单晶结构分析

合集下载

单晶结构解析总结.

单晶结构解析总结.

INS文件的建立和更新
结构解析和精修的过程,是ins文件建立和 不断更新的过程,这主要是下列过程实 现的: xprep、xshell—refine、xl、xp、edit、 copy
参数
R1 残差因子
衡量结构模型与真实结构的差异
wR或wR2 加权重的残差因子(计算方法的差异)
数据好的结构,一般可以可以精修到wR2 <0.15,而
4、XL (各向同性修正)(或差值F峰合成);
(1) 计算更新后的.ins文件或前边XL精修的结果,产生新 的.res(结果文件)和.lst文件(记录精修过程)
(2) 精修的参数 a 原子坐标(general positions
ห้องสมุดไป่ตู้
b 原子的位移参数(atomic displacement parameters)
单晶结构分析电子教案
第五章 用SHELXTL程序 进行结构分析的方法
H H HO HO HO OH O
H H H
OH
一 、 晶体学基本常识介绍
1. 单晶 2. 单晶的培养 3. 晶胞参数
4. 七大晶系、14种点阵、32个点群、
230个空间群
1. 晶体的选择与安置
2. 测定晶胞数据与基本对称性

3. 测定衍射强度数据
c 一个总标度因子 一个将实验中获得的衍射强度数 据校正为理论计算得到的F(000)一致的比例参数 d 其它可能参加的精修参数 无序结构中的占有率、消光效应参数、Flack参数等
H原子一般不参与精修,在结构精修中,往往被挷在与
它键合的原子(母原子)上,赋于是母原子1.2 ~1.5倍的 各向同性原子位移参数
几个参数:

• •

单晶结构解析

单晶结构解析

单晶结构解析单晶结构解析是指通过实验和计算,确定一种物质的单晶体结构及其晶体学参数的过程。

单晶结构解析对于物质的性质,结构及其在材料科学中的应用具有重要的意义。

下面将从实验过程、数据处理及结果分析三方面对单晶结构解析进行详细描述。

实验过程在进行单晶结构解析之前,需要先获得单晶样品。

获得单晶样品的方法主要包括晶体生长、晶体分离等。

单晶样品的获得需要具备一定的技术储备和经验。

一般情况下,单晶样品的获得需要先从大的多晶体中选择适合的晶体,再通过化学处理、物理处理等方法制备单晶样品。

获得单晶样品后,需要对其进行结构分析。

实验过程主要包括X射线单晶衍射实验、数据采集等步骤。

X射线单晶衍射实验是获得单晶结构信息的主要实验方法。

实验过程中需要将单晶样品置于X射线衍射仪中,然后进行数据采集。

根据实验条件和单晶样品的性质,可以选择不同类型的衍射仪,如旋转衍射法、Laue法等。

数据采集后,需要对数据进行处理。

数据处理数据处理是单晶结构解析的重要环节之一。

在数据处理过程中,需要消除噪声,确定有效数据。

常用的数据处理方法包括数据维护(检查数据质量)、数据分类、数据索引等方法。

数据维护是指检查数据质量,删除无效数据和不符合要求的数据。

数据分类是将有效数据根据其类型和强度进行分类和编码,为后续数据索引做准备。

数据索引是通过将不同类型的有效数据进行比对,旋转和移动,找出相应的基本数据并确定晶系、晶胞等结构参数。

结果分析单晶结构解析的最终结果是通过计算获得的晶胞参数,通过这些参数可以确定晶体的空间对称性、原子类型和位置等结构信息。

对于单晶结构解析结果的评价,需要考虑各种因素,如数据质量、数据采集方法、计算方法等。

评价单晶结构解析合理性的指标主要包括R值、Rfree值等。

R值是实验数据与模型预测之间差异的程度,R值越小说明模型和衍射数据之间的匹配越好。

Rfree值是根据实验数据和模型计算的一组独立数据与模型预测之间的差异,用于评估模型的过拟合程度。

单晶结构解析讲义完美版

单晶结构解析讲义完美版

单晶结构解析讲义完美版晶体结构解析1.Shelxtl 使⽤流程※解析原始⽂件有hkl⽂件(或raw⽂件),包含衍射数据;p4p⽂件,包含晶胞参数※为⼀个晶体的数据建⽴project,该项⽬下所有⽂件具有相同的⽂件名;⼀旦在XPREP 中发⽣hkl⽂件的矩阵转换,则需要输出新⽂件名的hkl等⽂件,因此要建⽴新的project。

