.A1(﹣4,﹣6),B1(﹣3,﹣3),C1(﹣1,﹣5)D.A1(﹣6,﹣4),B1(﹣3,﹣3),C1(﹣1,﹣5)考点:坐标与图形变化-旋转分析:根据网格结构找出点A、B、C关于点P的对称点A1,B1,C1的位置,再根据平面直角坐标系写出坐标即可.解答:解:△A1B1C1如图所示,A1(﹣4,﹣6),B1(﹣3,﹣3),C1(﹣5,﹣1).故选A.点评:本题考查了坐标与图形变化﹣旋转,熟练掌握网格结构准确找出对应点的位置是解题的关键.9. (2014年贵州黔东南)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5 B. 1.5 C. D. 1考点:旋转的性质分析:解直角三角形求出AB,再求出CD,然后根据旋转的性质可得AB=AD,然后判断出△ABD 是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC﹣BD计算即可得解.解答:解:∵∠B=60°,∴∠C=90°﹣60°=30°,∵AC=,∴AB=×=1,∴BC=2AB=2,由旋转的性质得,AB=AD,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.故选D.点评:本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD 是等边三角形是解题的关键.10.(2014•遵义)观察下列图形,是中心对称图形的是()A.B.C.D.考点:中心对称图形分析:根据中心对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.点评:本题考查了中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.(2014•遵义)如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.1考点:旋转的性质.分析:连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.解答:解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故选C.点评:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.12.(2014•娄底)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、此图形是轴对称图形,不是中心对称图形,故此选项错误;B、此图形是轴对称图形,不是中心对称图形,故此选项错误;C、此图形不是轴对称图形,是中心对称图形,故此选项错误;D、此图形是轴对称图形,也是中心对称图形,故此选项正确;故选:D.点评:此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.13 (2014年湖北咸宁)点P(1,﹣2)关于y轴对称的点的坐标为(﹣1,﹣2).考点:关于x轴、y轴对称的点的坐标.分析:根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.解答:解:点P(1,﹣2)关于y轴对称的点的坐标为(﹣1,﹣2).故答案为:(﹣1,﹣2).点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14. (2014•江苏苏州)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B′,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)考点:坐标与图形变化-旋转.分析:过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出O′D、BD,再求出OD,然后写出点O′的坐标即可.解答:解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,).故选C.点评:本题考查了坐标与图形变化﹣旋转,主要利用了勾股定理,等腰三角形的性质,解直角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.15. (2014•江苏徐州)顺次连接正六边形的三个不相邻的顶点.得到如图的图形,该图形()A.既是轴对称图形也是中心对称图形B.是轴对称图形但并不是中心对称图形C.是中心对称图形但并不是轴对称图形D.既不是轴对称图形也不是中心对称图形考点:中心对称图形;轴对称图形.分析:根据正多边形的性质和轴对称图形与中心对称图形的定义解答.解答:解:此图形是轴对称图形但并不是中心对称图形,故选:B.点评:此题考查正多边形对称性.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形.16. (2014•江苏徐州)在平面直角坐标系中,将点A(4,2)绕原点逆时针方向旋转90°后,其对应点A′的坐标为(﹣2,4).考点:坐标与图形变化-旋转.分析:建立网格平面直角坐标系,然后确定出点A与A′的位置,再写出坐标即可.解答:解:如图A′的坐标为(﹣2,4).故答案为:(﹣2,4).点评:本题考查了坐标与图形变化﹣旋转,作出图形,利用数形结合的思想求解更形象直观.17.(2014•四川南充)下列几何体的主视图既是中心对称图形又是轴对称图形的是()A.B.C.D.分析:先判断主视图,再根据轴对称图形与中心对称图形的概念求解.解:A、主视图是扇形,扇形是轴对称图形,不是中心对称图形,故错误;B、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故错误;C、主视图是等腰梯形,是轴对称图形,不是中心对称图形,故错误;D、主视图是矩形,是轴对称图形,也是中心对称图形,故正确.故选D.点评:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.18.(2014•四川遂宁)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30°B.60°C.90°D.150°考点:旋转的性质.