2014年数学二真题及答案解析

合集下载

2014年山东专升本(数学)真题试卷(题后含答案及解析)

2014年山东专升本(数学)真题试卷(题后含答案及解析)

2014年山东专升本(数学)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题 4. 综合题 5. 证明题一、选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.函数y=的定义域为( )。

A.m(-∞,-2]∪[3,+∞)B.[-3,6]C.[-2,3]D.[-3,-2]∪[3,6]正确答案:D解析:(用试探法解即可)2.下列各组中,两个函数为同一函数的组是( )。

A.f(x)=lgx+lg(x+1),g(x)=lg[x(x+1)]B.y=f(x),g(x)=fC.f(x)=?1-x?+1,g(x)=D.正确答案:C解析:(注意两方面,定义域和对应法则)3.函数y=?xcos x?( )。

A.有界函数B.偶函数C.单调函数D.周期函数正确答案:B解析:(简单判定即可选出答案)4.直线x—1==z+8与直线的夹角为( )。

A.B.C.D.正确答案:C解析:(两直线的夹角即为两方向向量之间的夹角,取锐角)5.下列结论正确的是( )。

A.若级数均收敛,则级数(an+bn)2收敛B.若级数?anbn?收敛,则级数均收敛C.若级数an发散,则an≥D.若级数an收敛,an≥bn,则级数bn收敛正确答案:A解析:(对于选项A,因an2+bn2≥2?anbn?,且(an2+bn2)收敛,故?anbn?收敛,所以根据绝对收敛的性质,anbn也收敛,所以(an+bn)2收敛;选项B无法推出;选项C的一个反例为;选项D必须为正项级数结论才正确,一个反例为an=)二、填空题6.函数y=[x]=n,n≤x<n+1,n=0,±1,±2,……的值域为________.正确答案:{0,±1,±2,…} (或填写Z也可以,即全体整数的集合)7.设则f(x)=________.正确答案:8.=________.正确答案:0 (无穷小与有界函数的乘积仍是无穷小)9.曲线y=ln(1+ex)的渐近线为________.正确答案:y=0,y=x解析:因ln(1+e2)=0,故y=0为水平渐近线;又k==1,b=[f(x)一kx]=[ln(1+ex)-x]=[ln(1+ex)-lnex]==0,故y=X为斜渐近线.10.函数y=的间断点为________.正确答案:x=kπ,x=kπ+.三、解答题解答时应写出推理、演算步骤。

2014年辽宁省高考数学试卷真题及答案(理科)

2014年辽宁省高考数学试卷真题及答案(理科)

2014年辽宁省高考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}2.(5分)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i3.(5分)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a4.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α5.(5分)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)6.(5分)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.247.(5分)某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8﹣D.8﹣8.(5分)设等差数列{a n}的公差为d,若数列{}为递减数列,则()A.d<0 B.d>0 C.a1d<0 D.a1d>09.(5分)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增10.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.11.(5分)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3]B.[﹣6,﹣] C.[﹣6,﹣2]D.[﹣4,﹣3]12.(5分)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为()A.B.C. D.二、填空题:本大题共4小题,每小题5分。

2014年考研数学二真题及答案解析

2014年考研数学二真题及答案解析

一、选择题:1 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合题
目要求的,请将所选项前的字母填在答.题.纸.指定位置上.
1
(1) 当 x 0 时,若 ln (1 2x) ,(1 cos x) 均是比 x 高阶的无穷小,则 的取值范围是( )
(A) (2, )
()10(A)50 Nhomakorabea10
(B)
100
(C)10 10
(D) 5 10
(5)
设函数
f (x)
arctan x ,若
f
(x)
xf
(
)
,则
lim
x0
x
2 2
()
(A)1
(B) 2 3
(C) 1 2
(D) 1 3
(6) 设函数 u(x, y) 在有界闭区域 D 上连续,在 D 的内部具有 2 阶连续偏导数,且满足 2u 0 xy
()
(A) 当 f (x) 0 时, f (x) g(x) (C) 当 f (x) 0 时, f (x) g(x)
(B) 当 f (x) 0 时, f (x) g(x) (D) 当 f (x) 0 时, f (x) g(x)
(4)
曲线
x y
t2 t2
7 4t
1
上对应于
t
1的点处的曲率半径是
lim x0
1
1
1 x
2
3x2
1 3
故选 D.
(D) 1 3
()
(6) 设函数 u(x, y) 在有界闭区域 D 上连续,在 D 的内部具有 2 阶连续偏导数,且满足 2u 0 xy

2u x2

考研数学二(高等数学)历年真题试卷汇编14(题后含答案及解析)

考研数学二(高等数学)历年真题试卷汇编14(题后含答案及解析)

