人教版数学七下第九章综合测试附答案
新七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案)

七年级数学第9章《不等式和不等式组》同步测试一、选择题(每题3分,共30分):1、若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 2、在数轴上表示不等式x >-2的解集,正确的是( )3、不等式a >b ,两边同时乘m 得am <bm ,则一定有( )A .m =0B .m <0C .m >0D .m 为任何实数4、下列说法中,错误的是( )A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个 5、已知实数a ,b 满足a +1>b +1,则下列选项错误的为( )A .a >bB .a +2>b +2C .-a <-bD .2a >3b6、已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥27、如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( ) A .m =2 B .m >2 C .m <2 D .m≥28、小明准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( )A. 30x-45≥300B. 30x+45≥300C. 30x-45≤300D. 30x+45≤3009、对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( ) A .40 B .45 C .51 D .5610、若关于x 的不等式组⎩⎪⎨⎪⎧x -a≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1 D.23二、填空题(每题3分,共15分):11、不等式3(x ﹣1)≤5﹣x 的非负整数解有_____个.12、已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是13、已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x≥-1,a -x <0无解,则a 的取值范围是 . 14、若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为 .15、某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为 .三、解答题(共55分):16、(6分)在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm ,人跑开的速度是每秒钟4 m ,为了使点导火索的人在爆破时能够跑到100 m 以外的安全地区,设导火索的长为s cm.(1)用不等式表示题中的数量关系;(2) 要使人能跑到安全地区,则导火索的长度至少多长?17、(6分)已知关于x 的不等式ax <-b 的解集是x >1,求关于y 的不等式by >a 的解集.18、(8分)已知关于x 的不等式2m -mx 2>12x -1. (1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、(8分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?20、(10分)解不等式组并在数轴上表示解集.(1)⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x+4,②(2) ⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②21、(8分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?22、(9分)某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数不少于28个,且该公司购买的A 、B 两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?参考答案:一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B二、填空题:11、312、 ≤a≤13、a≥214、515、40%×85+60%x≥90三、解答题:16、(1)4×s 0.8>100. (2)25 cm17、∵不等式ax <-b 的解集是x >1,∴a<0,-b a=1. ∴b=-a ,b >0.∴不等式by >a 的解集为y >a b=-1, 即不等式by >a 的解集为y >-1.18、(1)当m =1时,该不等式为2-x 2>12x -1,解得x <2. (2)∵2m -mx 2>12x -1,∴2m-mx >x -2. ∴-mx -x >-2-2m.∴(m+1)x <2(1+m).∵该不等式有解,∴m+1≠0,即m≠-1.当m >-1时,不等式的解集为x <2;当x <-1时,不等式的解集为x >2.19、(1)120×0.95=114(元).(2)设购买商品的价格为x 元.由题意,得0.8x +168<0.95x.解得x >1 120. 当购买商品的价格超过1 120元时,采用方案一更合算.20、(1)解不等式①,得x <52人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是( )A .B .C .D .2.