初中数学垂径定理(中考题精选)
九年级数学 垂径定理 专题练习(含解析)

答案:B 解析:解答::∵AB 是⊙O 的弦,OD⊥AB 于 D, ∴AD=BD=
1 AB(垂径定理), 2
∴AB=2AD, 在 Rt△ADO 中,OD⊥AB 于 D,若 AO=10,OD=6, ∴AD= AO2 ‒ OD2 = 102 ‒ 62 = 8(勾股定理); ∴AB=16. 故选 B. 分析:先根据勾股定理求出 AD 的长,再根据垂径定理求出 AB 的长. 8、 如 图 , AB 是 ⊙O 的 直 径 , 弦 CD⊥AB 于 点 E, 连 接 OC, 若 OC=5, CD=8, 则 tan∠COE=( ) A.
11、 如 图 , ⊙O 过 点 B、 C, 圆 心 O 在 等 腰 Rt△ABC 的 内 部 , ∠BAC=90°, OA=1, BC=6.则⊙O 的半径为( ) A.6 B.13 C. 13 D.2 13
答案:B 解析:解答:如图:
过 O 作 OC⊥AB 于 C, ∵OC 过圆心 O,AB=24, ∴AC=BC=
1 AB=12, 2
AO2 ‒ AC2 = 132 ‒ 122=5.
在 Rt△AOC 中,由勾股定理得:OC= 故选:B.
分析:过 O 作 OC⊥AB 于 C,根据垂径定理求出 AC,根据勾股定理求出 OC 即可. 6、如图,⊙O 的半径为 2,弦 AB⊥OC 于 C,AB=2 3,则 OC 等于( ) A.2 2 B. 3 C.1 D.2− 3
答案:B 解析:解答:如图:
连接 OA, ∵⊙O 的直径为 10, ∴OA=5, ∵圆心 O 到弦 AB 的距离 OM 的长为 4, 由垂径定理知,点 M 是 AB 的中点,AM= 由勾股定理可得,AM=3,所以 AB=6. 故选 B. 分析:先根据垂径定理求出 AM=
1 AB, 2Байду номын сангаас
九年级数学: 垂径定理典型例题及练习

典型例题分析:例题1、 基本概念1.下面四个命题中正确的一个是( )A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心2.下列命题中,正确的是( ).A .过弦的中点的直线平分弦所对的弧B .过弦的中点的直线必过圆心C .弦所对的两条弧的中点连线垂直平分弦,且过圆心D .弦的垂线平分弦所对的弧例题2、垂径定理1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm ,那么油面宽度AB 是________cm.2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm.3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F .(1)求证:四边形OEHF 是正方形.(2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离.4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长.5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=21BF.O A E F例题3、度数问题1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径.2、已知:⊙O 的半径1=OA ,弦AB 、AC的长分别是2、3.求BAC ∠的度数。
例题4、相交问题如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长.例题5、平行问题在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,求:AB 与CD 之间的距离.例题6、同心圆问题如图,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的半径分别为b a ,.求证:22b a BD AD -=⋅.例题7、平行与相似已知:如图,AB 是⊙O 的直径,CD 是弦,于CD AE ⊥E ,CD BF ⊥于F .求证:FD EC =.A B DCE O作 业:一、概念题1.下列命题中错误的有()(1)弦的垂直平分线经过圆心(2)平分弦的直径垂直于弦(3)梯形的对角线互相平分(4)圆的对称轴是直径A .1个B .2个C .3个D .4个2、⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( )(A )5OM 3≤≤ (B )5OM 4≤≤(C )5OM 3<< (D )5OM 4<<3.如图,如果AB 为⊙O 直径,弦AB CD ⊥,垂足为E ,那么下列结论中错误的是( )A .DE CE =B .C .BAD BAC ∠=∠D .AD AC >4.如图,AB 是⊙O 直径,CD 是⊙O 的弦,CD AB ⊥于E ,则图中不大于半圆的相等弧有( )对。
中考数学专题复习《垂径定理》测试卷-附带答案