考研数学二(高等数学)历年真题试卷汇编14(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.等于A.∫01ln2xdxB.2∫12lnxdxC.2∫12ln(1+x)dxD.∫12ln2(1+x)dx正确答案:B解析:故应选(B).2.设F(x)是连续函数f(x)的一个原函数,“MN”表示“M的充分必要条件是N”,则必有A.F(x)是偶函数f(x)是奇函数.B.F(x)是奇函数f(x)是偶函数.C.F(x)是周期函数f(x)是周期函数.D.F(x)是单调函数f(x)是单调函数.正确答案:A解析:直接法若F(x)是连续函数f(x)的原函数,且F(x)是偶函数,则F(一x)=F(x),式两端对x求导得一F’(一x)=F(x)即一f(一x)=f(x)故f(x)为奇函数.反之,若f(x)为奇函数,则G(x)=∫0xf(t)dt是f(x)的一个原函数,又G(一x)=∫0一xf(x)dt∫0xf(u)du=G(x)则G(x)是偶函数,由于F(x)也是f(x)的原函数,则F(x)=G(x)+CF(x)亦是偶函数,故应选(A).3.设f(x)是奇函数,除x=0外处处连续,x=0是其第一类间断点,则∫0xf(t)dt 是A.连续的奇函数.B.连续的偶函数.C.在x=0间断的奇函数.D.在x=0间断的偶函数.正确答案:B解析:直接法由于f(x)是奇函数,则∫0x(t)dt是偶函数,又由于f(x)除x=0外处处连续,且x=0是其第一类间断点,则f(x)在任何一个有限区间上可积,从而∫0xf(t)出为连续函数,故应选(B).4.如图,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周,设F(x)=f∫0x(t)dt,则下列结论正确的是A.B.C.D.正确答案:C解析:根据定积分的几何意义知,也可用排除法:由定积分的几何意义知也可利用f(x)是奇函数,则F(x)=∫0xf(t)出为偶函数,从而则(A)(B)(D)均不正确,故应选(C).5.如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0xxf’(x) dx等于A.曲边梯形ABOD的面积.B.梯形ABOD的面积.C.曲边三角形ACD的面积.D.三角形ACD面积.正确答案:C解析:∫0a(x)dx=∫0af(x)=xf(x)|0a一∫0af(x)dx=af(a)一∫0af(x) dx其中af(a)应等于矩形ABOC的面积,∫0af(x)如应等于曲边梯形ABOD的面积,则∫0axf’(x)dx应等于曲边三角形ACD的面积.6.设函数y=f(x)在区间[一1,3]上的图形为则函数F(x)=∫0xf(t)dt的图形为A.B.C.D.正确答案:D解析:由题设知,当x∈(一1,0)时F’(x)=f(x),而当x∈(一1,0)时f(x)=1>0,即F’(x)>0,从而F(x)单调增,显然(A)选项是错误的,因为(A)选项中F(x)在(一1,0)中单调减.由于F(x)=∫0xf(t)dt,则F(0)=0,显然(C)选项错误.由于当x∈(2,3]时f(x)=0,则当x∈(2,3]时F(x)=∫0xf(t)dt=∫02f(t)dt+∫2xf(t)dt=∫02f(t) dt+∫2x0dt=F(2)则(B)是错误的,(D)是正确的.7.设m,n均是正整数,则反常积分的收敛性A.仅与m的取值有关.B.仅与n的取值有关.C.与m,n的取值都有关.D.与m,n的取值都无关.正确答案:D解析:故原反常积分的敛散性与m和n的取值无关.8.设则I,J,K的大小关系为A.I<J<K.B.I<K<J.C.J<I<K.D.K<J<I.正确答案:B解析:当x∈(0,)时,sinx<cosx<1<cotx,而lnx为单调增的函数,则lnsinx <lncosx <lncotx x∈故应选(B).填空题9.=________.正确答案:解析:10.设函数f(x)=在x=0处连续,则a=________.正确答案:解析:由于f(x)在x=0处连续,则f(x)=a,而11.广义积分=________.正确答案:解析:12.∫01e一xsinnxdx=________.正确答案:0.解析:13.已知∫一∞+∞ek|x|dx=1,则k=________.正确答案:一2.解析:1=∫一∞+∞ek|x| dx=2∫0+∞ekxdx=,(k<0)k=一2.14.当0≤θ≤π时,对数螺线r=eθ的弧长为________.正确答案:(eπ一1).解析:所求弧长为解答题解答应写出文字说明、证明过程或演算步骤。

2014年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2} 2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.54.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.15.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.456.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.78.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.39.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.210.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】根据复数的几何意义求出z2,即可得到结论.【解答】解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A.【点评】本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1【考点】HR:余弦定理.【专题】56:三角函数的求值.【分析】利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.【解答】解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.【点评】此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3【考点】6H:利用导数研究曲线上某点切线方程.【专题】52:导数的概念及应用.【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:,∴y′(0)=a﹣1=2,∴a=3.故选:D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.2【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B 两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.【解答】解:由y2=2px,得2p=3,p=,则F(,0).∴过A,B的直线方程为y=(x﹣),即x=y+.联立,得4y2﹣12y﹣9=0.设A(x1,y1),B(x2,y2),则y 1+y 2=3,y 1y 2=﹣.∴S△OAB =S △OAF +S△OFB =×|y 1﹣y 2|==×=.故选:D .【点评】本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成角的余弦值为( ) A .B .C .D .【考点】LM :异面直线及其所成的角.【专题】5F :空间位置关系与距离.【分析】画出图形,找出BM 与AN 所成角的平面角,利用解三角形求出BM 与AN 所成角的余弦值.【解答】解:直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,如图:BC 的中点为O ,连结ON ,,则MN0B 是平行四边形,BM 与AN 所成角就是∠ANO ,∵BC=CA=CC 1,设BC=CA=CC 1=2,∴CO=1,AO=,AN=,MB===, 在△ANO 中,由余弦定理可得:cos ∠ANO===.故选:C .【点评】本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【考点】H4:正弦函数的定义域和值域.【专题】57:三角函数的图像与性质.【分析】由题意可得,f(x0)=±,且=kπ+,k∈Z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2 >m2+3,由此求得m的取值范围.【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.【点评】本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.【解答】解:(x+a)10的展开式的通项公式为T r=•x10﹣r•a r,+1令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值.【分析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.【解答】解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos (x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.【点评】本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【考点】3N:奇偶性与单调性的综合.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1] .【考点】J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[﹣1,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【考点】87:等比数列的性质;8E:数列的求和.【专题】14:证明题;54:等差数列与等比数列.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.时,++…+<.∴对n∈N+【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(Ⅰ)由题意,=×(1+2+3+4+5+6+7)=4,=×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∴== =0.5,=﹣=4.3﹣0.5×4=2.3.∴y关于t的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【点评】本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【考点】6B:利用导数研究函数的单调性.【专题】16:压轴题;53:导数的综合应用.【分析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

2014年考研数二真题及答案解析(完整版)

2014年考研数二真题及答案解析(完整版)
时,取极小值 。
(17)【答案】
(18)【答案】
令 ,
则 ,

由 得
(19)【答案】
证明:1)因为 ,所以有定积分比较定理可知, ,即

2)令
由1)可知 ,
所以 。
由 是单调递增,可知
由因为 ,所以 , 单调递增,所以 ,得证。
(20)【答案】
因为
所以
所以
(21)【答案】
(22)【答案】① ②
(23)【答案】利用相似对角化的充要条件证明。
(9)
(10)
(11)
(12)
(13)
(14)[-2,2]
三、解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.
(15)【答案】
(16)【答案】
因为
,①
得到

, 。
所以 时,取极大值 。
时,取极小值 。由①可Fra bibliotek,,因为 ,所以 , 。
所以 时,取极大值 。
2014年全国硕士研究生入学统一考试
数学二试题答案
一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.
(1)B
(2)B
(3)D
(4)C
(5)D
(6)A
(7)B
(8)A
二、填空题:914小题,每小题4分,共24分,请将答案写在答题纸指定位置上.