若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 3.如果 的解集是 ,那么 的取值范围是( )A .B .C .D .4.如图,天平左盘中物体A 的质量为 ,,天平右盘中每个砝码的质量都是1g,则 的取值范围在数轴上可表示为( )A .B .C .D .5.已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥26.将不等式组的解集在轴上表示出来,应是( ) A . B .C .D .7.不等式组>的整数解的个数为()A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B13.﹣9<x≤﹣314.>15.3组.16.317.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版七年级数学下册:第九章《不等式与一次不等式组》单元测试人教版七年级数学下册:第九章不等式及不等式组单元测试(时间:60分钟,满分:100分)一、选择题(每题3分,共24分)1.当1≤x≤2时,ax+2>0,则a 的取值范围是( ).A .a >﹣1B .a >﹣2C .a >0D .a >﹣1且a≠02.若不等式组12x x k<≤⎧⎨>⎩ 有解,则k 的取值范围是( ).A.2k <B. 2k ≥C.1k <D. 12k ≤<3.已知,a b 为非零有理数,下面四个不等式组中,解集有可能为22x -<<的不等式组是( ).A .11ax bx >⎧⎨>⎩B .11ax bx >⎧⎨<⎩C .11ax bx <⎧⎨>⎩D .11ax bx <⎧⎨<⎩4.不等式组9511x x x m +<+⎧⎨>+⎩的解集是2>x ,则m 的取值范围是( ).A.2≤mB. 2≥mC.1≤mD. 1>m5.不等式组()()⎪⎩⎪⎨⎧≤--+<--+-1213128313x x x x 的解集应为( ). A 、2-<x B 、722≤<-x C 、12≤<-x D 、2-<x 或x ≥16.如图,用两根长度均为Lcm的绳子,分别围成一个正方形和圆.则围成的正方形和圆的面积比较().A.正方形的面积大B.圆的面积大C.一样大D.根据L的变化而变化7.某商场的老板销售一种商品,他要以利润不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售().A.80元B.100元 C.120元D.160元8. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与两个球体质量相等的正方体的个数为( ) .A.5 B.4 C.3 D.2二、填空题(每题5分,共40分)9.已知关于x的不等式组的整数解共有个,则的取值范围为.10.已知方程组⎩⎨⎧=+=-7325ayxyax的解满足⎩⎨⎧<>yx,则a的取值范围.11. 若不等式组⎩⎨⎧->+<121mxmx无解,则m的取值范围是.12.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折.13.已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围 .14.如果关于x的不等式组9080x ax b-≥⎧⎨-<⎩的正整数解仅为1,2,3,则a的取值范围是,b的取值范围是 .15. 为确保信息安全,信息需加密传输,发送方将明加密为密文传输给接收方,接收方收到密文后解密还原为明文.已知某种加密规则为:明文a ,b 对应的密文为a-2b ,2a+b .例如,明文1,2对应的密文是-3,4,当接收方收到密文是1,7时,解密得到的明文是 .16.若不等式组114111.5(1)()0.5(21)22x x a x a x x +⎧+>⎪⎪⎨⎪-+>-+-⎪⎩①②只有一个整数解,则a 的取值范围 . 三、解答题(每题12分,共36分) 17.已知x 满足⎪⎩⎪⎨⎧3)12(24213120)93(33)62(18)3(35-<--->---+-x x x x x x ,化简|x -3|+|2x -1| . 18.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?19. 今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台.若要求购买的费用不超过40000元,安装及运输费用不超过9200元,则可购买甲、乙两种设备各多少台?【答案与解析】一.选择题1. 【答案】A ;【解析】当x=1时,a+2>0解得:a >﹣2;当x=2,2a+2>0,解得:a >﹣1,∴a 的取值范围为:a >﹣1.2. 【答案】A ;【解析】画数轴进行分析.3. 【答案】D ;【解析】由选项及解集可得a b 、一正一负,不防设a 正b 负代入选项验证.4. 【答案】C ;【解析】解第一个不等式得x >2,由题意可得1m +≤2,所以m ≤1.5. 【答案】C ;【解析】解第一个不等式得2x >-,解第二个不等式得1x ≤,所以不等式组的解集为21x -<≤.6. 【答案】B ;7. 【答案】C ;【解析】解:设降价x 元时商店老板才能。
【3套试题】人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)