分析:根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC 是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义解答即可.解答:解:∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故选B.点评:本题考查了旋转的性质,直角三角形两锐角互余,等边三角形的判定与性质,熟记各性质并准确识图是解题的关键.19.(2014•甘肃白银、临夏)下列图形中,是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.20.(2014•甘肃兰州)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.21.(2014•广州)下列图形是中心对称图形的是().(A)(B)(C)(D)【考点】轴对称图形和中心对称图形.【分析】旋转180°后能与完全重合的图形为中心对称图形.【答案】D22.(2014•广东梅州)下列电视台的台标,是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断得出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,故此选项正确;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误.故选;A.点评:此题主要考查了中心对称图形的定义,根据定义得出图形形状是解决问题的关键.二、填空题1. (2014•四川巴中)如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△A0B绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是.考点:一次函数的性质,旋转.分析:首先根据直线AB来求出点A和点B的坐标,B′的横坐标等于OA+OB,而纵坐标等于OA,进而得出B′的坐标.解答:直线y=﹣x+4与x轴,y轴分别交于A(3,0),B(0,4)两点.旋转前后三角形全等.由图易知点B′的纵坐标为OA长,即为3,即横坐标为OA+OB=OA+O′B′=3+4=7.故点B′的坐标是(7,3).故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B和点B′位置的特殊性,以及点B'的坐标与OA和OB的关系.2. (2014•山东枣庄)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有 3 种.考点:利用轴对称设计图案分析:根据轴对称图形的概念:把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合及正方形的对称轴是两条对角线所在的直线和两组对边的垂直平分线,得出结果.解答:解:在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为:3.点评: 考查了利用轴对称设计图案,此题要首先找到大正方形的对称轴,然后根据对称轴,进一步确定可以涂黑的正方形.3. (2014•江西抚州)如图,两块完全相同的含30°角的直角三角板ABC 和A'B'C'重合在一起,将三角板A'B'C'绕其顶点C'按逆时针方向旋转角α(0°< α≤90°),有以下四个结论: ①当α=30°时,A'C 与AB 的交点恰好为AB 的中点;②当α=60°时,A'B'恰好经过点B ;③在旋转过程中,存在某一时刻,使得AA'BB'=; ④在旋转过程中,始终存在AA'BB'⊥,其中结论正确的序号是 ① ② ④ .(多填或填错得0分,少填酌情给分)解析:如图1,∵α=30°,∴∠ACA ′=∠A=30°,∠BCA ′=∠B=60°,∴DC=DA,DC=DB,∴DA=DB,∴D 是AB 的中点.正确如图2,当α=60°时,取A ′B ′的中点E,连接CE,则∠B ′CE=∠B ′CB=60°,又CB=CB ′,∴E 、B 重合,∴A ′、B ′恰好经过点B.正确 如图3,连接AA ′,BB ′,则⊿CAA ′∽⊿CBB ′,∴AA AC BB BCtan '==︒='603,∴AA ′=3BB ′.错误 如图4,∠A ′B ′D=∠CBB ′-60°,∠B ′A ′D=180°-(∠CA ′A+30°),∴∠A ′B ′D +∠B ′A ′D=90°+∠CBB ′-∠CA ′A∵ ∠CBB ′=∠CA ′A ,∴∠A ′B ′D +∠B ′A ′D=90°,即∠D=90°,∴AA ′⊥BB ′.正确∴①,②,④正确.4. (2014山东济南)如图,将边长为12的正方形ABCD 是沿其对角线AC 剪开,再把ABC ∆沿着AD 方向平移,得到C B A '''∆,当两个三角形重叠的面积为32时,它移动的距离A A '等于________.【解析】设m A A =',则222121264m (m)+-=-,解之m =4或8,应填4或8.5. (2014•山东聊城)如图,点P 是∠AOB 外的一点,点M ,N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上.若PM=2.5cm ,PN=3cm ,MN=4cm ,则线段QR 的长为( )A .4.5 B .5.5 C .6.5 D .7 考点: 轴对称的性质分析: 利用轴对称图形的性质得出PM=MQ ,PN=NR ,进而利用MN=4cm ,得出NQ 的长,即可得出QR 的长.解答: 解:∵点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上,∴PM=MQ ,PN=NR ,∵PM=2.5cm ,PN=3cm ,MN=4cm ,∴RN=3cm ,MQ=2.5cm ,NQ=MN ﹣MQ=4﹣2.5=1.5(cm ),则线段QR 的长为:RN+NQ=3+1.5=4.5(cm ).故选:A .点评: 此题主要考查了轴对称图形的性质,得出PM=MQ ,PN=NR 是解题关键.6.