2014年考研数学二真题(含解析)

2014年考研数学二真题(含解析)

2014年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合 题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1、当0x +→时,若ln (12)x α+,1(1cos )x α-均是比x 高阶的无穷小,则α的取值范围是( )(A )(2,)+∞ (B )(1,2) (C )1(,1)2 (D )1(0,)2【答案】B【考点】等价无穷小、高阶无穷小 【详解】当0x +→时,ln (12)~(2)x x αα+,1121(1cos )~2x x αα⎛⎫-⎪⎝⎭因为它们都是比x 高阶的无穷小,故12,1>>αα,即21<<α2、下列曲线中有渐近线的是( )(A )sin y x x =+ (B )2sin y x x =+ (C )1sin y x x =+ (D )21sin y x x=+ 【答案】C【考点】函数的渐近线 【详解】对于选项A , lim(sin )x x x →∞+ 不存在,因此没有水平渐近线,同理可知,选项A 没有铅直渐近线, 而sinxlimlimx x y x x x→∞→∞+=不存在,因此选项A 中的函数没有斜渐近线; 对于选项B 和D ,我们同理可知,对应的函数没有渐近线;对于C 选项,1siny x x=+.由于1sin lim lim1x x x yx x x→∞→∞+==,又()1lim 1limsin0x x y x x →∞→∞-⋅==.所以1sin y x x=+存在斜渐近线y x =.故选C.(4)设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]内( ) (A )当()0f x '≥时,()()f x g x ≥ (B )当()0f x '≥时,()()f x g x ≤ (C )当()0f x ''≥时,()()f x g x ≥ (D )当()0f x ''≥时,()()f x g x ≤ 【答案】D【考点】函数单调性的判别、函数图形的凹凸性 【详解】 【解法一】令)()()(x f x g x F -=则)()1()0()(x f f f x F '-+-='由拉格朗日中值定理知,存在)1,0(∈ξ,使得)()()01()0()1(ξξf f f f '='-=- 即0)(='ξF又因为)()(x f x F ''-=''若()0f x ''≥,则()0F x ''≤,所以)(x F '单调递减, 当(0,),()0,()x F x F x ξ'∈>单调递增, 当(,1),()0,()x F x F x ξ'∈<单调递减,又0)1(.0)0(==F F ,所以()0F x ≥,即()()f x g x ≤,故选D 【解法二】令2()f x x =,则函数()f x 具有2阶导数,且()0f x ''≥所以()(0)(1)(1)g x f x f x x =-+= 当]1,0[∈x 时,()()f x g x ≤,故选D4、曲线227,41x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是( ) (A(B(C)(D)【答案】C【考点】参数方程求导、曲率及曲率半径 【详解】2223212133222233222242222(24)8(2)2(2)3,1"1(1')(13)1(13)10t t dy dy t dt dx dx tdtt t d y t dx t t dy d y dx dx y k y R k==+==⋅-+-==∴==-∴==++∴==+==Q5、设函数()arctan f x x =,若()()f x xf ξ'=,则22limx x ξ→=( )(A )1 (B )23 (C )12(D )13【答案】D【考点】函数求导、函数求极限 【详解】2()arctan 11f x x x x ξ==+Q.2arctan arctan x xx ξ-∴=.22230arctan arctan limlimlim rctan x x x x x x xx x a x x ξ→→→--∴==⋅22222001111limlim 33(1)3x x x x x x x →→-+===+. 6、设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20ux y ∂≠∂∂及22220u ux y ∂∂+=∂∂,则( ) (A )(,)u x y 的最大值和最小值都在D 的边界上取得 (B )(,)u x y 的最大值和最小值都在D 的内部取得(C )(,)u x y 的最大值在D 的内部取得,(,)u x y 的最小值在D 的边界上取得 (D )(,)u x y 的最小值在D 的内部取得,(,)u x y 的最大值在D 的边界上取得 【答案】A【考点】二元函数极值的充分条件 【详解】因为22220u u x y ∂∂+=∂∂,故22u A x ∂=∂与22uC y∂=∂异号.又20u B x y ∂=≠∂∂, 则20AC B -<,所以函数(,)u x y 在区域D 内没有极值.又连续函数在有界闭区域内有最大值和最小值,故最大值和最小值在D 的边界点取到.7、行列式0000000ab a bcd c d=( )(A )2()ad bc - (B )2()ad bc --(C )2222a d b c - (D )2222b c a d - 【答案】B【考点】分块矩阵的行列式运算、行列式的性质、行列式按行(列)展开定理 【详解】 【解法一】132320000000000000000000000()()()a b b a b a a b a b d c c c r r c dd c a b c dc dc db a a b bc ad ad bc ad bc d c c d↔-↔=⋅=--=--故选B 【解法二】2141332320a 0000000(1)0(1)00000(1)(1)()()b a b c d c d a ba ba c dc bd c d a b a ba d cbcd c da b a b adbc c d c da b bc ad c d ad bc ++++=⨯-+⨯-=-⨯⨯--⨯⨯-=-+=-=--8、设123,,ααα为3维向量,则对任意常数,k l ,向量组1323,k l αααα++线性无关是向量组123,,ααα线性无关的( )(A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件(D )既非充分也非必要条件 【答案】A【考点】向量组的线性相关性 【详解】1231132231122123121213231323123123+k )()0++k )00+k ++k +100=0=1=0000l l k l l l αααλααλααλαλαλλαλλλλαααααααααααααα++=+=⇒==+=⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭已知,,无关设(即(从而,无关反之,若,无关,不一定有,,无关例如,,,二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. 9、12125dx x x -∞=++⎰ .