人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.下列式子:①-2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有A. 1个B. 2个C. 3个 D . 4个2.若m>n,则下列不等式中一定成立的是()A. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na23.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A. a>bB. ab>0C. a+b>0D. a+b<04.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A. m≥5B. m>5C. m≤5D. m<55.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A. 5本B. 6本C. 7本D. 8本7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3≤x<4D. 无解9.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4B. 3≤a<4C. 4≤a<5D. 4<a≤510. 现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1.不等式组:的解集是2.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400m以外的安全区域甲工人在转移过程中,前40m只能步行,之后骑自行车。
人教版初中数学七年级下册第九章不等式与不等式组章节测试有答案

七年级下册第九章不等式与不等式组章节测试一、单选题1.下列是一元一次不等式的是()A. 2x>1B. x−2<y−2C. 2<3D. x2<92.若x>y,则下列式子中错误的是()A. x﹣4>y﹣4B. x4>y4C. x+4>y+4D. ﹣4x>﹣4y3.若m>n,则下列各式中错误..的是()A. m﹣2>n﹣2B. 4m>4nC. ﹣3m>﹣3nD. m2>n24.如果a>b,下列各式中不正确的是()A. a-4>b-4B. -2a<-2bC. -1+a<-1+bD. −a3<−b35.不等式组{x≥−2x<1的解集在数轴上表示为().A. B. C. D.6.不等式5x﹣3≤2的解集是()A. x≤1B. x≤﹣1C. x≥﹣1D. x≥17.已知a<b,则下列四个不等式中不正确的是()A. 4a<4bB. ﹣4a<﹣4bC. a+4<b+4D. a﹣4<b﹣48.某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x分钟,以下所列不等式正确的是()A. 90×3+2x≥480B. 90×3+2x≤480C. 90×3+2x<480D. 90×3+2x≥4809.已知关于x的不等式组{x−a>−1x−a<3的解集中任意一个x的值均不..在−1≤x≤3的范围内,则a的取值范围是()A. a>4或a<−4B. a≥4或a≤−4C. −4<a<4D. −4≤a≤410.不等式x−2≥−3x−18的负整数解共有()A. 1 个B. 2个C. 3个D. 4个11.已知关于x、y的方程组{ax+3y=12x−3y=0的解为整数,且关于x的不等式组{2(x+1)<x+53x>a−4有且仅有5个整数解,则所有满足条件的整数a的和为()A. ﹣1B. ﹣2C. ﹣8D. ﹣612.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打()折.A. 6B. 7C. 8D. 9二、填空题13.某电器商场促销,海尔某型号冰箱的售价是2500元,进价是1800元,商场为保证利润率不低于5%,则海尔该型号冰箱最多降价________元.14.已知不等式mx+n>0的解集为x<2,则mn +nm的值是________.15.一次新冠病毒防疫知识竞赛有25道题,评委会决定:答对一道题得4分,答错或不答一题扣1分,在这次知识竞赛中,小明被评为优秀(85分或85分以上),那么小明至少答对了________道题.16.“端午节”前,商场为促销定价为10元每袋的蜜枣粽子,采取如下方式优惠销售:若一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款.张阿姨现有50元钱,那么她最多能买蜜枣粽子________袋.17.格格和妈妈到福利院看望失去父母的孤儿,她用自己的零花钱买来棒棒糖分给福利院的小朋友。
精选七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案解析)

人教版七年级数学下册第九章不等式与不等式组检测题 (word 版,含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题题一、选择题1.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b2.如图是关于x 的不等式2x -a ≤-1的解集,则a 的取值是( )A. a ≤-1B. a ≤-2C. a =-1D. a =-2 3.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( ) ①去分母,得5(x +2)>3(2x -1); ②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 4.不等式组的解集表示在数轴上正确的是( )5.在关于x ,y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )6.若不等式组2x -1>3(x -1),x<m 的解集是x <2,则m 的取值范围是( ) A. m =2 B. m >2 C. m <2 D. m ≥2 7.如果关于x 的不等式组无解,那么m 的取值范围为( )A. m ≤-1B. m <-1C. -1<m ≤0D. -1≤m <0 8.若关于x 的不等式组的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 239.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( ) A. 60 B. 70 C. 80 D. 90 10.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 二、填空题。