(2014•四川宜宾)如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B ′重合,AE 为折痕,则EB ′= 1.5 .A D CB A DA ’B ’C C ’ 第20题图考点:翻折变换(折叠问题)分析:首先根据折叠可得BE=EB′,AB′=AB=3,然后设BE=EB′=x,则EC=4﹣x,在Rt△ABC中,由勾股定理求得AC的值,再在Rt△B′EC中,由勾股定理可得方程x2+22=(4﹣x)2,再解方程即可算出答案.解答:解:根据折叠可得BE=EB′,AB′=AB=3设BE=EB′=x,则EC=4﹣x,∵∠B=90°,AB=3,BC=4,∴在Rt△ABC中,由勾股定理得,,∴B′C=5﹣3=2,在Rt△B′EC中,由勾股定理得,x2+22=(4﹣x)2,解得x=1.5.故答案为:1.5.点评:此题主要考查了翻折变换,关键是分析清楚折叠以后哪些线段是相等的.7.(2014•四川宜宾)在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是(2,﹣2).考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标分析:首先根据横坐标,右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点可得答案.解答:解:点A(﹣1,2)向右平移3个单位长度得到的B的坐标为(﹣1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,﹣2),故答案为:(2,﹣2).点评:此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.8.(2014•四川南充)如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A 落在BC边的A′处,折痕所在直线同时经过边AB、AD(包括端点),设BA′=x,则x的取值范围是.分析:作出图形,根据矩形的对边相等可得BC=AD,CD=AB,当折痕经过点D时,根据翻折的性质可得A′D=AD,利用勾股定理列式求出A′C,再求出BA′;当折痕经过点B时,根据翻折的性质可得BA′=AB,此两种情况为BA′的最小值与最大值的情况,然后写出x的取值范围即可.解:如图,∵四边形ABCD是矩形,AB=8,AD=17,∴BC=AD=17,CD=AB=8,①当折痕经过点D时,由翻折的性质得,A′D=AD=17,在Rt△A′CD中,A′C===15,∴BA′=BC﹣A′C=17﹣15=2;②当折痕经过点B时,由翻折的性质得,BA′=AB=8,∴x的取值范围是2≤x≤8.故答案为:2≤x≤8.点评:本题考查了翻折变换的性质,勾股定理的应用,难点在于判断出BA′的最小值与最大值时的情况,作出图形更形象直观.5.(2014•广东梅州)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.考点:旋转的性质.分析:根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.解答:解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.点评:此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.三、解答题1. (2014•四川巴中)如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(﹣2,4),B (﹣2,1),C(﹣5,2).(1)请画出△ABC关于x轴对称的△A1B1C1.(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C2,请画出△A2B2C2.(3)求△A 1B1C1与△A2B2C2的面积比,即:=1:4(不写解答过程,直接写出结果).考点:平面直角坐标系,相似三角形的面积比.分析:(1)根据关于x轴对称点的性质得出对应点位置进而得出答案;(2)根据将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得出各点坐标,进而得出答案;(3)利用位似图形的性质得出位似比,进而得出答案.解答:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求;(3)∵将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C2,∴△A1B1C1与△A2B2C2的相似比为:1:2,∴:=1:4.故答案为:1:4.点评: 此题主要考查了位似变换以及轴对对称变换,得出对应点位置是解题关键.2. (2014•山东潍坊)如图1,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE 、BF ,交点为G .(1)求证:AE ⊥BF ;(2)将△BCF 沿BF 对折,得到△BPF (如图2),延长FP 交BA 的延长线于点Q ,求sin ∠BQP 的值;(3)将△ABE 绕点A 逆时针方向旋转,使边AB 正好落在AE 上,得到△AHM (如图3),若AM 和BF 相交于点N ,当正方形ABCD 的面积为4时,求四边形GHMN 的面积.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质;解直角三角形.分析:(1)由四边形ABCD 是正方形,可得∠ABE =∠BCF =90°,AB =BC ,又由BE =CF ,即可证得△ABE ≌△BCF ,可得∠BAE =∠CBF ,由∠ABF +∠CBF =900可得∠ABF +∠BAE =900,即AE ⊥BF ;(2)由△BCF ≌△BPF , 可得CF =PF ,BC =BP ,∠BFE =∠BFP ,由CD ∥AB 得∠BFC =∠ABF ,从而QB =QF ,设PF 为x ,则BP 为2x ,在Rt △QBF 中可求 QB 为25x ,即可求得答案; (3)由2)(AMAN AHM AGN =∆∆可求出△AGN 的面积,进一步可求出四边形GHMN 的面积. 