中考数学专题复习《垂径定理》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________ 1.如图 在O 中 直径AB 垂直弦CD 于点E 连接,,AC AD BC 作CF AD ⊥于点F 交线段OB 于点G (不与点,O B 重合) 连接OF .(1)若1BE = 求GE 的长.(2)求证:2BC BG BO =⋅.(3)若FO FG = 猜想CAD ∠的度数 并证明你的结论.2.如图 AB 是O 直径 直线l 经过O 上一点C 过点A 作直线l 的垂线.垂足为D .连接AC .已知AC 平分DAB ∠.(1)求证:直线l 与O 相切(2)若70DAB ∠=︒ 3CD = 求O 的半径.(参考数据:sin350.6︒≈cos350.8︒≈.tan350.7︒≈)3.如图 AC 与BD 相交于点E 连接AB CD CD DE =.经过A B C 三点的O 交BD 于点F 且CD 是O 的切线.(1)连接AF 求证:AF AB =(2)求证:2AB AE AC =⋅(3)若2AE = 6EC = 4BE = 则O 的半径为 . 4.如图 四边形ABCD 内接于O 对角线,AC BD 交于点E 连接OE .若,AC BD O ⊥的半径为,r OE m =.(1)若ABC BAD ∠=∠ 求证:OE 平分AEB ∠(2)试用含,r m 的式子表示22AC BD +的值(3)记ADE BCE ABE CDE 的面积分别为1S 2S 3S 4S 当求证:AC BD =.5.如图 AB 是O 的直径 ,C D 是O 上两点 且AD CD = 连接BC 并延长与过点D 的O 的切线相交于点E 连接OD .(1)证明:OD 平分ADC ∠(2)若44,tan 3DE B == 求CD 的长. 6.已知BC 是O 的直径 点D 是BC 延长线上一点 AB AD = AE 是O 的弦 30AEC ∠=︒.(1)求证:直线AD 是O 的切线(2)若AE BC ⊥ 垂足为M O 的半径为10 求AE 的长.7.已知 在O 中 AB 为弦 点C 在圆内 连接AC BC OC 、、,ACO BCO ∠=∠.(1)如图1 求证:AC BC =(2)如图2 延长AC BC 、交O 于点E D 、 连接DE 求证:AB DE ∥(3)如图3 在(2)的条件下 设O 的半径为,3R DE R = 弦FG 经过点C 连接BG BF 、 72,3,33DBF DBG CG R ∠=∠== 求线段CF 的长. 8.已知点,,A B C 在O 上.(1)如图① 过点A 作O 的切线EF 交BC 延长线于点,E D 是弧BC 的中点 连接DO 并延长 交BC 于点G 交O 于点H 交切线EF 于点F 连接,BA BH .若24ABH ∠=︒ 求E ∠的大小(2)如图① 若135AOC B ∠+∠=︒ O 的半径为5 8BC = 求AB 的长. 9.如图 A B C D 分别为O 上一点 连AB AC BC BD CD AC 垂直于BD 于E AC BC = 连CO 并延长交BD 于F .(1)求证:CD CF =(2)若10BC = 6BE = 求O 的半径.10.如图 在 Rt ABC △中 90C ∠=︒,AD 平分 BAC ∠ 交 BC 于点D 点O 是边 AB 上的点 以点O 为圆心 OD 长为半径的圆恰好经过点A 交AC 于点E 弦 EF AB ⊥于点G .(1)求证:BC 是O 的切线.(2)若 12AG EG ==,,求O 的半径.(3)设O 与AB 的另一个交点为 H 猜想AH AE CE 之间的数量关系 并说明理由. 11.如图 在ABC 中 90ACB ∠=︒ 5AB = 1AD = BD BC = 以BD 为直径作O 交BC 于点E 点F 为AC 边上一点 连接EF 过点A 作AG EF ⊥ 垂足为点G =BAC GAF ∠∠.(1)求证:EG 为O 的切线(2)求BE 的长.12.如图 四边形ABCD 中 90B C ∠=∠=︒ 点E 是边BC 上一点 且DE 平分AEC ∠ 作ABE的外接圆O.(1)求证:DC是O的切线(2)若O的半径为5 2CE=求BE与DE的长.13.如图1 在直角坐标系中以原点O为圆心半径为10作圆交x轴于点A B,(点A⊥(点D在点E上方)连在点B的左边).点C为直径AB上一动点过点C作弦DE AB∥交圆O于另一点记为点F.直线EF交x轴于点G连接接AE过点D作DF AE,,.OE BF AD(1)若80∠=︒求ADFBOE∠的度数(2)求证:OE BF∥(3)若2=请直接写出点C横坐标.OG CG14.如图AB为O的弦C为AB的中点D为OC延长线上一点连接BO并延长交O于点E交直线DA于点F B D∠=∠.(1)求证:DA为O的切线(2)若42EF=求弦AB的长度.AF=2⊥交O于B C两点.连15.如图在O中M为半径OA上一点.过M作弦BC OA=.接BO并延长交O于点D连接AD交BC于点E.已知EB ED(1)求证:60CD =︒(2)探究线段CE EM 长度之间的数量关系 并证明.参考答案:1.(1)1(3)45︒2.(2)2583.4.(2)()222242AC BD r m +=-5.(2)6.(2)AE =7.(3)21349CF =8.(1)48E ∠=︒ (2)9.51010.(2)52(3)2AH AE CE =+11.(2)16512.(2)6BE = 25DE =13.(1)100︒(3)点C 555-14.28215.(2)2CE EM =。
(名师整理)最新人教版数学中考《垂径定理 圆心角 圆周角定理》专题精练(含答案解析)