人教版七年级下册数学第九章测试题(附答案)

人教版七年级下册数学第九章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.不等式x-3>0的解集是()A. x>-3B. x<-3C. x>3D. x<32.不等式的解集是()A. B. C. D.3.若x>y,则下列式子中错误的是()A. x+ >y+B. ﹣3>y﹣3C. >D. ﹣3x>﹣3y4.下列不等式中,是一元一次不等式的是()A. +1>xB. ﹣y+1>yC. >2D. +1>05.若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A. m>4B. m≥4C. m<4D. m≤46.不等式组的解集在数轴上可表示为()A. B. C. D.7.不等式≤+1去分母后正确的是()A. 3(1-x)≤2x+1B. 3(1-x)≤2x+6C. 3-x≤2x+1D. 3-x≤2x+68.如果a<b,下列各式中错误的是()A. ﹣3a<﹣3bB. ﹣3+a<﹣3+bC. a﹣3<b﹣3D. a3<b39.不等式组的解集在数轴上表示为()A. B.C. D.10.已知不等式,其解集在数轴上表示正确的是()A. B.C. D.11.设a ,b ,c ,d都是整数,且a<2b ,b<3c ,c<4d ,d<20,则a的最大值是()A. 480B. 479C. 448D. 44712.△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A. 4B. 4或5C. 5或6D. 6二、填空题(共8题;共16分)13.不等式组的解集是________14.不等式x﹣2019>0的解集是________.15.不等式2x+3<﹣1的解集为________ .16.当a满足条件________ 时,由ax>8可得x<.17.若关于x的不等式仅有两个正整数解,则m的取值范围是________.18.不等式组的解集为________19.若不等式3x-m≤0的正整数解恰好是1、2、3,则m的取值范围是________.20.对于任意实数m、n,定义一种运运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是________三、解答题(共4题;共19分)21.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,求一共购买了多少支签字笔?22.解不等式组,并把它的解集在数轴上表示出来.23.十字形的路口,东西、南北方向的行人车辆来来往往,车水马龙.为了不让双方挤在一起,红绿灯就应动而生,一个方向先过,另一个方向再过.如在南稍门的十字路口,红灯绿灯的持续时间是不同的,红灯的时间总比绿灯长.即当东西方向的红灯亮时,南北方向的绿灯要经过若干秒后才亮.这样方可确保十字路口的交通安全.那么,如何根据实际情况设置红绿灯的时间差呢?如图所示,假设十字路口是对称的,宽窄一致.设十字路口长为m米,宽为n米.当绿灯亮时最后一秒出来的骑车人A,不与另一方向绿灯亮时出来的机动车辆B相撞,即可保证交通安全.根据调查,假设自行车速度为4m/s,机动车速度为8m/s.若红绿灯时间差为t秒.通过上述数据,请求出时间差t要满足什么条件时,才能使车人不相撞.当十字路口长约64米,宽约16米,路口实际时间差t=8s时,骑车人A与机动车B是否会发生交通事故?24.在车站开始检票时,有a(a>0)各旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队等候检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30min才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10min便可将排队等候检票的旅客全部检票完毕;现在要求在5min内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,问至少要同时开放几个检票口?四、综合题(共4题;共41分)25.计算。
人教版数学七年级下册第九章不等式与不等式组测试卷附解析