解答:(1)证明:∵E 、F 分别是正方形ABCD 边BC 、CD 的中点,∴CF =BE ,∴Rt △ABE ≌Rt △BCF ∴∠BAE =∠CBF 又∵∠BAE +∠BEA =900,∴∠CBF +∠BEA =900,∴∠BGE =900, ∴AE ⊥BF(2)根据题意得:FP =FC ,∠PFB =∠BFC ,∠FPB =900,∵CD ∥AB , ∴∠CFB =∠ABF ,∴∠ABF =∠PFB .∴QF =QB令PF =k (k >O ),则PB =2k ,在Rt △BPQ 中,设QB =x , ∴x 2=(x -k )2+4k 2, ∴x =25k ,∴sin ∠BQP =54252==k k QP BP (3)由题意得:∠BAE =∠EAM ,又AE ⊥BF , ∴AN =AB =2,∵ ∠AHM =900, ∴GN //HM , ∴2)(AM AN AHM AGN =∆∆ ∴54)52(12==ΛAGN ∴ 四边形GHMN =SΔAHM - SΔAGN =1一54= 54 答:四边形GHMN 的面积是54. 点评:此题考查了相似三角形的判定与性质、正方形的性质、全等三角形的判定与性质以及三角函数等知识.此题综合性较强,难度较大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.3.(2014•湖南张家界)利用对称变换可设计出美丽图案,如图,在方格纸中有一个顶点都在格点上的四边形,且每个小正方形的边长都为1,完成下列问题:(1)图案设计:先作出四边形关于直线l成轴对称的图形,再将你所作的图形和原四边形绕0点按顺时针旋转90°;(2)完成上述图案设计后,可知这个图案的面积等于20.考点:利用旋转设计图案;利用轴对称设计图案.分析:(1)首先找出对称点的坐标,然后画图即可;(2)首先利用割补法求出每一个小四边形的面积,再乘以4即可.解答:解:(1)如图所示:(2)面积:(5×2﹣2×1×﹣2×1×﹣3×1××2)×4=20,故答案为:20.点评:此题主要考查了利用轴对称和旋转作图,以及求不规则图形的面积,关键是在作图时,找出关键点的对称点.4.(2014•江西抚州)如图,△ABC与△DEF关于直线对称,请用无刻度的直尺,在下面两个图中分别作出直线.解析:利用轴对称性质:对应线段(或延长线)的交于对称轴上一点.如图,直线l 就是所求作的对称轴.5 (2014年湖北咸宁)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.考点:旋转的性质;含30度角的直角三角形;直角三角形斜边上的中线;菱形的判定.分析:(1)利用旋转的性质得出AC=CD,进而得出△ADC是等边三角形,即可得出∠ACD的度数;(2)利用直角三角形的性质得出FC=DF,进而得出AD=AC=FC=DF,即可得出答案.解答:解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,∴AC=DC,∠A=60°,∴△ADC是等边三角形,∴∠ACD=60°,∴n的值是60;(2)四边形ACFD是菱形;理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC,∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年中考数学二轮精品复习试卷:图形的对称、平移与旋转学校:___________姓名:___________班级:___________考号:___________ 1、下列图形中,既是中心对称图形又是轴对称图形的是 A .B .C .D .2、下列图形中,中心对称图形有【 】A .1个B .2个C .3个D .4个3、下列学习用具中,不是轴对称图形的是A.B .C .D.4、(2013年四川绵阳3分)下列“数字”图形中,有且仅有一条对称轴的是【 】 A .B .C .D .5、如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D 为圆心,大于CD 的长为半径画弧,两弧在∠AOB 内部交于点E ,过点E作射线OE ,连接CD.则下列说法错误的是A .射线OE 是∠AOB 的平分线 B .△COD 是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称6、(2013年四川攀枝花3分)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC 绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=【】A.30°B.35°C.40°D.50°7、下列图形中,不是轴对称图形的是A.B.C.D.8、如图,正方形地砖的图案是轴对称图形,该图形的对称轴有A.1条B.2条C.4条D.8条9、下列四种图形都是轴对称图形,其中对称轴条数最多的图形是A.等边三角形B.矩形C.菱形D.正方形10、下列图案中,既是轴对称图形又是中心对称图形的是【】A.B.C.D.11、在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为A.(1.4,-1)B.(1.5,2)C.(1.6,1)D.(2.4,1)12、下列图形:其中所有轴对称图形的对称轴条数之和为A.13 B.11 C.10 D.813、P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是A.OP1⊥OP2 B.OP1=OP2 C.OP1⊥OP2且OP1=OP2D.OP1≠OP214、如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为A.60°B.75°C.85°D.90°15、在下列图形中既是轴对称图形又是中心对称图形的是A.角B.线段C.等腰三角形D.平行四边形16、下列命题中,真命题是【】A.位似图形一定是相似图形B.等腰梯形既是轴对称图形又是中心对称图形C.四条边相等的四边形是正方形D.垂直于同一直线的两条直线互相垂直17、如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为A.B.C.D.3cm18、如图(1),已知两个全等三角形的直角顶点及一条直角边重合。

