活性污泥法工艺解析
全面解析活性污泥法工艺的原理

全面解析活性污泥法工艺的原理展开全文◆ ◆ ◆一、活性污泥的形态、组成与性能指标1.活性污泥法工艺活性污泥法工艺是一种应用最广泛的废水好氧生化处理技术,其主要由曝气池、二次沉淀池、曝气系统以及污泥回流系统等组成(图2-5-1)。
废水经初次沉淀池后与二次沉淀池底部回流的活性污泥同时进入曝气池,通过曝气,活性污泥呈悬浮状态,并与废水充分接触。
废水中的悬浮固体和胶状物质被活性污泥吸附,而废水中的可溶性有机物被活性污泥中的微生物用作自身繁殖的营养,代谢转化为生物细胞,并氧化成为最终产物(主要是CO2)。
非溶解性有机物需先转化成溶解性有机物,而后才被代谢和利用。
废水由此得到净化。
净化后废水与活性污泥在二次沉淀池内进行分离,上层出水排放;分离浓缩后的污泥一部分返回曝气池,以保证曝气池内保持一定浓度的活性污泥,其余为剩余污泥,由系统排出。
2.活性污泥的形态和组成活性污泥通常为黄褐色(有时呈铁红色)絮绒状颗粒,也称为“菌胶团”或“生物絮凝体”,其直径一般为0.02~2mm;含水率一般为99.2%~99.8%,密度因含水率不同而异,一般为1.002~1.006g/m3;活性污泥具有较大的比表面积,一般为20~100cm2/mL。
活性污泥由有机物及无机物两部分组成,组成比例因污泥性质的不同而异。
例如,城市污水处理系统中的活性污泥,其有机成分占75%~85%,无机成分仅占15%~25%。
活性污泥中有机成分主要由生长在活性污泥中的微生物组成,这些微生物群体构成了一个相对稳定的生态系统和食物链(如图2-5-2所示),其中以各种细菌及原生动物为主,也存在着真菌、放线菌、酵母菌以及轮虫等后生动物。
在活性污泥上还吸附着被处理的废水中所含有的有机和无机固体物质,在有机固体物质中包括某些惰性的难以被细菌降解的物质。
3.活性污泥的性能指标(1) 污泥浓度指标混合液悬浮固体浓度(MLSS),也称为“混合液污泥浓度”,表示活性污泥在曝气池混合液中的浓度,其单位为mg/L或kg/m3。
常见污水处理工艺原理优缺点及处理效率对比

常见污水处理工艺原理优缺点及处理效率对比1. 活性污泥法活性污泥法是一种常见的生物污水处理工艺,其主要工作原理是通过加入活性污泥来降解有机污染物。
活性污泥中的微生物能够将有机物分解为水和二氧化碳。
这种工艺的优点是处理效率高,能够有效降解有机污染物,处理后的污水水质较好。
然而,活性污泥法对进水中的悬浮物和沉淀物要求较高,处理过程中需要加入氧气来促进微生物的活动,这导致了能耗较高。
同时,活性污泥法对进水中的高浓度物质(如油脂、重金属等)的处理效果较差。
2. 厌氧消化法厌氧消化法是一种利用微生物将有机物质分解为沼气的污水处理工艺。
这种工艺的主要优点是能够同时处理有机物和污泥,并产生可再利用的沼气。
厌氧消化法适用于处理高浓度有机污水,对油脂、悬浮物等物质的处理效果较好。
然而,厌氧消化法处理效率相对较低,处理过程中需要控制好温度、进水浓度等因素,同时产生的沼气需要进行处理和利用,否则会对环境造成污染。
3. 膜法膜法是一种利用膜过滤和渗透的污水处理工艺。
膜法可以分为微滤、超滤、纳滤和反滤四种不同类型的膜。
膜法的优点是能够有效去除污水中的悬浮物、胶体物质和微生物等,处理后的水质较好。
同时,膜法不需要加入化学药剂,对环境友好。
然而,膜法的劣势是易受膜污染和膜堵塞的影响,需要定期进行清洗和维护,同时成本较高。
4. 气浮法气浮法是利用气泡的浮力将污水中的微小悬浮物和沉淀物上浮分离的工艺。
气浮法的主要优点是处理效率高,能够有效去除污水中的悬浮物和油脂等。
同时,气浮法对进水水质要求较低,适用于处理高浓度有机污水。