人教版数学七年级下册第九章不等式与不等式组测试卷附解析一、单选题(共10题;共30分)1.x =3是下列不等式( )的一个解.A. x +1<0B. x +1<4C. x +1<3D. x +1<5 2.下列不等式求解的结果,正确的是( )A. 不等式组 {x ≤−3x ≤−5 的解集是 x ≤−3B. 不等式组 {x >−5x ≥−4 的解集是 x ≥−5C. 不等式组 {x >5x <−7 无解 D. 不等式组 {x ≤10x >−3 的解集是 −3≤x ≥103.在数轴上表示-2≤x <1正确的是( ) A.B.C. D.4.关于x 的不等式 2x +m >−6 的解集是 x >−3 ,则m 的值为( ) A. 1. B. 0. C. -1. D. -25.若m >n ,则下列不等式正确的是( )A. m -4<n -4B. m4>n4 C. 4m <4n D. -2m >-2n 6.已知关于x 、y 的方程组 {x +y =1−a x −y =3a +5 ,满足 x ≥12y ,则下列结论:① a ≥−2 ;② a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组 {x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( )A. 1个B. 2个C. 3个D. 4个 7.若代数式4x - 32 的值不大于代数式3x +5的值,则x 的最大整数值是( ) A. 4 B. 6 C. 7 D. 88.如果关于x 的不等式组 {5x −2a >07x −3b ≤0 的整数解仅有7,8,9,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有( )A. 4对B. 6对C. 8对D. 9对9.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打( )A. 6折B. 7折C. 8折D. 9折10.运行程序如图所示,从“输入实数 x”到“结果是否<18”为一次程序操作,若输入 x 后程序操作仅进行了三次就停止,那么 x 的取值范围是( )A. x ≥329B. 329≤x ≤143C. 329<x ≤143D. x ≤143二、填空题(共8题;共24分)11.如果关于 x 的不等式 2x −m <0 的正整数解恰有2个,则 m 的取值范围是________. 12.“x 与y 的平方和大于8. ”用不等式表示: ________. 13.若 y =2x −6 ,当 x ________时, y >0 ;14.某校规定把期中考试成绩的40%与期末考试成绩的60%的和作为学生的总成绩.该校李红同学在期中考试中数学考了86分,她希望自己这学期数学总成绩不低于92分,她在期末考试中数学至少应得多少分?设她在期末考试中数学考了 x 分,则可列不等式________.15.关于 x 的不等式 bx <a 的解集为 x >−2 ,写出一组满足条件的实数 a ,b 的值:a= ________,b= ________.16.如果不等式组 {x2+a ≥22x −b <3的解集是 0≤x <1 ,那么 a +b 的值为________.17.按下面的程序计算,若开始输入的值 x 为正整数:规定:程序运行到“判断结果是否大于10”为一次运算,例如当 x =2 时,输出结果等于11,若经过2次运算就停止,则 x 可以取的所有值是________.18.关于 x,y 的方程组 {x −y =1+3mx +3y =1+m 的解 x 与 y 满足条件 x +y ≤2 ,则 4m +3 的最大值是________.三、计算题(共1题;共10分)19.解下列不等式(1)4x-2+1x−5>1x−5+3x +2 (2)7x−62x+3>2四、解答题(共7题;共54分)20.(6分)解不等式组: {x −3(x −2)≥42x−15<x+12 并求该不等式组的非负整数解.21.(7分)解不等式 1−2x 3+x+22≥1 ,并把解集在数轴上表示出来.22.(7分)已知关于x ,y 的二元一次方程组 {3x −y =ax −3y =5−4a 的解满足 x <y ,试求a 的取值范围.23.(7分)某居民小区污水管道里积存污水严重,物业决定请工人清理.工人用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,若工人抽污水每小时的工钱是60元,那么抽完污水最少需要支付多少元?24.(8分)新冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂共同完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天,问至少应安排两个工厂共同工作多少天才能完成任务25.(9分)北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?26(10分).对x,y定义了一种新运算T,规定T(x,y)= ax+by2x+y(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1,已知T(1,﹣1)=﹣2,T(4,2)=1.(1)求a,b的值;(2)若关于m的不等式组{T(2m,5−4m)≤4T(m,3−2m)>p恰好有3个整数解,求p的取值范围.答案解析部分一、单选题 1.【答案】 D【解析】【解答】解:A 、3+1=4>0,故A 不成立; B 、3+1=4,故B 不成立; C 、3+1=4>3,故C 不成立; D 、3+1=4<5,故D 成立; 故答案为:D.【分析】直接将x=3代入各个不等式,不等式成立的即为所选. 2.【答案】 C【解析】【解答】解:A 、不等式组 {x ≤−3x ≤−5 的解集根据“同小取较小”的原则可知,此不等式组的解集为x≤-5;B 、不等式组 {x >−5x ≥−4 的解集是根据“同大取较大”的原则可知,此不等式组的解集为x≥-4;C 、不等式组 {x >5x <−7 根据“大大小小解为空”的原则可知,此不等式组无解;D 、不等式组 {x ≤10x >−3 的解集根据“小大大小中间找”的原则可知,-3<x≤10.故答案为:C .【分析】根据不等式组解集的确定方法分别求出各不等式组的解集即可. 3.