垂径定理圆心角圆周角定理一选择题:1、如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42°B.48°C.52°D.58°2.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为( )A.50° B.55° C.60° D.65°3.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()A.100° B.110° C.120°D.130°4.如图,⊙O的半径为5,弦AB的长为8,点M在线段AB(包括端点A,B)上移动,则OM取值范围是()A.3≤OM≤5B.3≤OM<5C.4≤OM≤5 D.4≤OM<55、如图所示,AB是⊙O的直径,AD=DE,AE与BD交于点C,则图中与∠BCE相等的角有()A.2个 B.3个 C.4个 D.5个6.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B 的读数分别为86°、30°,则∠ACB的大小为( )A.15°B.28° C.29°D.34°7.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是( )8.如图.⊙O 中,AB、AC是弦,O在∠ABO的内部,,,,则下列关系中,正确的是()A. B. C. D.9.如图,四边形ABCD内接于⊙O,BC是直径,AD=DC,∠ADB=20º,则∠ACB,∠DBC分别为()A.15º与30º B.20º与35º C.20º与40º D.30º与35º10.图中∠BOD的度数是()A.55° B.110° C.125° D.150°11.如图,点I为△ABC的内心,点O为△ABC的外心,∠O=140°,则∠I为()(A)140°(B)125°(C)130°(D)110°12.如图,弦AB∥CD,E为上一点,AE平分,则图中与相等(不包括)的角共有()A.3个 B.4个 C.5个 D.6个13、如图,已知的半径为1,锐角内接于,于点,于点,则的值等于()A.的长 B.的长 C.的长 D.的长14.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是()A.直线的一部分B.圆的一部分C.双曲线的一部分 D.抛物线的一部分15.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为()A. B. C.或 D.或或16.如图,,在以为直径的半圆上,,在上,为正方形,若正方形边长为1,,,则下列式子中,不正确的是()A. B. C. D.17.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()A.4 B.5 C.6 D.718.如图,在△ABC中,AD是高,AE是直径,AE交BC于G,有下列四个结论:•①AD2=BD·CD;②BE2=EG·AE;③AE·AD=AB·AC;④AG·EG=BG·CG.其中正确结论的有()A.1个 B.2个 C.3个 D.4个19.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG,,的中点分别是M,N,P,Q。
初中垂径定理试题及答案

初中垂径定理试题及答案一、选择题1. 在圆中,垂直于弦的直径是该弦的()。
A. 垂线B. 垂径C. 弦心距D. 弦长答案:B2. 垂径定理告诉我们,如果一条线段垂直于弦,并且平分弦,那么它也平分弦所对的()。
A. 弧B. 圆心角C. 弦心距D. 弦长答案:A3. 在圆中,如果一条直径垂直于弦,那么这条直径将弦分成的两段长度()。
A. 相等B. 不相等C. 无法确定D. 取决于圆的大小答案:A二、填空题4. 在圆中,如果弦AB的中点为M,且直径CD垂直于弦AB于点M,则弦AB所对的弧ACB的度数为______。
答案:90°5. 垂径定理在圆的几何学中非常重要,它说明了垂直于弦的直径将弦平分,并且平分的弦所对的弧是______。
答案:相等的三、解答题6. 已知圆O的半径为10cm,弦AB垂直于直径CD于点M,求弦AB的长度。
答案:由于直径CD垂直于弦AB,根据垂径定理,弦AB被直径CD平分,因此弦AB的长度为圆的直径,即20cm。
7. 在一个圆中,弦AC的长度为12cm,弦BC的长度为8cm,且AC和BC相交于点O,求圆的半径。
答案:由于AC和BC相交于圆心O,根据垂径定理,OA=OC,OB=OA,因此OA=OC=6cm,OB=OA=6cm。
根据勾股定理,圆的半径r满足r^2 =OA^2 + OB^2 = 6^2 + 6^2 = 72,所以r = √72 = 6√2 cm。
四、证明题8. 证明:在圆中,如果一条直径垂直于弦,那么这条直径将弦平分。
答案:设圆心为O,直径为CD,弦为AB,且CD垂直于AB于点M。
要证明CM=MD。
由于CD是直径,所以∠CMO=∠DMO=90°。
根据垂径定理,CM=MD,因此这条直径将弦平分。
初中数学垂径定理(中考题精选)