※⾸先运⾏XPREP,寻找晶体的空间群※然后运⾏XS,根据XPREP设定的空间群,寻找结构初解※在Xshell中观察初解是否合理,如不合理,需重回XPREP中设定其他的空间群2.Xshell 使⽤流程※找出重原⼦或者确定性⼤的原⼦※找出其余⾮氢原⼦※精修原⼦坐标※精修各项异性参数※找到氢原⼦(理论加氢或差值傅⾥叶图加氢)※反复精修,直到wR2等指标收敛。

最后的R1<0.06(0.08) wR2<0.16(0.18)※通过HTAB指令寻找氢键,判定氢的位置是否合理,并且将相关氢键信息通过HTAB和EQIV指令写进ins⽂件中※将原⼦排序(sort)3.cif ⽂件⽣成和检测错误流程※在步骤1、2完成后,在ins⽂件中加⼊以下三条命令bond $Hconfacta※此时⽣成了cif和fcf⽂件,将cif⽂件拷贝到planton所在⽂件夹中检测错误,也可以通过如下在线检测⽹址:/doc/aaaed6d749649b6648d74737.html /services/cif/checkcif.html※根据错误提⽰信息,修改或重新精修,将A、B类错误务必全部消灭,C类错误尽量消灭。

4.Acta E 投稿准备流程投稿前,请务必切实做好如下⼯作:※按步骤1、2、3解析晶体并⽣成相应cif和fcf⽂件。

※准备结构式图(Chemical structural diagram)、分⼦椭球图(Molecular ellipsoid diagram)和晶胞堆积图(Packing diagram),最好是pdf格式。

单晶结构分析课件.

单晶结构分析课件.

TITL ylid in P2(1)2(1)2(1) /标题 CELL 0.71073 5.9647 9.0420 18.4029 90.000 90.000 90.000 /波长及单胞参数 ZERR 4.00 0.0005 0.0008 0.0017 0.000 0.000 0.000 /Z值及参数偏差 LATT –1 /晶格(1:P;2:I;3:R;4:F;5:A;6:B;7;C) /对称心(有心:正值;无心:负值) SYMM 0.5-X, -Y, 0.5+Z /对称操作码,忽略SYMM x,y,z SYMM -X, 0.5+Y, 0.5-Z SYMM 0.5+X, 0.5-Y, -Z SFAC C H O S /原子类型 UNIT 44 40 8 4 /原子个数 TREF /直接法 HKLF 4 /衍射点形式 END
R(int) | Fo2 Fo2 (m ean) | / [ Fo2 ] R( sigm a) [ ( Fo2 )] / [ Fo2 ]
直接法在处理有心空间群时,有时可能失败,此时可把空间群 降低成无心结构但最后必须把它转化成有心结构,或者可使用 Patterson法。在有超过Na的重原子存在的条件下,Patterson法 可以给出较好的结果。其方法是:*.INS文件中删除TREF, 输入PATT。重新输入命令XS name。不过Patterson不进行结构 修正,也没有很好的表征参数。*程序默认的是TREF直接法。
(二)结构解释-XS
运行命令: xs name
它要求存在 name.ins 及 name.hkl 两个文件,并将产生 name.res 文件,在name.res文件中,XS自动按照所给的原子种类把最强的 峰命名为最重的原子,并把后续的峰按照其强度进行可能的命名, 同时还进行结构修正,产生更多的差Fourier峰。在某些情况下XS 结果是极其准确的,它可以直接得到大部分结构 (直接法),而这 些结构在后续的差Fourier峰中都未必看的更清楚。 评 判 直 接 法 结 果 的 好 坏 : 主 要 参 考 Rint( 一 般 小 于 0.6),CFOM(一般小于0.1)和RE(Eo与Ec的差,一般小于0.3)的值。