然而,气浮法的劣势是对气泡的生成和控制要求较高,同时处理后的浮渣需要进行后续处理。
5. 化学法化学法是利用化学反应来去除污水中的有机物和无机物的工艺。
常见的化学法包括氧化还原法、沉淀法和吸附法等。
化学法的优点是处理效果较好,能够同时去除有机污染物和重金属等物质。
同时,化学法适用性较广,对进水水质要求相对较低。
然而,化学法对药剂的投加和控制要求较高,处理过程中产生的废液需要进行后续处理。
污水处理 活性污泥法

污水处理活性污泥法活性污泥法是目前常用的污水处理方法之一,通过调节污水中的氧化还原电位、溶解氧浓度、污泥的混合活性等参数,从而促进有机物的降解和去除。
本文将详细介绍污水处理中的活性污泥法的原理、工艺流程、运行要点等内容。
一、原理活性污泥法是利用厌氧和好氧微生物的协同作用,将有机物降解为无机物的过程。
在好氧条件下,厌氧微生物通过氧化有机物、硝化硝酸盐等反应,将有机物转化为无机物。
而在厌氧条件下,好氧微生物通过还原反应,使带有氧的无机物还原为有机物。
二、工艺流程1、前处理:包括进水调节和初级过滤等步骤,目的是去除大颗粒杂质、调整污水的水质和水量。
2、活性污泥处理:将经过前处理的污水引入活性污泥池。
通过不断的搅拌、曝气等方式,促进污水中的有机物降解。
3、沉淀池处理:活性污泥法中产生的混合液经过一段时间的静置,使污泥与水分离,沉淀至池底。
4、出水处理:经过沉淀后的清水从上方取出,经过二次过滤和消毒等步骤,最终实现出水的净化和回用。
三、运行要点1、污水处理设备的维护保养:定期清理设备及管道,确保正常运行和通畅。
2、活性污泥的管理:控制进水水量和水质,根据实际情况调整搅拌和曝气的方式和参数。
3、污泥的处理和回用:及时清理沉淀池中的污泥,可以通过浓缩、脱水等方式处理后用于农田肥料或填埋。
4、出水水质的监测与控制:监测出水的COD、氨氮、总磷等指标,根据环保要求进行调整和控制。
附件:1、活性污泥处理工艺流程图2、活性污泥法相关设备的使用说明书法律名词及注释:1、污水处理:指对废水进行预处理和精处理,以达到排放排放标准或再利用的要求。
2、活性污泥:一种富含微生物的混合物,能够有效降解污水中的有机物。
3、厌氧:生物在缺氧或无氧条件下生长和代谢的过程。
活性污泥法各种工艺总结,看完果断收藏了!

活性污泥法各种工艺总结,看完果断收藏了!1、缺氧——好氧(A1/O)当仅需要脱氮时,宜采用A1/O法,当污水经预处理和一级处理后,首先进入缺氧池中,利用氨化菌将污水中的有机氮转化为NH3—N,与原污水中的NH3—N一并进入好氧池,在好氧池中,除与常规活性污泥法一样对含碳有机物进行氧化外,在事宜的条件下,利用亚硝化菌及硝化菌,将污水中的NH3¬N硝化生成—N ,为了达到污水脱氮的目的,好氧池中硝化混合液通过内循环回流到缺氧池,利用源污水中的有机碳作为电子供体进行反硝化将—N 还原成N2。
缺氧池设在好样池之前,当水中碱度不足时,由于反硝化可以增加碱度,因此可以补偿硝化过程中对碱度的消耗。
1.1 基本原理污水在好氧条件下是含氮有机物被细菌分解为氨,然后在好氧自养型亚硝化细菌的作用下进一步转化为亚硝酸盐,再经好氧自养型硝化细菌作用转化为硝酸盐,至此完成硝化反应;在缺氧条件下,兼性异养细菌利用或部分利用污水中的有机碳源为电子供体,以硝酸盐替代分子氧作电子受体,进行无氧呼吸,分解有机质,同时,将硝酸盐中氮还原成气态氮,至此完成了反硝化反应。
A1/O工艺不但能取得比较满意的脱氮效果,而且通过上述缺氧——好氧循环操作,同样可取的高的COD和BOD的去除率。
1.2 工艺特点(1) A1/O 工艺同时去除有机物和氮,流程简单,构筑物少,只有一个污泥回流系统和混合液回流系统,节省基建费用。