初中数学垂径定理练习一.选择题(共13小题)1.(2015•大庆模拟)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9 cm C.cm D.cm 2.(2015•东河区一模)如图,⊙O过点B、C,圆心O在等腰直角三角形的ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.6B.13 C.D.23.(2015•上城区一模)一张圆心角为45°的扇形纸板和一张圆形纸板分别剪成两个大小相同的长方形,若长方形长和宽的比值为2:1,则扇形纸板和圆形纸板的半径之比为()A.2:1 B.:1 C.2:1 D.:14.(2014•乌鲁木齐)如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA 最大时,PA的长等于()A.B.C.3D.25.(2014•安溪县校级二模)如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M 6.(2014•简阳市模拟)如图,⊙O的半径为5,若OP=3,则经过点P的弦长可能是()A.3B.6C.9D.127.(2014•宝安区二模)如图,将半径为6的⊙O沿AB折叠,与AB垂直的半径OC交于点D且CD=2OD,则折痕AB的长为()A.B.C.6D.8.(2014•河北区三模)如图,以(3,0)为圆心作⊙A,⊙A与y轴交于点B(0,2),与x轴交于C、D,P为⊙A上不同于C、D的任意一点,连接PC、PD,过A点分别作AE⊥PC 于E,AF⊥PD于F.设点P的横坐标为x,AE2+AF2=y.当P点在⊙A上顺时针从点C运到点D的过程中,下列图象中能表示y与x的函数关系的图象是()A.B.C.D.9.(2014秋•大竹县校级期末)如图,⊙O的半径为1,点A是半圆上的一个三等分点,点B是弧的中点,P是直径MN上的一个动点,则PA+PB的最小值为()A.1B.C.D.10.(2014秋•扬中市校级月考)如上图,在直角坐标系中,以点P为圆心为半径的圆弧与x轴交于A、B两点,已知A(2,0),B(6,0),则点P的坐标是()A.(4,)B.(4,2)C.(4,4)D.(2,)11.(2013•海门市模拟)圆弧形蔬菜大棚的剖面如图所示,AB=8m,∠CAD=30°,则大棚高度CD约为()A.2.0m B.2.3m C.4.6m D.6.9m12.(2012•天宁区校级模拟)如图,正方形ABCD内接于⊙O,E为DC的中点,直线BE 交⊙O于点F,如果⊙O的半径为,则O点到BE的距离OM=()A.B.C.D.13.(2012秋•镇赉县校级期末)如图,AB为⊙O的一固定直径,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆上(不包括A、B两点)移动时,则对点P的判断正确的是()A.到CD的距离保持不变B.与点C的距离保持不变D.位置不变C.平分二.填空题(共16小题)14.(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为cm.15.(2011•鄂城区校级模拟)在半径为5的⊙O中,有两平行弦AB.CD,且AB=6,CD=8,则弦AC的长为.16.(2010•海南)如图,将半径为4cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为cm.17.(2004•山西)如图,已知Rt△ABC中,∠C=90°,AC=,BC=1,若以C为圆心,CB为半径的圆交AB于点P,则AP=.18.(2003•宁波)如图,AB是半圆O的直径,E是的中点,OE交弦BC于点D,已知BC=8cm,DE=2cm,则AD的长为cm.19.(2008•邵阳)如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD,BC,AB=5,AC=4,则BD=.20.(2006•龙岩)如图,已知⊙O的半径为5,弦AB=8,P是弦AB上一点,且PB=2,则OP=.21.(2005•中原区)如图,已知⊙O的直径为10,P为⊙O内一点,且OP=4,则过点P且长度小于6的弦共有条.22.(2004•郑州)如图,A、B、C、D是⊙O上的四点,且D是弧AB的中点,CD交OB 于E,∠AOB=100°,∠OBC=55°,那么∠OEC=度.23.(2015•黄冈中学自主招生)如图所示,动点C在⊙O的弦AB上运动,AB=,连接OC,CD⊥OC交⊙O于点D.则CD的最大值为.24.(2015•浠水县校级模拟)如图,AB是⊙O的直径CD是弦,若AB=10cm,CD=8cm,那么A、B两点到直线CD的距离之和为.25.(2015•嘉定区一模)如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果BC=6,那么MN=.26.(2015•泰兴市二模)如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.27.(2015•广陵区一模)如图,⊙O的半径是4,△ABC是⊙O的内接三角形,过圆心O 分别作AB、BC、AC的垂线,垂足为E、F、G,连接EF.若OG﹦1,则EF为.28.(2015•滨州模拟)已知圆的两条平行弦分别长6dm和8dm,若这圆的半径是5dm,则两条平行弦之间的距离为.29.(2015春•萧山区校级月考)如图,在平面直角坐标系中,⊙P的圆心坐标是(4,a)(a >4),半径为4,函数y=x的图象被⊙P截得的弦AB的长为,则⊙P的弦心距是;a的值是.三.解答题(共1小题)30.(2015•德州)如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.2015年07月12日1161622024的初中数学组卷参考答案一.选择题(共13小题)1.C 2.C 3.A 4.B 5.B 6.C 7.B 8.A 9.C 10.C 11.B 12.D 13.C二.填空题(共16小题)14.215.或5或7 16.17.18.19.20.21.0 22.80 23.24.6cm 25.3 26.4 27.28.7dm或1dm 29.14+三.解答题(共1小题)30.等边三角形。
【中考冲刺】垂径定理