【答案】π83【考点】无穷限的反常积分 【详解】()11221211125141111221()21113arctan |[()]222428dx dx x x x xd x x πππ-∞-∞-∞-∞=+++++=+++==--=⎰⎰⎰ 10、设)(x f 是周期为4的可导奇函数,且]2,0[),1(2)(∈-='x x x f ,则=)7(f【答案】1【考点】一阶微分方程、周期函数【详解】()22'2(1)[0,2]()2()(0)00()2[0,2]()4(7)(3)(1)(1)(12)1f x x x f x x x c f x f c f x x x x f x f f f f =-∈∴=-+∴=∴=∴=-∈∴==-=-=--=Q 又是奇函数的周期为11、设(,)z z x y =是由方程22274yzex y z +++=确定的函数,则11(,)22dz = . 【答案】)(21dy dx +-【考点】隐函数求偏导、全微分 【详解】221111(,)(,)222211(,)2211,022,(2)20(22)2011,221()2yzyz x y z x y z z e y x x x z z e z y y y y z z x y dz dx dy ===∂∂⎧⋅++=⎪∂∂⎪⎨∂∂⎪+++=∂∂⎪⎩∂∂=-=-∂∂=-+当时,代入方程解得方程两边对分别求偏导得,解得:故12、曲线L 的极坐标方程是r θ=,则L 在点(,)(,)22r ππθ=处的切线的直角坐标方程是 . 【答案】22ππ+-=x y【考点】参数方程求导、极坐标与直角坐标的转化、切线方程 【详解】把极坐标方程化为直角坐标方程令cos cos sin sin x r y r θθθθθθ==⎧⎨==⎩2sin cos cos sin 1022012cos 02sin 22()(0)222dy dy d dx dx d dy dxx y y x y x πθθθθθθθθθπππθθπθπθθππππ=+==-+⋅==--⋅==⎧⎪=⎨==⎪⎩-=--=-+则当时,则切线方程为:化简为: 13、一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度2()21x x x ρ=-++,则该细棒的质心坐标x = . 【答案】2011 【考点】质心坐标 【详解】质心横坐标公式:⎰⎰=b aba dxx dx x x x )()(ρρ 所以:43212123201121()(21)4320111201(21)()30x x x x x x dx x x x dx x x x -++-++===-++-++⎰⎰14、设二次型22123121323(,,)24f x x x x x ax x x x =-++的负惯性指数为1,则a 的取值范围是 .【答案】]2,2[-【考点】二次型的规范形、矩阵的特征值、配方法化二次型为标准形 【详解】 【解法一】二次型对应的系数矩阵为:O a a ≠⎪⎪⎪⎭⎫ ⎝⎛-0221001,记特征值为321,,λλλ则0011)(321=+-==++A tr λλλ,即特征值必有正有负,共3种情况; 因二次型的负惯性指数为⇔1特征值1负2正或1负1正1零;0402210012≤+-=-⇔a aa ,即]2,2[-∈a【解法二】221231213232222221133223322221323322221232(,,)2424()(2)(4)(4)140[2,2]f x x x x x ax x x x x ax x a x x x x a x x ax x x a x y y a y a a =-++=++-+-=+--+-=-+--≥∈-若负惯性指数为,则,三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. 15、(本题满分10分)求极限1212[(1)]lim1ln(1)xtx t e t dt x x→+∞--+⎰【考点】函数求极限、变限积分函数求导、等价无穷小、洛必达法则 【详解】111221221122200((1))((1))(1)1limlimlim lim (1)111ln(1)1111lim lim 22xxttxx x x x x t t t t t e t dtt e t dtx e x x e xx x x xe t e t x t t ++→+∞→+∞→+∞→+∞→→------===--+⋅---===⎰⎰令16、(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且(2)0y =,求()y x 的极大值与极小值.【考点】微分方程、函数的极值 【详解】22222222333322'1'1'1(1)(1),(1)(1)11332(2)031123331'0,11(,1),'0,(11),'0,(1+),'0,x y y y x y y y dy x dx y dy x dx y y x x c y c y y x x x y x y x y x y x y +=--∴=+∴+=-+=-∴+=-+=∴=∴+=-+-===±+∈-∞-<∈->∈∞<⎰⎰Q 积分得又 令得时函数单调递减,时函数单调递增,时函数单调递减所以函11(1)0,(1)1()1,0x x y y y x =-=-==数在时取得极小值,在时取得极大值由函数方程解得:故:的极大值是极小值是17、(本题满分10分)设平面区域{}22(,)14,0,0D x y x y x y =≤+≤≥≥,计算D.【考点】二重积分的计算、轮换对称性 【详解】积分区域D 关于y x =对称,利用轮对称行,121sin(2D D D Ddxdy ==+=⎰⎰222011221111sin()d cos()2411cos()|cos()d 44113244d r r r rd r r r r r πθππππ==-=-+=--=-⎰⎰⎰⎰18、(本题满分10分)设函数()f u 具有2阶连续导数,(cos )xz f e y =满足22222(4cos )x x z z z e y e x y∂∂+=+∂∂.若(0)0f =,(0)0f '=,求()f u 的表达式.【考点】多元函数求偏导、二阶常系数非齐次线性微分方程【详解】 令y e u xcos =xx x xx x x xx x xe u uf y e u f y e u f e y e z yzx z y e u f y e u f y z y e u f y z y e u f y e u f x z y e u f x z 222222222222222222])(4[sin )(cos )()cos 4(cos )(sin )(),sin ()(cos )(cos )(,cos )(+=⋅''+⋅''∴+=∂∂+∂∂⋅'-⋅''=∂∂-⋅'=∂∂⋅'+⋅''=∂∂⋅'=∂∂∴Θ 即:u u f u f =-'')(4)(对应的齐次微分方程的特征方程为:042=-r 解得:2,221-==r r故齐次微分方程的通解为:u u e C e C u f 2221)(-+=设b au u f +=)(*,则0)(,)(**="='u f a u f ,代入微分方程解得:0,41=-=b a ,即u u f 41)(*-= 故u e C e C u f xx 41)(2221-+=-所以uu u u e C e C u f e C e C u f 2221222144)(,4122)(--+=''--='因为(0)0f =,(0)0f '=,代入解得:161,16121-==C C所以22111()16164x x f u e e u -=--19、(本题满分10分)设函数()f x ,()g x 在区间[,]a b 上连续,且()f x 单调增加,0()1g x ≤≤. 证明:(Ⅰ)(I )a x dt t g xa-≤≤⎰)(0,],[b a x ∈;(II )⎰⎰⎰≤+badtt g a abadx x g x f dx x f )()()()(【考点】定积分中值定理、不等式的证明 【详解】(I )【解法一】因为函数)(x g 在区间],[b a 上连续,且1)(0≤≤x g . 