单晶结构解析

单晶结构解析

两个必要文件(由XPREP程序产生) name.hkl, name.ins
结构解析和精修的过程,是ins文件建立和不断更新的过程, 这主要是下列过程实现的:XPREP、XS、XL、XP
其它文件
res lst plt cif fcf pcf tex
xs、xl、refine产生的文件 记录xs、xl、refine过程和结果的文件 XP中做的图形文件 晶体学信息文件 结构因子文件 记录仪器型号、晶体外观等的文件
画图
XCIF
打印表格
二、数据处理--XPREP
运行步骤:
1.从name.hkl文件(若存在)或name.raw文件中读入衍射 点;2.从name.p4p或键盘获得单胞参数及误差 3.判断晶格类型 4.寻找最高对称性
5.确定空间群
6.输入分子 7.建立 name.hkl和 name.ins
* XPREP的主要功能和应用
读入、更改、 •单击进入XPREP程序 合并衍射数据 •根据程序的提示输入晶胞参数 •选择可能的晶格 程序则显示以下菜单: 计算显示 Patterson截面 寻找更高 的对称性 确定或输 入已知的 空间群
[D] Read,Modify or Merge DATDSETS [P] Contour PATTERSON Secions [H] Search for HIGHER mertric symmetry [S] Determine or input SPACE GROUP
•XS计算结果的评估
# 直接法,RE越小越好,一般大于0.3,就预示 着不成功,可以尝试用Patterson法来解
N
O
C u (N O )2 3
+
O N
E tO H

《单晶结构分析》课件

《单晶结构分析》课件
中子衍射法:利用中子束照射晶体,分析 衍射图谱,确定晶体结构
同步辐射法:利用同步辐射照射晶体,分 析衍射图谱,确定晶体结构
电子显微镜法:利用电子显微镜观察晶体 表面,确定晶体结构
原子力显微镜法:利用原子力显微镜观察 晶体表面,确定晶体结构
03
单晶结构分析的实验技 术
X射线衍射技术
应用:分析晶体结构,确定 晶体的晶系、晶胞参数等
电子信息:单晶结构分析在电子信息领域的应用广泛,但需要解决半导体 器件、集成电路等难题
能源环境:单晶结构分析在能源环境领域的应用前景广阔,但需要解决新 能源材料、环境污染治理等难题
数据分析与模拟计算的挑战与机遇
数据量巨大:需要处理和分析大量数据
计算复杂度高:模拟计算需要大量的计算资源和时间
准确性要求高:模拟结果需要与实际结果高度吻合
原理:利用X射线与晶体相 互作用,产生衍射现象
实验步骤:样品制备、X射 线源选择、衍射数据采集、
数据处理
优点:分辨率高,可分析多 种晶体结构,广泛应用于材
料科学、化学等领域
电子显微镜技术
原理:利用电子束扫描样品表面,通过电子束与样品相互作用产生的信号来获取样品 的形貌和结构信息
特点:分辨率高,可以观察到纳米级别的样品结构
数据分析和模拟计算将共同 推动单晶结构分析的发展和
应用
跨学科合作与交流的加强
单晶结构分析与其他学科的交叉融合 跨学科合作在单晶结构分析中的应用 单晶结构分析在跨学科研究中的作用 加强跨学科合作与交流对单晶结构分析发展的影响
06
单晶结构分析的挑战与 展望
实验技术的局限性
实验条件:需要严格的实验 条件和环境控制
环境科学:单晶结 构分析在环境科学 中的应用,如污染 物检测、环境污染 治理等

X射线单晶结构分析ppt课件

X射线单晶结构分析ppt课件

60º+ 4/6c
4
6
60º+ 5/6c
5
六重反轴
6
– 60º+ 倒反
完整版PPT课件
14
镜面和滑移面
2. 晶体对称性
记号
滑移量
镜面
m
轴滑移面
a
b
c
对角滑移面
n
金刚石滑移面 d
1/2a 1/2b 1/2c ½(a+b), ½(a+c), ½(b+c) ½(a+b+c) ¼(ac), ¼(b c), ¼(abc)
X射线 结构分析
晶体
超分子化学
晶体工程
材料化学
非共价键组装的 超分子固体
完整版PPT课件
配位高聚物
5
1. 前言
结构测试流程
测晶胞参数 收强度数据
培养 晶体
结构解析
结构描述 解释
完整版PPT课件
投稿 发表
6
2. 晶体对称性
2.1 晶体结构周期性和点阵
晶体: 原子(或分子、离子)在空间周期性 排列所构成的固体物质
完整版PPT课件
33
3.晶体结构测定方法
主要公式:
H1 = H2 + H3 (S 关系 ) 2
tan j = H1
S |E | |E | sin(j + j ) H2 H3 H2 H3
S |E | |E | cos(j + j )
H2 H3
H2 H3
P = ½ + ½ tanh[(N)–½ E E E ] H1 H2 H3
11
2. 晶体对称性
对称元素及其表示
对称轴