【答案】 D【解析】【解答】解:解:x≥-2表示-2右边的部分,含-2这点,应为实心点,x<1表示1左边的部分,不含1这点,应为空心点,则正确的是D .【分析】根据不等式解集的表示法,在数轴上表示出两个不等式即可. 4.【答案】 B【解析】【解答】解: 2x +m >−6 , 2x >−6−m ,x >−6+m2由题知x >-3, 则 −6+m 2=−3 ,解得:m=0, 故答案为:B .【分析】解不等式求出 x >−6+m 2,结合 x >−3 ,从而得出 −6+m 2=−3 ,解之可得.5.【答案】 B【解析】【解答】解:A 、∵m >n ∴m-4>n-4,故A 不符合题意; B 、∵m >n ∴m4>n4 , 故B 符合题意; C 、∵m >n∴4m >4n ,故C 不符合题意; D 、∵m >n∴-2m <-2n ,故D 不符合题意; 故答案为:B.【分析】利用不等式的性质1,可对A 作出判断;利用不等式的性质2可对B ,C 作出判断,利用不等式的性质3,可对D 作出判断。
人教版七年级下册数学第九章检测卷(附答案)

⼈教版七年级下册数学第九章检测卷(附答案)⼈教版七年级下册数学第九章检测卷(附答案)⼀、单选题(共12题;共24分)1.不等式-3x+6≥9 的解集在数轴上表⽰正确的是()A. B.C. D.2.若关于x的不等式mx-n>0 的解集为,则关于x的不等式(m+n)x>m-n 的解集为()A. B. C. D.3.⼩华拿27元钱购买圆珠笔和练习册,已知⼀本练习册2元,已知圆珠笔1元,他买了4本练习册,x⽀圆珠笔,则关于x的不等式表⽰正确的是()A. 2×4+x<27B. 2×4+x≤27C. 2x+4≤27D. 2x+4≥274.某乒乓球馆有两种计费⽅案,如下图表.李强和同学们打算周末去此乒乓球馆连续打球4 ⼩时,经服务⽣测算后,告知他们包场计费⽅案会⽐⼈数计费⽅案便宜,则他们参与包场的⼈数⾄少为()A. 9B. 8C. 7D. 65.不等式6-4x≥3x-8 的正整数解为()A. 2 个B. 3 个C. 4 个D. 5 个6.下列各数中,能使不等式x-1>0 成⽴的是()A. 1B. 2C. 0D. -27.如果不等式ax < b 的解集是x < ,那么a 的取值范围是()A. a≥0B. a≤0C. a>0D. a<08.如果a>b,则下列各式中不成⽴的是()A. -3a>-3bB. 2+3a>2+3bC. a-6>b-6D. a+4>b+49.若实数a 是不等式2x-1>5 的解,但实数b 不是不等式2x-1>5 的解,则下列选项中,正确的是()A. a<bB. a>bC. a≤bD. a≥b10.若3x>-3y,则下列不等式中⼀定成⽴的是()A. x+y>0B. x-y>0C. x+y<0D. x-y<011.运⾏程序如图所⽰,从“输⼊实数x”到“结果是否<18”为⼀次程序操作,若输⼊x 后程序操作仅进⾏了三次就停⽌,那么x 的取值范围是()A. B. C. D.12.已知关于x的不等式组恰有5个整数解,则t的取值范围是()A. 9B. 9≤t<C. 9D. 9≤t≤⼆、填空题(共8题;共16分)13.当x________时,代数式14-2x 的值是⾮负数.14.不等式3x-3m≤-2m 的正整数解为1,2,3,4,5,则m 的取值范围是________.15.不等式6x+8>3x+17 的解集是________.16.出租车按分段累加的⽅法收费:3公⾥以内(含3公⾥)收5元;超过3公⾥且不超过10公⾥的部分每公⾥收2元;超过10公⾥的部分每公⾥收3元.每次坐车另加燃油附加费1元,不⾜1公⾥以1公⾥计算.若⼩明从学校坐出租车到家⽤了38元的钱,设⼩明家到学校的距离为x公⾥,则x的取值范围是________.17.不等式3x-2≥4(x-1)的所有⾮负整数解的和为________.18.当a=________时,关于x 的不等式2x-a>-3 的解集如图.19.已知关于x 的不等式ax+b>0 的解集为,则不等式bx+a<0 的解集是________ .(结果中不含a、b)20.已知关于x的不等式(1-a)x>3的解集为则a的取值范围是________.三、解答题(共2题;共20分)21.解不等式组,并将解集在数轴上表⽰出来.22.为了“创建⽂明城市,建设美丽家园”,我市某社区将辖区内的⼀块⾯积为1000m2的空地进⾏绿化,⼀部分种草,剩余部分栽花,设种草部分的⾯积为x(m2),种草所需费⽤y1(元)与x(m2)的函数关系式为,其图象如图所⽰:栽花所需费⽤y2(元)与x(m2)的函数关系式为y2=﹣0.01x2﹣20x+30000(0≤x≤1000).(1)请直接写出k1、k2和b的值;(2)设这块1000m2空地的绿化总费⽤为W(元),请利⽤W与x的函数关系式,求出绿化总费⽤W的最⼤值;(3)若种草部分的⾯积不少于700m2,栽花部分的⾯积不少于100m2,请求出绿化总费⽤W的最⼩值.四、计算题(共2题;共10分)23.列式计算:求使的值不⼩于的值的⾮负整数x.24.解不等式组五、综合题(共2题;共30分)25.已知关于x 的不等式(1)当m=1 时,求该不等式的解集;(2)当m=1 时,求该不等式的解集;(3)m 取何值时,该不等式有解,并求出解集.(4)m 取何值时,该不等式有解,并求出解集.26.某公司有A、B两种型号的客车,它们的载客量、每天的租⾦如表所⽰:已知某中学计划租⽤A、B两种型号的客车共10辆,同时送七年级师⽣到沙家参加社会实践活动,已知该中学租车的总费⽤不超过5600元.(1)求最多能租⽤多少辆A型号客车?(2)若七年级的师⽣共有380⼈,请写出所有可能的租车⽅案.答案⼀、单选题1. D2. C3. B4. B5. A6. B7. C8. A9. B 10. A 11. C 12. C⼆、填空题13. ≤7 14. 