所以⎰⎰⎰≤≤xax axadt dt t g dt 1)(0即a x dt t g x a-≤≤⎰)(0【解法二】由定积分中值定理知:存在),(b a ∈ξ,使得)()()(ξg a x dt t g xa-=⎰,又因为],[b a x ∈时1)(0≤≤x g , 所以)()()(0a x g a x -≤-≤ξ 即a x dt t g xa-≤≤⎰)(0【解法三】[][]11111222222()()()0'()()0(),()0()()'()()10()1'()0()()0,()0xaxa h x g t dth a h x g x h x x a b h x h x g t dt x ah x g x g x h x h x h a x a b h x ===≥∴∴∈≥=-+=-≤≤∴≤∴=∴∈≤⎰⎰Q 单调增加当时,单调减少,又当时,(II )令()()()()()xa xa g t dt aaF x f u g u du f u du +⎰=-⎰⎰()'()()()[()]()()[()]()I (),()()[()]'()0()0()0()()()ba xxaa x axa ba g t dt a aF x f x g x f a g t dt g x f x f a g t dt g x a g t dt a x a x f x f x f a g t dt F x F x F a F b f x g x dx f x dx+⎡⎤∴=-+⋅=-+⎢⎥⎣⎦+≤+-=∴≥+∴≥∴=∴≥⎰≥⎰⎰⎰⎰⎰⎰由()知又单调增加单调增加又()即20、(本题满分11分) 设函数()1xf x x=+,[0,1]x ∈.定义数列 1()()f x f x =,21()(())f x f f x =,L ,1()(())n n f x f f x -=,L记n S 是由曲线()n y f x =,直线1x =及x 轴所围平面图形的面积,求极限lim n n nS →∞.【考点】定积分求面积、函数求极限 【详解】1213222(),()()11()(())121112()(())13112(),[0,1]111()0(1)(1)()(0)=0()0[0,1]n n n n n xf x f x f x xxxx f x f f x x x x xxx f x f f x x x x xf x x nxnx nx f x nx nx f x f f x x ==++∴===++++∴===+++=∈++-'==>++∴∴≥∈Q Q Q 由归纳法知:单调递增,,1120021111=(1)=ln(1)1111ln(1)lim lim [ln(1)]1lim ln(1)11lim 1lim 11n n n n n x x x S dx dx n nx n nx n nn nS n n n n nx xx →∞→∞→∞→∞→∞∴=--++++=-+=-+=-=-=+⎰⎰21、(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且2(,)(1)(2)ln f y y y y y =+--.求曲线(,)0f x y =所围图形绕直线1y =-旋转所成旋转体的体积. 【考点】偏积分、隐函数、旋转体的体积 【详解】由函数(,)f x y 满足2(1)fy y∂=+∂可知:)(2),(2x y y y x f ϕ++= 又22(,)2()(1)(2)ln f y y y y y y y y ϕ=++=+-- 所以()1(2)ln y y y ϕ=--所以x x y x x y y x y y y x f ln )2()1(ln )2(12)(2),(222--+=--++=++=ϕ 令1+=y z ,则(,)0f x y =对应的曲线方程为:x x z ln )2(2-=,定义域为]2,1[则曲线(,)0f x y =所围图形绕直线1y =-旋转,即x x z ln )2(2-=绕0=z 旋转,所成的旋转体体积πππππ)452ln 2()412(ln )212()212(ln ln )2(212221221212-=⎥⎦⎤⎢⎣⎡---=-=-==⎰⎰⎰x x x x x x x xd xdxx dx z V x22、(本题满分11分)设E A ,302111104321⎪⎪⎪⎭⎫⎝⎛----=为3阶单位矩阵.(I )求方程组0=Ax 的一个基础解系; (II )求满足E AB =的所有矩阵B . 【考点】解线性方程组 【详解】1234100()011101012030011205412301021310013141100126101021310013141A E --⎛⎫ ⎪=- ⎪⎪-⎝⎭--⎛⎫ ⎪→--- ⎪ ⎪--⎝⎭-⎛⎫ ⎪→--- ⎪ ⎪---⎝⎭M M M M M M M M M M (I ) 方程组0=Ax 的同解方程组为⎪⎪⎩⎪⎪⎨⎧===-=4443424132x x x x xx x x ,即基础解系为⎪⎪⎪⎪⎪⎭⎫⎝⎛-1321(II )⎪⎪⎪⎭⎫ ⎝⎛=001Ax 的同解方程组为:⎪⎪⎩⎪⎪⎨⎧+=-=-=+-=01312244434241x x x x x x x x ,即通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-011213211k⎪⎪⎪⎭⎫ ⎝⎛=010Ax 的同解方程组为:⎪⎪⎩⎪⎪⎨⎧+=-=-=+-=04332644434241x x x x x x x x ,即通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-043613212k⎪⎪⎪⎭⎫ ⎝⎛=100Ax 的同解方程组为:⎪⎪⎩⎪⎪⎨⎧+=+=+=--=01312144434241x x x x x x x x ,即通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-011113213k ,123123123123261212321313431k k k k k k B k k k k k k -+-+--⎛⎫⎪--+ ⎪∴= ⎪--+ ⎪⎝⎭,321,,k k k 为任意常数23、(本题满分11分)证明:n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111ΛM O M M ΛΛ与⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100ΛM M M ΛΛ相似. 【考点】矩阵的特征值、相似对角化 【详解】设⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L L L L L L111111111A ,⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L L L L L L L0001000200n B 因为1)(,1)(==B r A r所以A 的特征值为:n A tr n n ======-)(,0121λλλλΛB 的特征值为:n B tr n n =='='=='='-)(,0121λλλλΛ 关于A 的特征值0,因为1)()()0(==-=-A r A r A E r ,故有1-n 个线性无关的特征向量,即A 必可相似对角化于⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00O同理,关于B 的特征值0,因为1)()()0(==-=-B r B r B E r ,故有1-n 个线性无关的特征向量,即B 必可相似对角化于⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00O由相似矩阵的传递性可知,A 与B 相似.。