(2)反硝化缺氧池一般无需外加有机碳源,降低了运行费用。
(3)因为好氧池在缺氧池后,可使反硝化残留的有机物得到进一步去除,提高出水水质。
(4)缺氧池中污水的有机物被反硝化菌所利用,减轻了其他好氧池的有机负荷,同时缺氧池中反硝化产生的碱度可补充好氧池中硝化所需的碱度。
(5)脱氮效率较高,一般氮的去除率约为(60~85)%2、A2/O 厌氧——好氧当仅需除磷时,宜采用A2/O 工艺,在去除污水中的磷,整个流程由沉砂池、厌氧池、好氧池和二沉池组成。
10种污水处理工艺

10种污水处理工艺污水处理是保护环境、维护人类健康的重要工作。
随着城市化进程的加快和工业化的发展,污水处理工艺也在不断创新和完善。
本文将介绍10种常见的污水处理工艺,包括生物处理工艺、物理处理工艺和化学处理工艺等。
1. 活性污泥法活性污泥法是一种常见的生物处理工艺,通过在容器中培养活性污泥来分解有机物质。
污水经过初级处理后,进入活性污泥池,活性污泥中的微生物会分解有机物质,并将其转化为二氧化碳和水。
该工艺处理效果好,适用于处理有机污水。
2. 厌氧消化法厌氧消化法是一种利用厌氧菌分解有机物质的处理工艺。
污水经过初级处理后,进入厌氧消化池,在无氧环境下,厌氧菌会分解有机物质产生沼气和有机肥料。
该工艺适用于处理含有高浓度有机物质的污水。
3. 植物湿地法植物湿地法是一种利用湿地植物和微生物处理污水的工艺。
污水经过初级处理后,进入植物湿地,湿地植物和微生物会吸收和分解污水中的有机物质和营养物质。
该工艺具有景观效果好、运行成本低的特点,适用于处理低浓度有机物质的污水。
4. 活性炭吸附法活性炭吸附法是一种利用活性炭吸附有机物质的物理处理工艺。
污水经过初级处理后,进入活性炭吸附池,活性炭会吸附污水中的有机物质和重金属等污染物。
该工艺适用于处理有机物质浓度较低、含重金属的污水。
5. 膜分离法膜分离法是一种利用膜的选择性通透性分离污水中的物质的物理处理工艺。
常见的膜分离工艺包括微滤、超滤和反渗透等。
该工艺可以有效去除悬浮物、胶体、细菌和病毒等污染物,适用于处理高浓度有机物质和海水淡化等。
6. 氧化法氧化法是一种利用氧化剂氧化污水中的有机物质的化学处理工艺。
常见的氧化剂有臭氧、过氧化氢等。
该工艺可以高效去除难降解有机物质和色度等,适用于处理工业废水和高浓度有机物质的污水。
7. 离子交换法离子交换法是一种利用离子交换树脂去除污水中的离子的化学处理工艺。
离子交换树脂具有选择性吸附离子的特点,可以去除污水中的重金属离子和硝酸盐等。
活性污泥法工艺流程

活性污泥法工艺流程活性污泥法是一种常见的污水处理工艺,用途广泛,能够有效地去除废水中的有机物、氮、磷等污染物。
下面将介绍活性污泥法的工艺流程。
活性污泥法的工艺流程主要包括污水处理、生物反应器处理和二沉池沉淀三个步骤。
首先是污水处理阶段。
原污水经过预处理后,进入到生物反应器。
预处理包括去除大颗粒物、沉淀物和油脂等,可以通过格栅过滤、沉淀池等设备完成。
经过预处理的污水进入生物活性污泥处理系统。
生物反应器是活性污泥法的核心部分。
在反应器中,将活性污泥与污水充分混合。
活性污泥是一种富含细菌和其他微生物的混合物,其中的微生物可以以有机物为食物,通过生物降解将其转化为无害物质。
在反应器中,污水中的有机物通过微生物的代谢和降解作用,被转化为二氧化碳和水等无害物质。
同时,微生物中的吸附作用也可以去除废水中的重金属离子等其他污染物。
整个反应过程需要控制氧气供应、温度、pH值等参数,以保证微生物的正常生长和活性。
最后是二沉池沉淀阶段。
经过生物反应器处理的污水会进入二沉池,通过静置的方式,使沉淀剂和污泥充分接触,利用重力沉淀原理,使污泥沉降到底部。
上层清水则通过泄流的方式排出。