【中考冲刺】垂径定理【中考冲刺】垂径定理一、选择题(共15小题)1.(2012•黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8B.10 C.16 D.202.(2012•毕节地区)下列命题是假命题的是()A.同弧或等弧所对的圆周角相等B.平分弦的直径垂直于弦C.两条平行线间的距离处处相等D.正方形的两条对角线互相垂直平分3.(2011•牡丹江)已知⊙0的直径AB=40,弦CD⊥AB于点E,且CD=32,则AE的长为()A.12 B.8C.12或28 D.8或324.(2011•达州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE的长为()A.5B.4C.3D.25.(2011•临沂)如图,⊙O的直径CD=5cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5.则AB的长是()A.2cm B.3cm C.4cm D.2cm6.(2009•广元)如图,半径为5的⊙P与y轴相交于M(0,﹣4),N(0,﹣10)两点,则圆心P的坐标为()A.(5,﹣4)B.(4,﹣5)C.(4,﹣7)D.(5,﹣7)7.(2010•芜湖)如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A.19 B.16 C.18 D.208.(2010•台湾)如图,AB为圆O的直径,C、D两点均在圆上,其中OD与AC交于E点,且OD⊥AC.若OE=4,ED=2,则BC长度为()A.6B.7C.8D.99.(2010•绍兴)如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A.A E=OE B.C E=DE C.O E=CE D.∠AOC=60°10.(2009•攀枝花)在圆O中,圆O的半径为5cm,圆心O到弦AB的距离为4cm,则弦AB的长为()A.3cm B.cm C.2cm D.6cm11.(2010•牡丹江)如图,⊙O的直径AB=10cm,弦CD⊥AB,垂足为P.若OP:OB=3:5,则CD的长为()A.6cm B.4cm C.8cm D.10cm12.(2009•湘西州)⊙O的半径为10cm,弦AB=12cm,则圆心到AB的距离为()A.2cm B.6cm C.8cm D.10cm13.(2008•衢州)如图,C是以AB为直径的⊙O上一点,已知AB=5,BC=3,则圆心O到弦BC的距离是()A.1.5 B.2C.2.5 D.314.(2007•福州)如图,⊙O中,弦AB的长为6cm,圆心O到AB的距离为4cm,则⊙O的半径长为()A.3cm B.4cm C.5cm D.6cm15.(2008•长春)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,那么线段OE的长为()A.10 B.8C.6D.4二、填空题(共15小题)(除非特别说明,请填准确值)16.(2011•孝感)如图,直径分别为CD、CE的两个半圆相切于点C,大半圆M的弦与小半圆N相切于点F,且AB∥CD,AB=4,设、的长分别为x、y,线段ED的长为z,则z(x+y)的值为_________.17.(2011•台州)如图,CD是⊙O的直径,弦AB⊥CD,垂足为点M,AB=20,分别以CM、DM为直径作两个大小不同的⊙O1和⊙O2,则图中阴影部分的面积为_________(结果保留π).18.(2011•宁德)如图,AB是半圆O的直径,OD⊥AC,OD=2,则弦BC的长为_________.19.(2011•辽阳)如图,AB为⊙O直径,CD⊥AB,∠BDC=35°,则∠CAD=_________.20.(2011•广安)如图所示,若⊙O 的半径为13cm,点P是弦AB上一动点,且到圆心的最短距离为5cm,则弦AB的长为_________.21.(2010•毕节地区)如图,在⊙O中,直径AB的长为,弦CD⊥AB于E,∠BDC=30°则弦CD的长为_________.22.(2011•厦门)如图,⊙O的直径CD垂直于弦AB,垂足为E.若AB=6cm,则AE=_________cm.23.(2011•深圳)如图,在⊙O中,圆心角∠AOB=12O°,弦,则OA=_________cm.24.(2011•黑龙江)如图,已知⊙O的半径为4,OC垂直弦AB于点C,∠AOB=120°,则弦AB长为_________.25.(2010•海南)如图,将半径为4cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为_________ cm.26.(2010•玉溪)如图,在半径为10的⊙O中,OC垂直弦AB于点D,AB=16,则CD的长是_________.27.(2010•北京)如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=_________.28.(2010•镇江)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE的长为_________.29.(2010•厦门)⊙O的直径为10,圆心O到弦AB的距离为3,则弦AB的长是_________.30.(2010•文山州)如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为_________.