15≤m<18 15. x>3 16. 15<x≤16 17. 3 18. 1 19. x<2 20. a>1三、解答题21. 解:解不等式2x﹣4≥3(x﹣2),得:x≤2,解不等式4x>,得:x>﹣1,则不等式组的解集为﹣1<x≤2,将解集表⽰在数轴上如下:22. (1)解:将x=600、y=18000代⼊y1=k1x,得:18000=600k1,解得:k1=30;将x=600、y=18000和x=1000、y=26000代⼊y2=k2x+b,得:,解得:(2)解:当0≤x<600时,W=30x+(﹣0.01x2﹣20x+30000)=﹣0.01x2+10x+30000,∵﹣0.01<0,W=﹣0.01(x﹣500)2+32500,∴当x=500时,W取得最⼤值为32500元;当600≤x≤1000时,W=20x+6000+(﹣0.01x2﹣20x+30000)=﹣0.01x2+36000,∵﹣0.01<0,∴当600≤x≤1000时,W随x的增⼤⽽减⼩,∴当x=600时,W取最⼤值为32400,∵32400<32500,∴W取最⼤值为32500元(3)解:由题意得:1000﹣x≥100,解得:x≤900,由x≥700,则700≤x≤900,∵当700≤x≤900时,W随x的增⼤⽽减⼩,∴当x=900时,W取得最⼩值。
人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章综合测试一、选择题(每小题3分,共21分)1.若0a b -<,则下列各式中一定正确的是( )A .a b >B .ab >C .0a b <D .a b -->2.不等式组235312x x -⎧⎨+-⎩<>,的解集是( ) A .14x -<< B .4x >或1x -< C .4x > D .1x -<3.(2013·四川内江)把不等式组123x x -⎧⎨+⎩>≤的解集表示在数轴上,下列选项正确的是( )A B C D4.(2013·四川攀枝花)已知实数x ,y ,m |3|0x y m ++=,且y 为负数,则m 的取值范围是( )A .6m >B .6n <C .6m ->D .6n -<5.小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸的体重为72 kg ,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时爸爸的一端仍然着地.后来小宝借来一副质量为6 kg 的哑铃,加在他和妈妈坐的一端,结果爸爸的一端跷起离地.小宝的体重可能是( )A .23.2 kgB .20.3 kgC .21.1 kgD .19.9 kg6.已知关于x 的不等式组041x a x -⎧⎨-⎩≥>的整数解共有5个,则a 的取值范围是( ) A .32a --<<B .32a --<≤C .32a --≤≤D .32a --≤<7.某大型超市从生产基地购进一批水果,运输过程中损耗10%.假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( )A .25B .13C .37D .310二、填空题(每小题4分,共20分)8.不等式212132x x ++->的解集为__________. 9.若关于x 的不等式组232x a x a +⎧⎨-⎩><无解,则a 的取值范围是__________.10.某旅游团有48人到某宾馆住宿,安排住宾馆的同一层,若每间住4人,则房间不够;若每间住5人,则有一房间没有住满.该宾馆一层有客房__________间.11.已知关于x 的不等式组211x m n x m ++⎧⎨--⎩><的解集为12x -<<则 2 015()m n +=__________. 12.如果关于x 的不等式(2) 2m x m -->的解集是1x -<,那么m 的取值范围是__________.三、解答题(共59分)13.(16分)解下列不等式(组),并把解集在数轴上表示出来。
(1)2534x x -+>;(2)123325x x +-+≥;(3)102(5)4x x -⎧⎨+⎩>>; (4)3(2)451312x x x x x -+⎧⎪⎨--+⎪⎩<≤.14.(6分)已知关于x 的不等式组02(1)11x a x x -⎧⎨+-⎩>>的解集是3x >,试求a 的取值范围.15.(7分)已知关于x ,y 的二元一次方程组23352x y m x y m +=⎧⎨+=+⎩的解满足x 与y 的和大于12,求m 的取值范围.16.(10分)(2013·湖北十堰)定义:对于实数a ,符号[]a 表示不大于a 的最大整数.例如,[]5.75=,[]55=,[]π4-=-.(1)如果[]2a =-,那么a 的取值范围是__________.(2)如果[]23=,求满足条件的所有正整数x .17.(10分)阅读下列材料:解答“已知2x y -=,且1x >,0y <,试确定x y +的取值范围”有如下解法:解:因为2x y -=,所以2x y =+.又因为1x >,所以21y +>.所以1y ->.又因为0y <,所以10y -<<.① 同理,得12x <<. ②由+①②,得1102x y -+++<<.所以x y +的取值范围是02x y +<<.请按照上述方法,完成下列问题:(1)已知3x y -=,且2x >,1y <,求x y +的取值范围;(2)已知1y >,1x -<,若x y a -=成立,求x y +的取值范围(结果用含a 的式子表示).18.(10分)小亮的妈妈开了一家糕点店,现有10.2 kg 面粉和10.2 kg 鸡蛋.计划加工一般糕点和精制糕点两种产品共50盒.