沉淀的污泥可以通过连续流出或间歇流出的方式排出系统,经过后续处理对排出的污泥进行脱水、干化等处置。
值得注意的是,活性污泥法工艺流程中的每个环节都需要对工艺参数进行严格的监控和调节,以确保系统的稳定运行和水质的达标排放。
其中,反应器的温度、水质、氧气供应等参数的控制是非常关键的。
此外,定期对污泥进行抽样分析,对微生物种群和活性进行监测,通过适当的调整和补充,保持良好的生物降解能力。
同时,对沉淀池的沉淀效果进行检测和评估,及时清理和疏通,防止污泥淤积和溢流造成的系统故障。
总之,活性污泥法是一种成熟有效的污水处理工艺。
通过科学的工艺流程和严格的监控控制,可以高效地去除废水中的污染物,实现水环境的保护和回收利用。
活性污泥法处理工艺12种方法分析

活性污泥法处理工艺12种方法分析1.均质好氧处理:将废水和污泥充分混合,提高废水中的氧气浓度。
这种方法适用于高浓度有机污染物的处理,但需要消耗大量的能源。
2.好氧/厌氧处理:将废水先在好氧条件下处理,然后在厌氧条件下处理。
好氧处理可降解大部分有机物,厌氧处理可进一步降解残余有机物。
这种方法适用于高浓度有机污染物和难降解有机污染物的处理。
3.好氧/好氧处理:将废水先在好氧条件下处理,然后在另一个好氧环境中进行处理。
这种方法适用于高浓度有机污染物和有机物质的处理,可以提高废水的处理效果。
4. 上流anaerobic/好氧处理:将废水先在厌氧条件下处理,然后在好氧条件下处理。
这种方法适用于高浓度有机污染物和难降解有机污染物的处理。
5.小区间好氧处理:将废水分成几个小区间进行好氧处理,可以减少废水中的应激反应,提高废水的处理效果。
6.好氧/厌氧/好氧处理:将废水依次在好氧、厌氧和好氧条件下处理,可以提高废水的处理效果,适用于高浓度有机污染物和难降解有机污染物的处理。
7.好氧/造粒处理:通过维持污泥中的菌群结构,形成颗粒状的污泥,提高废水中有机物的去除效率。
这种方法适用于高浓度有机污染物的处理。
8.外加剂处理:向废水中加入外加剂,如营养物质、微生物、酶等,以促进有机物的降解。
这种方法适用于难降解有机污染物的处理。
9.温度控制处理:控制废水处理过程中的温度,可以提高废水中有机物的去除效率。
这种方法适用于低温条件下的废水处理。
10.进水调节处理:对进水中的COD/N/P比例进行调节,可以改善废水处理的效果,提高污泥的活性。
11.吸附填料处理:在活性污泥法中加入吸附填料,如生物膜或生物滤料,可以提高废水中有机物的降解效率。
12.气浮技术处理:将废水中的浮性物质通过气浮的方式分离,可以提高废水的处理效果。
这种方法适用于废水中的悬浮物较多的情况。
综上所述,活性污泥法的12种处理方法各有优劣,可以根据不同废水的特性和处理需求选择适合的方法进行处理。
序批式活性污泥法(SBR)工艺介绍

序批式活性污泥法(SBR)工艺介绍1、SBR工艺介绍序批式活性污泥法,又称间歇式活性污泥法。
污水在反应池中按序列、间歇进入每个反应工序,即流入、反应、沉淀、排放和闲置五个工序。
2、SBR的工作过程SBR工作过程是:在较短的时间内把污水加入到反应器中,并在反应器充满水后开始曝气,污水里的有机物通过生物降解达到排故要求后停止曝气,沉淀一定时间将上清液排出。
上述过程可概括为:短时间进水-曝气反应-沉淀-短时间排水-进入下个工作周期,也可称为进水阶段-加入底物、反应阶段-底物降解、沉淀阶段-固液分离、排水阶段-排上清液和待机阶段-活性恢复五个阶段。
(1)进水阶段进水阶段指从向反应器开始进水至到达反应器最大容积时的一段时间。
进水阶段所用时间需根据实际排水情况和设备条件确定。
在进水阶段,曝气池在一定程度上起到均衡污水水质、水量的作用,因而,阳R对水质、水量的波动有一定的适应性。