【中考冲刺】垂径定理参考答案与试题解析一、选择题(共15小题)1.(2012•黄冈)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8B.10 C.16 D.20考点:垂径定理;勾股定理.分析:连接OC,可知,点E为CD的中点,在Rt△OEC中,OE=OB﹣BE=OC﹣BE,根据勾股定理,即可得出OC,即可得出直径.解答:解:连接OC,根据题意,CE=CD=6,BE=2.在Rt△OEC中,设OC=x,则OE=x﹣2,故:(x﹣2)2+62=x2解得:x=10即直径AB=20.故选D.点评:本题是对垂径定理和解直角三角形的综合应用,解题的关键是利用勾股定理构造直角三角形.2.(2012•毕节地区)下列命题是假命题的是()A.同弧或等弧所对的圆周角相等B.平分弦的直径垂直于弦C.两条平行线间的距离处处相等D.正方形的两条对角线互相垂直平分考点:垂径定理;平行线之间的距离;正方形的性质;圆周角定理;命题与定理.分析:分析是否为假命题,可以举出反例;也可以分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、同弧或等弧所对的圆周角相等,是真命题,故本选项不符合题意;B、平分弦的直径垂直于弦,是假命题,因为只有当该弦不是直径时才成立,故本选项符合题意;C、两条平行线间的距离处处相等,是真命题,故本选项不符合题意;D、正方形的两条对角线互相垂直平分,是真命题,故本选项不符合题意.故选B.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.(2011•牡丹江)已知⊙0的直径AB=40,弦CD⊥AB于点E,且CD=32,则AE的长为()A.12 B.8C.12或28 D.8或32考点:垂径定理;勾股定理.分析:在直角△OCE中,利用勾股定理即可求得OE的长,则AE=OA+OE或AE=OB﹣OE,据此即可求解.解答:解:如图,连接OC,∵弦CD⊥AB于点E∴CE=CD=16,在直角△OCE中,OE===12,则AE=20+12=32,或AE=20﹣12=8,故AE的长是8或32.故选D.点评:本题主要考查了垂径定理,正确理解应分两种情况讨论是解题关键.4.(2011•达州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE的长为()A.5B.4C.3D.2考点:垂径定理;勾股定理.专题:计算题.分析:连接OC,由垂径定理求出CE的长,再根据勾股定理得出线段OE的长.解答:解:连接OC∵AB是⊙O的直径,弦CD⊥AB,∴CE=CD,∵CD=8,∴CE=4,∵AB=10,∴由勾股定理得,OE===3.故选C.点评:本题考查了垂径定理、勾股定理以及圆中辅助线的作法,是重点知识,要熟练掌握.5.(2011•临沂)如图,⊙O的直径CD=5cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5.则AB的长是()A.2cm B.3cm C.4cm D.2cm考点:垂径定理;勾股定理.专题:探究型.分析:先连接OA,由CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为M可知AB=2AM,再根据CD=5cm,OM:OD=3:5可求出OM的长,在Rt△AOM中,利用勾股定理即可求出AM的长,进而可求出AB的长.解答:解:连接OA,∵CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,∴AB=2AM,∵CD=5cm,∴OD=OA=CD=×5=cm,∵OM:OD=3:5,∴OM=OD=×=,∴在Rt△AOM中,AM===2,∴AB=2AM=2×2=4cm.故选C.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.6.(2009•广元)如图,半径为5的⊙P与y轴相交于M(0,﹣4),N(0,﹣10)两点,则圆心P的坐标为()A.(5,﹣4)B.(4,﹣5)C.(4,﹣7)D.(5,﹣7)考点:垂径定理;坐标与图形性质;勾股定理.分析:由M(0,﹣4),N(0,﹣10),即可得MN的值,然后连接PM,过点P作PE⊥MN于E,根据垂径定理可得ME的值,然后由勾股定理,即可求得PE的值,则可得圆心P的坐标.解答:解:∵M(0,﹣4),N(0,﹣10),∴MN=6,连接PM,过点P作PE⊥MN于E,∴ME=NE=MN=3,∴OE=OM+EM=4+3=7,在Rt△PEM,PE===4,∴圆心P的坐标为(4,﹣7).故选C.点评:此题考查了垂径定理,勾股定理的知识.此题难度不大,解题的关键是数形结合思想的应用,注意辅助线的作法.7.(2010•芜湖)如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A.19 B.16 C.18 D.20考点:垂径定理;等边三角形的判定与性质.分析:延长AO交BC于D,根据∠A、∠B的度数易证得△ABD是等边三角形,由此可求出OD、BD的长;过O作BC的垂线,设垂足为E;在Rt△ODE中,根据OD的长及∠ODE的度数易求得DE的长,进而可求出BE的长;由垂径定理知BC=2BE,由此得解.解答:解:延长AO交BC于D,作OE⊥BC于E;∵∠A=∠B=60°,∴∠ADB=60°;∴△ADB为等边三角形;∴BD=AD=AB=12;∴OD=4,又∵∠ADB=60°,∴DE=OD=2;∴BE=10;∴BC=2BE=20;故选D.