2014-数二真题、标准答案及解析

2014-数二真题、标准答案及解析

3
33
令 dy dx
= 1− 1+
x2 y2
=
0
,得
x
=
1
,且可知
d2 dx
y
2
=
− 2x(1+
y2 )2 − 2 y(1− (1+ y2 )3
x2 )2

当 x = 1时,可解得 y = 1, y"= −1 0 ,函数取得极大值 y = 1;
当 x = −1 时,可解得 y = 0 , y"= 2 0 ,函数取得极小值 y = 0 .
=
1. 3
6.设 u( x, y) 在平面有界闭区域 D 上连续,在 D 的内部具有二阶连续偏导数,且满足 2u 0 及 xy
2u x 2
+
2u y 2
=
0
,则(
).
(A) u( x, y) 的最大值点和最小值点必定都在区域 D 的边界上;
(B) u( x, y) 的最大值点和最小值点必定都在区域 D 的内部;

由于
f
(x)
=
xf '( ) .所以可知
f
'( )
=
1 1+
2
=
f ( x) = arctan x , 2
x
x
=
x − arctan x , (arctan x)2
2
lim
x→0
x2
=
lim
x→0
x − arx tan x x(arctan x)2
= lim x→0
x − (x −
1 x3 ) + o( x3 ) 3 x3
【详解】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年全国硕士研究生入学统一考试数学二试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 当0x +→时,若ln (12)x +α,1(1cos )x -α均是比x 高阶的无穷小,则α的取值范围是( )(A) (2,)+∞(B) (1,2)(C) 1(,1)2(D) 1(0,)2(2) 下列曲线中有渐近线的是 ( )(A) sin y x x =+ (B) 2sin y x x =+ (C) 1siny x x =+(D) 21siny x x=+ (3) 设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥ (B) 当()0f x '≥时,()()f x g x ≤ (C) 当()0f x ''≥时,()()f x g x ≥(D) 当()0f x ''≥时,()()f x g x ≤(4) 曲线22741x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是 ( )(A)50(B)100(C)(D)(5) 设函数()arctan f x x =,若()()f x xf '=ξ,则22limx x→=ξ ( )(A)1(B)23(C)12(D)13(6) 设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20ux y ∂≠∂∂及22220u ux y∂∂+=∂∂,则 ( ) (A)(,)u x y 的最大值和最小值都在D 的边界上取得 (B) (,)u x y 的最大值和最小值都在D 的内部上取得(C) (,)u x y 的最大值在D 的内部取得,最小值在D 的边界上取得 (D) (,)u x y 的最小值在D 的内部取得,最大值在D 的边界上取得(7) 行列式0000000ab a bcd c d= ( )(A) 2()ad bc - (B) 2()ad bc -- (C) 2222a dbc -(D) 2222b c a d -(8) 设123,,ααα均为3维向量,则对任意常数,k l ,向量组1323,k l ++αααα线性无关是向量组123,,ααα线性无关的 ( )(A) 必要非充分条件 (B) 充分非必要条件(C) 充分必要条件 (D) 既非充分也非必要条件 二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. ((9)12125dx x x -∞=++⎰__________.(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________. (11) 设(,)z z x y =是由方程2274yzex y z +++=确定的函数,则11(,)22dz =__________.(12) 曲线()r r =θ的极坐标方程是r =θ,则L 在点(,)(,)22r =ππθ处的切线的直角坐标方程是__________.(13) 一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度()221x x x =-++ρ,则该细棒的质心坐标x =__________.(14) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数为1,则a 的取值范围为_______.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xt x t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰(16)(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且()20y =,求()y x 的极大值与极小 值.(17)(本题满分10分)设平面区域(){}22,14,0,0,D x y x y x y =≤+≤≥≥计算(sin Dx dxdy x y+⎰⎰.(18)(本题满分10分)设函数()f u 具有二阶连续导数,(e cosy)xz f =满足22222(4e cos )e x xz z z y x y ∂∂+=+∂∂,若'(0)0,(0)0f f ==,求()f u 的表达式.(19)(本题满分10分)设函数(),()f x g x 的区间[a,b]上连续,且()f x 单调增加,0()1g x ≤≤.证明: (I)0(),[,]xag t dt x a x a b ≤≤-∈⎰,(II)()()d ()g()ba a g t dtb aaf x x f x x dx +⎰≤⎰⎰.(20)(本题满分11分)设函数[](x),0,11xf x x=∈+,定义函数列121()(),()(()),f x f x f x f f x ==,1()(()),n n f x f f x -=,记n S 是由曲线()n y f x =,直线1x =及x 轴所围成平面图形的面积,求极限lim n n nS →∞.(21)(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且2(,)(1)(2)ln ,f y y y y y =+--求曲线(,)0f x y =所围成的图形绕直线1y =-旋转所成的旋转体的体积.(22)(本题满分11分)设矩阵123401111203A --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵.(23)(本题满分11分)证明n 阶矩阵111111111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭与00100200n ⎛⎫⎪ ⎪⎪ ⎪⎝⎭相似.2014年全国硕士研究生入学统一考试数学二试题答案一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 当0x +→时,若ln (12)x +α,1(1cos )x -α均是比x 高阶的无穷小,则α的取值范围是( )(A) (2,)+∞(B) (1,2)(C) 1(,1)2(D) 1(0,)2【答案】B【解析】由定义 1000ln (12)(2)limlim lim 20x x x x x x x x-→→→+===αααα 所以10->α,故1>α.当0x +→时,211(1cos )~2xx -ααα是比x 的高阶无穷小,所以210->α,即2<α.故选B(2) 下列曲线中有渐近线的是 ( )(A) sin y x x =+ (B) 2sin y x x =+ (C) 1sin y x x =+(D) 21siny x x=+ 【答案】C【解析】关于C 选项:11sinsinlimlim1lim 101x x x x x x x x →∞→∞→∞+=+=+=. 11lim[sin ]limsin 0x x x x x x →∞→∞+-==,所以1sin y x x=+存在斜渐近线y x =. 