在此期间可分为三种情况:曝气(好氧反应)、搅拌(厌氧反应)及静置。
在曝气的情况下有机物在进水过程中已经开始被大量氧化,在搅拌的情况下则抑制好氧反应。
对应这三种方式就是非限制曝气、半限制曝气和限制曝气。
运行时可根据不同微生物的生长特点、废水的特性和要达到的处理目标,采用非限制曝气、半限制曝气和限制曝气方式进水。
通过控制进水阶段的环境,就实现了在反应器不变的情况下完成多种处理功能。
而连续流中由于各构筑物和水泵的大小规格已定,改变反应时间和反应条件是困难的。
(2)反应阶段是SBR主要的阶段,污染物在此阶段通过微生物的降解作用得以去除。
根据污水处理的要求的不同,如仅去陈有机碳或同时脱氯陈磷等,可调整相应的技术参数,并可根据原水水质及排放标准具体情况确定反应阶段的时间及是否采用连续曝气的方式。
(3)沉淀阶段沉淀的目的是固液分离,相当于传统活性污泥法的二次沉淀他的功能。
停止曝气和搅拌,使混合液处于静止状态,完成泥水分离,静态沉淀的效果良好。
经过沉淀后分离出的上清液即可排放,沉淀的目的是固液分离,污泥絮体和上清液分离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
缺点
1).自动化控制要求高:如进水、排水、排泥的自控; 2).对排水设备要求高:由于排水时间短(间歇排水时), 并且排水时要求不搅动沉淀污泥层,因而需要专门的 排水设备(滗水器),且对滗水器的要求很高; 3).后处理设备要求大:如消毒设备很大,接触池容积 也很大,排水设施如排水管道也很大; 4).总扬程增加:滗水深度一般为1~2m,这部分水 头损失被白白浪费,增加了总扬程; 5).由于不设初沉淀,易产生浮渣,浮渣问题尚未妥善 解决;
和排水阶段污水的流入,会引起活性污泥上浮或与处理 水相混合,所以可能使处理水质变差。
16
4.传统的SBR的演变工艺
传统的SBR在应用中有一定的局限性,如在进水流 量较大时,对反应系统需调节,会增大投资。为了进 一步提高出水水质,出现了许多SBR演变工艺。
CASS 工艺 ICEAS工艺 IDEA工艺 DAT-IAT工艺 UNITANK工艺 MSBR工艺
进水
反应 沉淀 排水 SBR 运行工序图
闲置
3
进水期(fill)
进水期是反应器接受废水的过程,这个 过程不仅仅是废水的流入与反应器水位的 升高的过程,而且伴随一定的生化反应 (磷的释放)。
4
反应期(react)
当进水达到设定的液位后,开始曝气 和搅拌,以达到反应目的(去除BOD、硝化、 脱氮除磷)。
序批式活性污泥法(SBR)
SBR工艺即序批式活性污泥法(Sequencing Batch Reactor Activated Sludge Process,简写为SBR), 又称为间歇式活性污泥法,由于在运行中采用间接操作的形 式,每一个反应池是一批批地处理废水,因此而得名。
70年代末期美国教授R.L.Irvine等人为解决连续污水处理 法存在的一些问题首次提出,并于1979年发表了第一篇关于 采用SBR 工艺进行污水处理的论著。继后, 日本、美国、澳 大利亚等国的技术人员陆续进行了大量的研究。
SBR 工艺在时间序列上提供了缺氧、 厌氧和好氧的环境条件, 使缺氧条件下实 现反硝化, 厌氧条件下实现磷的释放和好 氧条件下的硝化及磷的过量摄取, 从而有 效的脱氮除磷。
12
5)、有效防止污泥膨胀; 由于SBR具有理想推流式特点,有机物浓
度存ቤተ መጻሕፍቲ ባይዱ较大的浓度梯度,有利于菌胶团细菌 的繁殖,抑制丝状菌的生长,另外,反应器 内缺氧好氧的变化以及较短的污泥龄也是抑 制丝状菌的生长的因素,从而有效地防止污 泥膨胀。 6)、耐冲击负荷 ;