点评:此题主要考查了等边三角形的判定和性质以及垂径定理的应用.8.(2010•台湾)如图,AB为圆O的直径,C、D两点均在圆上,其中OD与AC交于E点,且OD⊥AC.若OE=4,ED=2,则BC长度为()A.6B.7C.8D.9考点:垂径定理;三角形中位线定理;圆周角定理.分析:由垂径定理易知E是AC的中点,而O是AB的中点,则OE是△ABC的中位线,得BC=2OE,由此得解.解答:解:∵半径OD⊥AC,∴E是AC的中点;又∵O是AB的中点,∴OE是△ABC的中位线;∴BC=2OE=8;故选C.点评:此题主要考查了垂径定理及三角形中位线定理的应用.9.(2010•绍兴)如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A.A E=OE B.C E=DE C.O E=CE D.∠AOC=60°考点:垂径定理.分析:根据垂径定理,即垂直于弦的直径平分弦即可判断.解答:解:∵⊙O的直径AB⊥弦CD,∴CE=DE.故选B.点评:本题考查了垂径定理,即垂直于弦的直径平分弦.10.(2009•攀枝花)在圆O中,圆O的半径为5cm,圆心O到弦AB的距离为4cm,则弦AB的长为()A.3cm B.cm C.2cm D.6cm考点:垂径定理;勾股定理.分析:连接圆心和弦的一端,通过构建直角三角形来求得弦AB的长.解答:解:如图,连接OA;Rt△OAC中,OA=5cm,OC=4cm;由勾股定理,得:AC==3cm;∴AB=2AC=6cm;故选D.点评:此题主要考查了勾股定理及垂径定理的综合应用能力.11.(2010•牡丹江)如图,⊙O的直径AB=10cm,弦CD⊥AB,垂足为P.若OP:OB=3:5,则CD的长为()A.6cm B.4cm C.8cm D.10cm考点:垂径定理;勾股定理.分析:根据⊙O的直径可得出半径OB的长,也就求出OP的长;连接OC,在Rt△OCP中,运用勾股定理可求出CP的长,进而可依据垂径定理求得CD的长.解答:解:连接OC;∵AB=10cm,∴OB=5cm;∵OP:OB=3:5,∴OP=3cm;Rt△OCP中,OC=OB=5cm,OP=3cm;由勾股定理,得:CP==4cm;所以CD=2PC=8cm,故选C.点评:此题主要考查的是勾股定理及垂径定理的应用.12.(2009•湘西州)⊙O的半径为10cm,弦AB=12cm,则圆心到AB的距离为()A.2cm B.6cm C.8cm D.10cm考点:垂径定理;勾股定理.分析:画出草图,根据垂径定理和勾股定理求解.解答:解:弦AB=12cm,根据垂径定理可知BE=6.∵OB=10,∴OE=8.(勾股定理)故选C.点评:本题考查了利用勾股定理解直角三角形的能力,但在此题中也要用到垂径定理.13.(2008•衢州)如图,C是以AB为直径的⊙O上一点,已知AB=5,BC=3,则圆心O到弦BC的距离是()A.1.5 B.2C.2.5 D.3考点:垂径定理;三角形中位线定理.分析:作OM⊥BC,根据三角形的中位线定理弦心距等于AC的一半,再利用勾股定理求出AC的长度,本题即可求出.解答:解:过圆心O作OM⊥BC于M,又根据AB直径,则AC⊥BC∴OM∥AC即OM是△ABC的中位线又AC===4∴OM=AC=2.故选B.点评:本题主要考查了垂径定理的内容,过圆心,且垂直于弦的直线,一定平分弦.14.(2007•福州)如图,⊙O中,弦AB的长为6cm,圆心O到AB的距离为4cm,则⊙O的半径长为()A.3cm B.4cm C.5cm D.6cm考点:垂径定理;勾股定理.分析:过点O作OC⊥AB于点C.根据垂径定理和勾股定理求解.解答:解:过点O作OC⊥AB于点C∵弦AB的长为6cm,圆心O到AB的距离为4cm∴OC=4,AC=AB=3∴OA==5cm故选C.点评:本题考查了垂径定理和勾股定理的综合应用.15.(2008•长春)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,那么线段OE的长为()A.10 B.8C.6D.4考点:垂径定理;勾股定理.分析:先求出DE和圆的半径,再利用勾股定理即可求出.解答:解:∵弦CD⊥AB,垂足为E∴CE=DE=CD=×16=8∴OA是半径OA=AB=×20=10连接OD,在Rt△ODA中,OD=OA=10,DE=8OE===6故选C.点评:此题属简单题目,涉及到垂径定理及勾股定理的运用,需同学们细心解答.二、填空题(共15小题)(除非特别说明,请填准确值)16.(2011•孝感)如图,直径分别为CD、CE的两个半圆相切于点C,大半圆M的弦与小半圆N相切于点F,且AB∥CD,AB=4,设、的长分别为x、y,线段ED的长为z,则z(x+y)的值为8π.考点:垂径定理;勾股定理;切线的性质.专题:计算题.分析:过M作MG⊥AB于G,连MB,NF,根据垂径定理得到BG=AG=2,利用勾股定理可得MB2﹣MG2=22=4,再根据切线的性质有NF⊥AB,而AB∥CD,得到MG=NF,设⊙M,⊙N的半径分别为R,r,则z(x+y)=(CD﹣CE)(π•R+π•r)=(R2﹣r2)•2π,即可得到z(x+y)的值.解答:解:过M作MG⊥AB于G,连MB,NF,如图,而AB=4,∴BG=AG=2,∴MB2﹣MG2=22=4,又∵大半圆M的弦与小半圆N相切于点F,∴NF⊥AB,∵AB∥CD,∴MG=NF,设⊙M,⊙N的半径分别为R,∴z(x+y)=(CD﹣CE)(π•R+π•r),=(2R﹣2r)(R+r)•π,=(R2﹣r2)•2π,=4•2π,=8π.故答案为:8π.