已知加工一盒一般糕点需要0.3 kg 面粉和0.1 kg 鸡蛋,加工一盒精制糕点需要0.1 kg 面粉和0.3 kg 鸡蛋.(1)有哪几种符合题意的加工方案?请你帮助设计出来;(2)若销售一盒一般糕点和一盒精制糕点的利润分别为1.5元和2元,则按哪一种方案加工,小亮的妈妈可获得最大利润?最大利润为多少?第九章综合测试答案解析1.【答案】D2.【答案】A【解析】分别解两个不等式,得4x <,1x ->,所以14x -<<.故选A .3.【答案】B【解析】解不等式组123x x -⎧⎨+⎩>≤得11x -<≤. 4.【答案】A【解析】根据题意,得2030x x y m +=⎧⎨++=⎩解得26x y m=-⎧⎨=-⎩则60m -<,解得6m >.故选A . 5.【答案】A【解析】设小宝的体重是 kg x ,则妈妈的体重是2 kg x .由题意,得2722672x x x x +⎧⎨++⎩<≥,解得2224x ≤< 6.【答案】B【解析】由不等式0x a -≥,得x a ≥;由不等式41x ->,得3x <.故不等式组的解集为3a x ≤<.因为整数解有5个,所以分别为2,1,0,1-,2-.故a 的取值范围是32a --<≤.7.【答案】B【解析】设购进这种水果 kg a ,进价为y 元/千克,这种水果的售价在进价的基础上应提高x ,则售价为()1y x +元/千克. 根据题意,得0.9(1)100%20%a x y ay ay +-⨯≥,解得13x ≥.故选B . 8.【答案】10x >9.【答案】2a ≤【解析】根据口诀“大大小小无处找”,知应有232a a +-≥.所以2a ≤.10.【答案】10【解析】设该宾馆一层共有x 间客房。
由题意,列不等式组448485(1)0485(1)5x x x ⎧⎪--⎨⎪--⎩<><, 解得123105395x x x ⎧⎪⎪⎪⎨⎪⎪⎪⎩<<>,因为x 为正整数,所以10x =. 11.【答案】1【解析】由不等式组:211x m n x m ++⎧⎨--⎩><, 得2x m n x m +-⎧⎨⎩><,又因为不等式组的解集为12x -<< 所以21m n +-=-,即1m n +=.所以2015()1m n +=.12.【答案】2m <【解析】因为不等式22m x m --()>两边都除以2m -()得解集为1x -<,不等号方向已改变,所以20m -<,即2m <.13.【答案】解:(1)移项,得2345x x -+>.合并同类项,得9x ->.系数化为1,得9x -<.解集在数轴上的表示如答图9-1所示.(2)去分母,得5130223x x ++-()≥(). 去括号,得553046x x ++-≥.移项,得56304 5.x x ++-≥合并同类项,得1129x ≥.系数化为1,得2911x ≥ 解集在数轴上的表示如答图9-2所示.(3)由10x ->,得1x <.由254x +()>,得3x ->.所以不等式组的解集为31x -<<.解集在数轴上的表示如答图9-3所示(4)由3245x x -+()<,得1x ->. 由1312x x x --+<,得37x -≥. 所以不等式组的解集为37x -≥. 解集在数轴上的表示如答图9-4所示。
14.【答案】解:不等式组化为3x a x ⎧⎨⎩>>,由于它的解集为3x >,所以3a ≤,即a 的取值范围是3a ≤. 【解析】化简不等式组,先用a 来表示不等式组的解集,再求出a 的取值范围.15.【答案】解:解方程组23352x y m x y m +=⎧⎨+=+⎩得264x m y m =-⎧⎨=-+⎩ 因为12x y +>,所以26412m m -+-+()()>,解得14m >,即m 的取值范围是14m >. 【解析】由于方程组的解满足12x y +>,故应先解方程组,用含m 的式子表示出x ,y 的值,再将其代入12x y +>中,求出m 的取值范围.16.【答案】解:(1)21a --≤<(2)根据题意,得1342x +≤< 解得57x ≤<,则满足条件的所有正整数为5,6.【解析】(1)根据[]2a =-,得出21a --≤<,即为a 的取值范围;(2)根据题意得出1342x +<,求出x 的取值范围,从而得出满足条件的所有正整数解. 17.【答案】解:(1)因为3x y -=,所以3x y =+.又因为2x >,所以32y +>.所以1y ->.又因为1y <,所以11y -<<.同理,得24x <<.由+①②,得1214y x -+++<<.所以x y +的取值范围是15x y +<<.(2)因为x y a -=,所以x y a =+.又因为1x -<,所以1y a +-<.所以1y a --<.又因为1y >,所以11y a --<<.① 同理,得11a x +-<<.② 由+①②,得()1111a y x a +++-+-<<.所以x y +的取值范围是22a x y a ++--<<.18.【答案】解:(1)设加工一般糕点x 盒,则加工精制糕点50x -()盒.由题意,得 ()()0.30.15010.20.10.35010.2x x x x +-⎧⎨+-⎩≤≤ 解得2426x ≤≤.因为x 是整数,所以24x =,25,26,即有三种加工方案,方案一:加工一般糕点24盒,精制糕点26盒;方案二:加工一般糕点25盒,精制糕点25盒;方案三:加工一般糕点26盒,精制糕点24盒.(2)由题意,知精制糕点越多获得的利润越大,所以当加工一般糕点24盒,精制糕点26盒时,可获得最大利润,最大利润为24 1.526288⨯+⨯=(元).【解析】50盒糕点所需要的面粉质量不能超过10.2 kg ,鸡蛋质量不能超过10.2 kg ,由此可列出一元一次不等式组,求得解集,并求出加工方案和获得的利润.。