单晶结构分析讲座

单晶结构分析讲座

单晶结构分析讲座单晶结构分析是材料科学领域的一项重要研究内容,通过对材料中的单晶结构进行分析,可以了解其晶体中的原子排列方式、晶格常数、结晶度、晶体缺陷等信息,从而深入理解材料的性质和行为。

本次讲座将介绍单晶结构分析的基本原理、常用的实验方法和分析技术,并结合实例进行具体讲解。

首先,我们需要了解什么是单晶结构。

在材料科学中,晶体是指具有有序周期性排列的原子或分子的固体物质。

而单晶是指晶体中仅有一个晶体结构。

相比之下,多晶体中有很多个晶体并存,每个晶体的晶格方向可能不同。

单晶具有一致的晶体结构,因此具有更好的物理性能和化学稳定性,被广泛应用于材料科学和领域。

为了得到单晶样品进行分析,有多种实验方法可以选择。

最常见的方法是X射线衍射(XRD)。

X射线是一种电磁波,其波长与晶格常数相当,因此能够通过晶体结构产生衍射现象。

通过观察样品衍射出的条纹图案,我们可以推断出晶体的结构信息。

X射线衍射还可以用于测量晶体的晶格常数、晶体缺陷等参数,并可以与理论计算进行比较。

此外,还有电子衍射和中子衍射等方法也可以用于单晶结构分析。

电子衍射使用电子束而不是X射线,可以获得更高的分辨率和更详细的信息。

中子衍射则利用中子束进行衍射,对于有机物质和含有氢原子的材料有一定的优势。

在进行单晶结构分析时,还需要进行数据处理和结构模型建立。

数据处理方面,可以使用衍射数据的峰位和强度进行峰位拟合、样品定位、岛压缩等操作,在提取样品结构信息时起到辅助作用。

结构模型建立方面,可以利用已知的结构信息进行模型匹配,或者通过实验数据进行晶体结构的直接解析。

在实际的单晶结构分析中,还需要克服一些挑战和困难。

首先,进行单晶样品的制备十分关键,需要得到高质量的单晶样品。

其次,不同晶体结构之间差异较大,无法使用通用的方法进行分析。

因此,需要不同的实验和计算方法进行分析。

另外,对于非常复杂的晶体结构,可能需要使用高级的分析技术,如采用高分辨率的XRD仪器或者利用同步辐射源,以获取更详细的结构信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文件结束命令
3.其它文件
晶体结构报表文件 4.INS文件的建立和更新 结构解析和精修的过程,是ins文件建立和不 断更新的过程,这主要是下列过程实现的: xprep、xshell—refine、xl、xp、edit、copy
res lst plt cif fcf pcf tex
xs、xl、refine产生的文件
常用的凝胶有:硅酸钠、四甲氧基硅胶、明 胶和琼脂等
5)水热法或溶剂热法 (hydrothermal method and solvothermal method) 特别难溶的化合物可用此法,重要的技巧是 控制好温度 6) 升华法(sublimation) 能长出好的晶体,但应用较少。
5. 晶体的挑选和安置
1) 晶体的挑选 必须选择在同一晶核上长成的单晶体。能够 满足单晶结构分析的晶体,须达到如下标准:
a)单晶的外貌 品质好的晶体,应该外形规整,有光泽的表面, 颜色和透明度一致,没有裂缝和瑕疵。
应该是一个完整的个体,不应有小卫星晶体 或微晶粉末附着。 不是孪晶。
b)单晶的大小
大小是一个重要因素。理想的尺寸取决于:晶 体的衍射能力和吸收效应程度(决定于晶体所含元 素的种类和数量);所用射线的强度和探测器的灵 敏度(仪器的配臵)
晶体的安置方法
a
b
c
d
a 将晶体粘在玻璃毛上的正确做法 b 将晶体上包上一层胶等保护晶体 c 将晶体装在密封的毛细玻璃管中 d 将晶体粘在玻璃毛上的不正确做法
二 用SHELXTL程序进行结构分析
一) SHELXTL文件 1. 文件名 一般,同一结构,所有文件都用相同的名 (不能超过8个字符),只是扩展名不同 2. 两个必要文件(由XPREP程序产生) *.hkl文件: 所有的衍射点,每一点一行。 格式为:h k l F2 σ (F2)
微观结构除了一定的周期性外,还 有一定的对称性。
各种可能的微观对称元素和Bravais 点阵类型组合产生微观对称类型共有230 种,称230空间群。
这些类型在宏观外形和性质上表现 的宏观对称性称为点群,一共32种。 从对称划分,晶体分属七大类:三 斜、单斜、正交、四方、三方、六方、 立方等
2.Miller指数(晶面指标)
原子类型
命 令 区