将△ACB绕点C按顺时针方向旋转到的位置,其中交直线AD于点E,分别交直线AD、AC 于点F、G,则在图(2)中,全等三角形共有A.5对B.4对C.3对D.2对19、如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE 绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是A.45°B.60°C.90°D.120°20、如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形,则展开后的等腰三角形周长是A.12 B.18 C.D.21、如图,直线MN和EF相交于点O,∠EON=45°,AO=2,∠AOE=15°,设点A关于EF 的对称点是B,点B关于MN的对称点是C,则AC的距离为()A.2 B.C.D.22、2012年10月8日,江西省第三届花卉园艺博览交易会在宜春花博园隆重开幕,此届花博会的吉祥物的名字叫“迎春”(如图).通过平移,可将图中的“迎春”平移到图()23、下列三个函数:①y=x+1;②;③.其图象既是轴对称图形,又是中心对称图形的个数有A.0 B.1 C.2 D.324、在图中,既是中心对称图形有是轴对称图形的是A.B.C.D.25、把△ABC沿AB边平移到△A'B'C'的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC的面积的一半,若AB=,则此三角形移动的距离A A'是()A.-1 B.C.1 D.二、填空题()26、点A(﹣3,0)关于y轴的对称点的坐标是.27、在平面直角坐标系中,点P(5,﹣3)关于原点对称的点的坐标是.28、请写出一个是中心对称图形的几何图形的名称:.29、一辆汽车的牌号在水中的倒影如图所示,则这辆汽车的牌号应为。

30、粗圆体的汉字“王、中、田”等都是轴对称图形,请再写出三个这样的汉字。

31、如图,直线l是对称轴,点A的对应点是点。

32、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是.33、如图,将一张直角三角板纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB 的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是 .34、已知点P(3,2),则点P关于y轴的对称点P1的坐标是,点P关于原点O的对称点P2的坐标是.35、如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为.36、夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m,且桥宽忽略不计,则小桥总长为m.37、如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.38、如图,△AOB中,∠AOB=90°,AO=3,BO=6,△AOB绕顶点O逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点,则线段B′E的长度为.39、设点P是△ABC内任意一点.现给出如下结论:①过点P至少存在一条直线将△ABC分成周长相等的两部分;②过点P至少存在一条直线将△ABC分成面积相等的两部分;③过点P至多存在一条直线将△ABC分成面积相等的两部分;④△ABC内存在点Q,过点Q有两条直线将其平分成面积相等的四个部分.其中结论正确的是.(写出所有正确结论的序号)40、如图,在方格纸中,每个小方格都是边长为1cm的正方形,△ABC的三个顶点都在格点上,将△ABC绕点O逆时针旋转90°后得到 (其中A、B、C的对应点分别为),则点B在旋转过程中所经过的路线的长是 cm。

(结果保留π)三、计算题()41、如图1,某同学在制作正方体模型的时候,在方格纸上画出几个小正方形(图上阴影部分),但是一不小心,少画了一个,请你在备用图上给他补上一个,可以组合成正方体,你有几种画法请分别在备用图上用阴影注明.四、解答题()42、如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.43、在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF 的长.44、在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?45、如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°(1)画出旋转之后的△AB′C′;(2)求线段AC旋转过程中扫过的扇形的面积.46、操作发现将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF的长直角边DE重合.问题解决将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC与BD交于点O,连接CD,如图②.(1)求证:△CDO是等腰三角形;(2)若DF=8,求AD的长.47、如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.48、在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),并回答下列问题:∠ABC=,∠A′BC=,OA+OB+OC=.49、正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为:;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转900,得到线段FQ,连接EQ,请猜想EF、EQ、BP三者之间的数量关系,并证明你的结论;(3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出EF、EQ、BP三者之间的数量关系:.50、如图1,点A是x轴正半轴上的动点,点B的坐标为(0,4),M是线段AB的中点。

将点M绕点A顺时针方向旋转900得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点。

相关文档
最新文档