5
沉淀期(settle)
沉淀期主要是一个固液分离的过程,即 经过曝气和搅拌作用后,混合液中的污泥 颗粒和絮体在重力的作用下沉降,实现污 泥和废水的分离过程。
6
排水期(draw)
排水期是排除反应器中的上清液的过程,上 清液由反应器上部的滗水器排出。该期间的水位 是处理周期内的最低水位。反应器底部沉降的活 性污泥大部分作为下一周期使用,而过剩的剩余 污泥则从排泥管引出排放。另外反应器中还会留 有一部分的处理水,可起到循环水和稀释水的作 用
14
3.SBR法的分类
(1) 按进水方式分 按进水方式可分为间歇进水式和连续进水式,如图所示。
间歇进水
连续进水
15
不同进水方式的特点:
间隙进水方式: 由于沉淀阶段和排水阶段不进水,所以较易保证出
水的水质,但需几个反应池组合起来运行,以处理连续 流入污水处理厂的进水。
连续进水方式: 虽可采用一池连续地处理废水,但由于在沉淀阶段
9
2、SBR工艺的特点
SBR法最显著的一个特点是将反应和沉 淀两道工序放在同一反应器中进行,扩大 了反应器的功能,SBR 是一个间歇运行的 污水处理工艺, 运行时期的有序性, 使它 具有不同于传统连续流活性污泥法的一些 特性。
10
优点
1)、流程简单, 运行费用低;
SBR法的工艺简单, 便于自动控制,其主要设备 就是一个具有曝气和沉淀功能的反应器, 无需连续 流活性污泥法的二沉池和污泥回流装置, 在大多数 情况下可以省去调节池和初沉池, 系统构筑物小, 流程简单, 占地面积小、管理方便, 投资省, 运行 费用低。
17
CASS(CAST/CASP)工艺 (Cyclic Activated Sludge System
/Technology/Process)
该工艺又称为循环式活性污泥法,,它是利用不 同微生物在不同的负荷条件下生长速率差异和污水 生物除磷脱氮机理,将生物选择器与传统SBR反应 器相结合的产物。CASS工艺为间歇式或连续式生物 反应器,在此反应器中进行交替的曝气-非曝气过 程的不断重复,将生物反应过程和泥水分离过程结 合在一个池子中完成。
1
1、SBR工艺的工作原理
SBR是活性污泥法的一种变形,它的反应机理 和污染物去除机制和传统活性污泥法相同,只是 在运行操作不同。SBR是在单一的反应器内, 在时 间上进行各种目的的不同操作, 故称之为时间序 列上的废水处理工艺,它集调节池、曝气池、沉 淀池为一体, 不需设污泥回流系统。
2
SBR工艺的一个完整操作周期有五个阶段: 进水期(fill)、反应期(react)、沉淀期 (settle)、排水期(draw) 和闲置期(idle)
7
8
闲置期(idle )
闲置期是在一个处理周期内从排水结束时刻起 到下一个周期开始进水的时刻的中间的一段时间。 同时伴随少量的厌氧反应和脱氮过程。在此期间 活性污泥中的微生物得到充分的休息,恢复活性。 为了尽可能保证污泥活性并防止污泥老化现象, 还需定期排放剩余污泥,为新鲜污泥提供足够的 空间生长繁殖。
2)、固液分离效果好,出水水质好; SBR 在沉淀时属于理想的静止沉淀,固液分离
效果好, 容易获得澄清的出水。剩余污泥含水率低, 这为后续污泥的处置提供了良好的条件。
11
3)、运行操作灵活,效果稳定; SBR 在运行操作过程中, 可以根据废
水水量水质的变化、出水水质的要求调整 一个运行周期中各个工序的运行时间、反 应器内混合液容积的变化和运行状态。 4)、脱氮除磷效果好;
18
CASS反应器由3个区域组成:生物选择区、兼 氧区和主反应器,每个区的容积比为1:5:30。污水 首先进入选择区,与来自主反应器的混合液(20 %~30%)混合,经过厌氧反应后进入主反应区, 如下图所示 。