DFIX 1.43 0.02 o5 c27 WGHT 0.074900 1.631200 FVAR 0.169240 TEMP 25
原子表 命 坐标、占有率、温度因子 令 区
Co1 5 0.639436 0.182296 0.778299 11.000000 0.037950 = 0.043120 0.052330 -0.002120 0.007180 -0.002370 Co2 5 0.132299 0.088237 0.782543 11.000000 0.061270 = 0.080610 0.082660 -0.004140 0.011300 0.005080 N1 3 0.816545 0.181404 0.857527 11.000000 0.048210= 0.044720 0.042580 -0.001460 0.010450 -0.001390 N2 3 0.641818 0.098803 0.864065 11.000000 0.055810 = 0.050870 0.070080 0.000700 0.013560 -0.009990 …………………………………………………………………. HKLF 4 衍射点文件类型 END
-4 4 2 -2 -2 2 21.189 19.539 3.050 2.120
-4 -2 -2 17.129
2.710
…………………………………..
*.ins 文件:组成上可分成五部分 标题 XP2(1)/c 光波长 空间群 TITL 041203e in
晶胞参数 信 息 区
CELL 0.71073 11.5870 19.3080 17.2144 90.000 108.471 90.000 晶格类型 ZERR 4.00 0.0069 0.0112 0.0102 0.000 0.009 0.000 对称操作码 LATT 1 单胞中 SYMM -X, 0.5+Y, 0.5-Z 单胞中 分子数目 SFAC C H N O Co S 原子数目 晶胞参数的标 准偏差 UNIT 108 104 40 20 8 16 SIZE 0.47 0.43 0.35 HTAB 2 L.S. 8 ACTA 可输入各种让XS和XL执行的命令 BOND FMAP 2 PLAN 20
单晶为一个空间点阵所贯穿的晶体
晶体最基本的特征在于其内部结构排列有 严格的规律性,即结构中分子、原子的排列存 在一定的周期性和对称性。周期性排列的最小 单位称为晶胞,晶胞有两个要素:
一是晶胞的大小和形状,由晶胞参数a、b、 c、α、β、γ规定; 二是晶胞内各个原子的坐标位臵,由原子 坐标参数x、y、z规定,晶体学上的坐标系均采 用右手定则,X、Y、Z轴分别平行于单位向量a、 b、c,晶胞参数为单位。
光源所带的准直器的内径决定了X射线强度一致 区域的大小,晶体的尺寸一般不能超过准直器的内 径(常用的为0.5~0.6mm)。对于CCD,晶体合适的 尺寸是:纯有机物0.3~0.7mm,金属配合物或金属有 机物0.15~0.5mm,纯无机物0.1~0.3mm 要选三个方向尺寸相近的(否则对衍射的吸收 有差别),过大的可以用解剖刀切割,切割时要用 惰性油或凡士林 一般说,球形优于立方形,优于针状,优于扁 平形。 2) 晶体的安置 通常也叫粘晶体,安置前一般最好先要观察其 是否稳定。首先,将晶体用胶液粘在玻璃毛上:
2. 结构的解析 1) 结构解析的基本原理 XS用直接法或Patterson法解决相角问题,试验 性找出部分原子或重原子的位置(坐标) * 所谓直接法(direct methods),就是运用数 学的方法,利用不同衍射点的关系,从大量强度数据 中,直接找出各个衍射点的相角,从而达到解析晶体 结构的目的。其过程概括如下:
不计算指定原子对的键长、键角 全比例系数 限制H原子在理想位置上 衍射数据的格式 计算氢键
指令 ISOR L.S. LATT
含 义 限制指定原子的位移参数类似于各向同性 指定XL中用最小二乘法进行精修的轮数 晶格的类型.依次为:P I R F A B C,无心为负值
MOVE 移动或转换坐标 MPLA 计算平面 OMIT PART PLAN SFAC SIMU SIZE 忽略指定的衍射点或限定theta角范围 划分成键原子的范围(用于无序结构) 计算和列出Q峰的数目 晶体中存在的原子的种类 限制指定范围内的原子有相近的位移参数 晶体的大小
指令 END EQIV ESEL EXTI EXYZ FLAT FMAP FREE FVAR HFIX HKLF HTAB