故选C(3) 设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥ (B) 当()0f x '≥时,()()f x g x ≤ (C) 当()0f x ''≥时,()()f x g x ≥(D) 当()0f x ''≥时,()()f x g x ≤【答案】D【解析】令()()()(0)(1)(1)()F x g x f x f x f x f x =-=-+-,则(0)(1)0F F ==,()(0)(1)()F x f f f x ''=-+-,()()F x f x ''''=-.若()0f x ''≥,则()0F x ''≤,()F x 在[0,1]上为凸的.又(0)(1)0F F ==,所以当[0,1]x ∈时,()0F x ≥,从而()()g x f x ≥. 故选D.(4) 曲线22741x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是 ( )(C)(D)【答案】C1112'21122432212t t t t t dy t dxtd y dy tdx dx t=====+==-===-()()''33'22211,11y k R kq y ==∴==++ 故选C(5) 设函数()arctan f x x =,若()()f x xf '=ξ,则22limx x →=ξ ( )(A)1 (B)23(C)12(D)13【答案】D【解析】因为'2()1()1f x f x ==+ξξ,所以2()()x f x f x -=ξ 22222200011()arctan 11limlimlim lim ()arctan 33x x x x x f x x xx x x f x x x x →→→→---+====ξ故选D.(6) 设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20ux y ∂≠∂∂及22220u ux y∂∂+=∂∂,则 ( ) (A)(,)u x y 的最大值和最小值都在D 的边界上取得 (B) (,)u x y 的最大值和最小值都在D 的内部上取得(C) (,)u x y 的最大值在D 的内部取得,最小值在D 的边界上取得 (D) (,)u x y 的最小值在D 的内部取得,最大值在D 的边界上取得【解析】记22222,,,0,,u u uA B C B A C x x y y∂∂∂===≠∂∂∂∂相反数 则2=AC-B 0∆<,所以(x,y)u 在D 内无极值,则极值在边界处取得.故选A(7) 行列式0000000ab a bcd c d= ( )(A)2()ad bc - (B)2()ad bc -- (C)2222a d b c - (D)2222b c a d -【答案】B【解析】由行列式的展开定理展开第一列000000000000a b a b a b a b a cd c b c d dcdc d=--()()ad ad bc bc ad bc =--+- 2()ad bc =--.(8) 设123,,a a a 均为三维向量,则对任意常数,k l ,向量组13a ka +,23a la +线性无关是向量组123,,a a a 线性无关的 ( )(A)必要非充分条件 (B)充分非必要条件 (C)充分必要条件(D)既非充分也非必要条件【答案】A 【解析】()()13231231001k l k l ⎛⎫⎪++= ⎪ ⎪⎝⎭ααααααα.)⇐ 记()1323A k l =++αααα,()123B =ααα,1001k l ⎛⎫⎪= ⎪ ⎪⎝⎭C . 若123,,ααα线性无关,则()()()2r A r BC r C ===,故1323,k l ++αααα线性无关.)⇒ 举反例. 令30=α,则12,αα线性无关,但此时123,,ααα却线性相关.综上所述,对任意常数,k l ,向量1323,k l ++αααα线性无关是向量123,,ααα线性无关的必要非充分条件.故选A二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)12125dx x x -∞=++⎰__________.【答案】38π【解析】()111221111arctan 252214132428x dx dx x x x -∞-∞-∞+==++++⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦⎰⎰πππ(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________. 【答案】1 【解析】()()[]'210,2f x x x =-∈,且为偶函数则()()[]'212,0fx x x =--∈-,又()22f x x x c =--+且为奇函数,故=0c()[]222,0f x x x x ∴=--∈-,又()f x 的周期为4,()()711f f ∴=-=(11) 设(,)z z x y =是由方程2274yzex y z +++=确定的函数,则11(,)22dz =__________.【答案】1()2dx dy -+ 【解析】对2274yzex y z +++=方程两边同时对,x y 求偏导22210(22)20yzyz z z e y x x z z e z y y y y ∂∂⎧⋅⋅++=⎪∂∂⎪⎨∂∂⎪+++=∂∂⎪⎩当11,22x y ==时,0z = 故1111(,)(,)222211,22z z x y∂∂=-=-∂∂故11(,)22111()()222dzdx dy dx dy =-+-=-+(12) 曲线lim n n nS →∞的极坐标方程是r =θ,则L 在点(,)(,)22r =ππθ处的切线的直角坐标方程是__________. 【答案】22y x =-+ππ【解析】由直角坐标和极坐标的关系 cos cos sin sin x r y r ==⎧⎨==⎩θθθθθθ,于是(),,,22r ⎛⎫=⎪⎝⎭ππθ对应于(),0,,2x y ⎛⎫= ⎪⎝⎭π 切线斜率cos sin cos sin dydy d dx dx d +==-θθθθθθθθ0,22dy dx ⎛⎫⎪⎝⎭∴=-ππ所以切线方程为()202y x -=--ππ即2=2y x -+ππ(13) 一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度()221x x x =-++ρ,则该细棒的质心坐标x =__________. 【答案】1120【解析】质心横坐标()()1010x x dx x x dx=⎰⎰ρρ ()()()()31122100042112310005=2133211=2143212x x dx x x dx x x x x x x dx x x x dx x ⎛⎫-++=-++= ⎪⎝⎭⎛⎫-++=-++= ⎪⎝⎭⎰⎰⎰⎰ρρ111112=5203x ∴=(13) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数是1,则a 的取值范围_________. 【答案】[]2,2-【解析】配方法:()()()22222123133233,,24f x x x x ax a x x x x =+---+由于二次型负惯性指数为1,所以240a -≥,故22a -≤≤.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xt x t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰【解析】11221122d d (e 1)(e 1)limlim 11ln(1)xx t t x x t t t t t t x x x x→+∞→+∞⎡⎤⎡⎤----⎢⎥⎢⎥⎣⎦⎣⎦=+⋅⎰⎰12lim[(e 1)]xx x x →+∞=--12000e 1e 11lim lim lim 222t t t xt t t t t t t t +++=→→→---====. (16)(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且()20y =,求()y x 的极大值与极小值.【解析】 由221x y y y ''+=-,得22(1)1y y x '+=-………………………………………………………① 此时上面方程为变量可分离方程,解的通解为331133y y x x c +=-+ 由(2)0y =得23c =又由①可得 221()1x y x y -'=+当()0y x '=时,1x =±,且有:1,()011,()01,()0x y x x y x x y x '<-<'-<<>'><所以()y x 在1x =-处取得极小值,在1x =处取得极大值 (1)0,(1)1y y -==即:()y x 的极大值为1,极小值为0. (17)(本题满分10分)设平面区域(){}22,14,0,0,D x y x y x y =≤+≤≥≥计算(sin Dx dxdy x y+⎰⎰.