指令输入结束 提供分子内或分子间键合原子的对称操作码 限制E值的下、上限 对晶体消光效应参数进行精修 让两个或多个原子具有相同的坐标 限制指定原子在相同的平面上 所计算Fourier图的类型
记录xs、xl、refine过程和结果的文件
XP中做的图形文件
晶体学信息文件
结构因子文件
记录仪器型号、晶体外观等的文件
SHELXTL的主要子程序和文件
XS XPREP
XP
*.plt *.sav *.ps
*.hkl
*.ins
*.res
*.pcf XCIF
XL
XSHELL *.cif *.fcf
*.lst
2d(hkl)sinθ(hkl)=λ
或: sinθ(hkl) =λ/2· 1/ d(hkl)
单晶X射线衍射线的强度 晶体对X射线的衍射主要源于原子 核外的电子对X射线的相干散射。原子 序数不同,核外电子数不同,衍射能力 有差别;原子的分布和位臵不同,相干 散射的结果也不同。因此衍射的强度中 蕴藏着晶体中所含原子种类、数量以及 分布的有关信息。
4. 单晶的培养
晶体的生长和质量主要依赖于晶核形成 和生长的速率
晶核形成的快就会形成大量微晶,并易出现 晶体团聚
生长的速率太快会引起晶体出现缺陷
为了避免这两个问题常需“摸索”和“运气”
1) 溶液里晶体的生长
最常用的方法: 冷却或蒸发化合物的饱和溶液
要点:缓慢结晶、不能让溶剂完全挥发
措施: 干净光滑的器皿
*.tex
二) 常用的XS和XL指令 指令 含 义 ACTA 产生cif文件 AFIX 将原子坐标强制性地固定在指定位臵上, 或在指定位臵上产生原子 ANIS 将各向同性换成各向异性精修 BOND 计算键长、键角(加$H包括H的键长、键角) BIND 计算指定原子对的键长、键角 CONF 计算扭转角 DELU 限制指定原子间键长的标准偏差 DFIX 限定指定原子对间的距离 EADP 给两个或多个原子指定相同的位移参数
1)在点阵中任意三个不共线的点阵点可画一点 阵平面。通过全部点阵点的一族平行的点阵面,是 c 一组等间距、相同的平面 2)离原点最近的平面 点阵,在三个轴上的截距 分别为a/h、b/k、c/l,h、 k、l为互质的整数,则 (hkl)称为这一族平面点 阵的指标,也称为Miller a 指数 3)Miller指数为(hkl)的一族平面点阵,包 含了点阵中全部点阵点,相邻的两平面间的距离 为d(hkl)
若以(hkl)代表晶体的一簇平面点阵的指标, d(hkl)是这簇平面点阵中相邻两个平面之间的距 离。入射的X射线与这簇平面点阵的夹角 θ(nhnknl)满足下面布拉格公式,就可产生衍射:
2d(hkl)sinθ(nhnknl)=nλ
式中:n为整数,又叫衍射级数。式中nhnknl常用hkl 表示,hkl称为衍射指标。它和平面点阵指标是整数 倍关系。对于每一套指标为hkl、间隔为d 的晶格平面, 其衍射角和衍射级数n直接对应。不同n值对应的衍射 点可以看成晶面距离不同的晶面的衍射,例如,hkl 晶面在n=2时的衍射和2h2k2l晶面在n=1时的衍射点等 同。这样Bragg方程可以简化重排成下式,这样每个 衍射点可以唯一地用一个hkl来标记 :
相关文档
最新文档