【解析】D 关于y x =对称,满足轮换对称性,则:D D=⎰⎰12D D I dxdy ∴==⎢⎥⎣⎦⎰⎰1sin(2Ddxdy =⎰⎰π221211sin 21()cos 4d r rdrrd r =⋅=-⎰⎰⎰πθππππ22111cos |cos 4r r rdr ⎡⎤=-⋅-⎢⎥⎣⎦⎰ππ211121sin |4r ⎡⎤=-+-⎢⎥⎣⎦ππ 34=-(18)(本题满分10分)设函数()f u 具有二阶连续导数,(e cosy)xz f =满足22222(4e cos )e x xz z z y x y∂∂+=+∂∂,若'(0)0,(0)0f f ==,求()f u 的表达式.【解析】由()cos ,x z f e y =()(cos )cos ,(cos )sin x x x x z zf e y e y f e y e y x y∂∂''=⋅=⋅-∂∂ 22(cos )cos cos (cos )cos x x x x x zf e y e y e y f e y e y x∂'''=⋅⋅+⋅∂, ()()()22(cos )sin sin (cos )cos x x x x x zf e y e y e y f e y e y y∂'''=⋅-⋅-+⋅-∂ 由 ()22222+4cos x xz z z e y e x y ∂∂=+∂∂,代入得, ()()22cos [4cos cos ]x x x x x f e y e f e y e y e ''⋅=+即()()cos 4cos cos x x x f e y f e y e y ''-=,令cos =,xe y t 得()()4f t f t t ''-=特征方程 240,2-==±λλ 得齐次方程通解2212t t y c e c e -=+设特解*y at b =+,代入方程得1,04a b =-=,特解*14y t =- 则原方程通解为()22121=4t ty f t c e c e t -=+-由()()'00,00f f ==,得1211,1616c c ==-, 则()22111=16164u u y f u e e u -=--.(19)(本题满分10分)设函数(),()f x g x 在区间[,]a b 上连续,且()f x 单调增加,0()1g x ≤≤,证明:(I )0(),[,]xag t dt x a x a b ≤≤-∈⎰,(II )()()d ()g()ba a g t dtb aaf x x f x x dx +⎰≤⎰⎰.【解析】(I )由积分中值定理()()(),[,]xag t dt g x a a x =-∈⎰ξξ()01g x ≤≤,()()()0g x a x a ∴≤-≤-ξ()()0xa g t dt x a ∴≤≤-⎰(II )直接由()01g x ≤≤,得到()()01=x xaag t dt dt x a ≤≤-⎰⎰(II )令()()()()()ua u a g t dt aaF u f x g x dx f x dx +⎰=-⎰⎰()()()()()()()()()()'uaua F u f u g u f a g t dt g u g u f u f a g t dt =-+⋅⎡⎤=-+⎢⎥⎣⎦⎰⎰由(I )知()()0uag t dt u a ≤≤-⎰()uaa a g t dt u ∴≤+≤⎰又由于()f x 单增,所以()()()0u af u f ag t dt -+≥⎰()()'0F u F u ∴≥∴,单调不减,()()0F u F a ∴≥=取u b =,得()0F b ≥,即(II )成立.(20)(本题满分11分)设函数[](x),0,11xf x x=∈+,定义函数列 1211()(),()(()),,()(()),n n f x f x f x f f x f x f f x -===,记n S 是由曲线()n y f x =,直线1x =及x 轴所围成平面图形的面积,求极限lim n n nS →∞. 【解析】123(),(),(),,(),112131n x x x xf x f x f x f x x x x nx====++++ 11100011()11n n x x n n S f x dx dx dx nx nx+-∴===++⎰⎰⎰ 1110200111111ln(1)1dx dx nx n n nx n n =-=-++⎰⎰ 211ln(1)n n n=-+ ln(1)ln(1)1lim 1lim 1lim 1lim 1n n n x x n x nS n x x→∞→∞→∞→∞++∴=-=-=-+101=-= (21)(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且2(,)(1)(2)ln ,f y y y y y =+--求曲线(,)0f x y =所围成的图形绕直线1y =-旋转所成的旋转体的体积.【解析】因为2(1)fy y∂=+∂,所以2(,)2(),f x y y y x =++ϕ其中()x ϕ为待定函数. 又因为()2(,)(1)2ln ,f y y y y y =+--则()()12ln y y y =--ϕ,从而()()22(,)212ln (1)2ln f x y y y x x y x x =++--=+--.令(,)0,f x y =可得()2(1)2ln y x x +=-,当1y =-时,1x =或2x =,从而所求的体积为()()2221122112ln ln 22V y dx x xdxx xd x =+=-⎛⎫=- ⎪⎝⎭⎰⎰⎰πππ22211221ln (2)222552ln 2(2)2ln 22ln 2.444x x x x dxx x ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦⎛⎫=--=-⋅=- ⎪⎝⎭⎰πππππππ(22)(本题满分11分)设矩阵123401111203A --⎛⎫⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵B .【解析】()123410012341000111010011101012030010431101A E ----⎛⎫⎛⎫⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭ 123410010012610111010010213100131410013141---⎛⎫⎛⎫ ⎪ ⎪→-→--- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭,(I)0Ax =的基础解系为()1,2,3,1T=-ξ (II)()()()1231,0,0,0,1,0,0,0,1TTT e e e ===1Ax e =的通解为()()111112,1,1,02,12,13,T Tx k k k k k =+--=--+-+ξ 2Ax e =的通解为()()222226,3,4,06,32,43,TTx k k k k k =+--=--+-+ξ 3Ax e =的通解为()()333331,1,1,01,12,13,TTx k k k k k =+-=--++ξ123123123123261123212134313k k k k k k B k k k k k k ----⎛⎫ ⎪-+-++⎪∴= ⎪-+-++ ⎪ ⎪⎝⎭(123,,k k k 为任意常数)(23)(本题满分11分)证明n 阶矩阵111111111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭与00100200n ⎛⎫⎪ ⎪⎪ ⎪⎝⎭相似.【解析】已知()1111A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,()12001B n ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭=,则A 的特征值为n ,0(1n -重).A 属于n λ=的特征向量为(1,1,,1)T ;()1r A =,故0Ax =基础解系有1n -个线性无关的解向量,即A 属于0λ=有1n -个线性无关的特征向量;故A 相似于对角阵=0n ⎛⎫⎪⎪Λ ⎪ ⎪⎝⎭. B 的特征值为n ,0(1n -重),同理B 属于0λ=有1n -个线性无关的特征向量,故B 相似于对角阵Λ.由相似关系的传递性,A 相似于B .。

相关文档
最新文档