点评:本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧;也考查了切线的性质和圆的面积公式以及勾股定理.17.(2011•台州)如图,CD是⊙O的直径,弦AB⊥CD,垂足为点M,AB=20,分别以CM、DM为直径作两个大小不同的⊙O1和⊙O2,则图中阴影部分的面积为50π(结果保留π).考点:垂径定理;勾股定理.专题:计算题.分析:连接CA,DA,根据垂径定理得到AM=MB=10,根据圆周角定理得到∠CAD=90°,易证Rt△MAC∽RtMA2=MC•MD=100;利用S阴影=S⊙O﹣S⊙1部分﹣S⊙2和圆的面积公式进行变形可得到阴影部分的面积=•CM•MD•π,即可计算出阴影部分的面积.解答:解:连接CA,DA,如图,∵AB⊥CD,AB=20,∴AM=MB=10,又∵CD为直径,∴∠CAD=90°,∴∠AMC=∠DMA=90°,∴∠C+∠CAM=90°,∠C+∠D=90°,∴∠CAM=∠D,∴Rt△MAC∽Rt△MDA,∴MA:MD=MC:MA,∴MA2=MC•MD=100;S阴影部分=S⊙O﹣S⊙1﹣S⊙2=π•CD2﹣π•CM2﹣π•DM2=π[CD2﹣CM2﹣(CD﹣CM)2],=π(CM•CD﹣CM2),=•CM•MD•π,=50π.故答案为:50π.点评:本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧;也考查了圆周角定理和三角形相似的判定与性质以及圆的面积公式.18.(2011•宁德)如图,AB是半圆O的直径,OD⊥AC,OD=2,则弦BC的长为4.考点:垂径定理;三角形中位线定理.分析:此题需证出OD∥BC,再根据AO=BO,得出BC=2OD,即可求出答案.解答:解:∵AB是半圆O的直径,∴∠BCA=90°,∵OD⊥AC,∴∠ADO=90°,∴OD∥BC,∵AO=BO,∴OD是△ABC的中位线,∴BC=2OD=4.点评:此题综考查了垂径定理,关键是根据三角形的中位线定理求出答案.19.(2011•辽阳)如图,AB为⊙O直径,CD⊥AB,∠BDC=35°,则∠CAD=70°.考点:垂径定理;圆周角定理.分析:根据AB为⊙O直径,CD⊥AB得出∠BAD=∠BAC=∠BDC=35°,即可求出∠CAD=70°.解答:解:∵AB为⊙O直径,CD⊥AB,∴∠BAD=∠BAC=∠BDC=35°,∴∠CAD=70°.故填70.点评:此题要根据线段垂直平分线的性质证出等边三角形,再熟练运用圆周角定理求解.20.(2011•广安)如图所示,若⊙O 的半径为13cm,点P是弦AB上一动点,且到圆心的最短距离为5cm,则弦AB的长为24cm.考点:垂径定理;勾股专题:计算题.分析:过O点作OC⊥AB于C,连OA,根据垂线段最短得到OC=5cm,根据垂径定理得到AC=BC,再利用勾股定理计算出AC,即可得到AB.解答:解:过O点作OC⊥AB于C,连OA,如图,∴OC=5cm,AC=BC,在Rt△OAC中,OA=13cm,∴AC===12(cm),∴AB=2AC=24cm.故答案为:24cm.点评:本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理.21.(2010•毕节地区)如图,在⊙O中,直径AB的长为,弦CD⊥AB于E,∠BDC=30°则弦CD的长为3.考点:垂径定理;含30度角的直角三角形;勾股定理;圆周角定理;特殊角的三角函数值.分析:连接BD,由∠BDC=30°,即可推出∠BOC=60°,再由AB的长为,求出OC的长度,然后根据特殊角的三角函数值即可推出CE的长度,最后由垂径定理推出CD=2CE,通过计算即可求出CD的长度.解答:解:连接BD,∵∠BDC=30°,∴∠BOC=60°,∵AB=,∴OC=,∵CD⊥AB,∴∠OEC=90°,CD=2CE,∴cos30°==,∵OC=,∴CE=,∴CD=3.故答案为3.点评:本题主要考查圆周角定理,特殊角的三角函数值,垂径定理等知识点,关键在于首先运用圆周角定理推出∠COE的度数,然后根据特殊角的三角函数值推出CE的长度,最后根据垂径定理即可推出CD的长度.22.(2011•厦门)如图,⊙O的直径CD垂直于弦AB,垂足为E.若AB=6cm,则AE=3cm.考点:垂径定理;勾股定理.分析:由⊙O的直径CD垂直于弦AB,AB=6cm,根据垂径定理,即可求得AE的长.解答:解:∵⊙O的直径CD垂直于弦AB,∴AE=AB,∵AB=6cm,∴AE=3cm.故答案为:3.点评:此题考查了垂识.此题比较简单,解题的关键是熟记垂径定理,注意数形结合思想的应用.23.(2011•深圳)如图,在⊙O中,圆心角∠AOB=12O°,弦,则OA=2cm.考点:垂径定理;解直角三角形.分析:过点O作OC⊥AB,根据垂径定理,可得出AC的长,再由余弦函数求得OA的长.解答:解:过点O作OC⊥AB,∴AC=AB,∵AB=2cm,∴AC=cm,∵∠AOB=12O°,OA=OB,∴∠A=30°,在直角三角形OAC中,cos∠A==,∴OA==2cm,故答案为2.点评:本题考查了垂径定理和解直角三角形,是基础知识要熟练掌握.24.(2011•黑龙江)如图,已知⊙O的半径为4,OC垂直弦AB于点C,∠AOB=120°,则弦AB长为4.考点:垂径定理;解直角三角形.专题:计算题.分析:利用等腰三角形的性质和垂径定理得到特殊的直角三角形,然后解直角三角形求得AB的一半AC的长即可求AB的长.解答:解:∵OC垂直弦AB于点C,∴OA=OB,AC=BC,∵∠AOB=120°,∴∠AOC=60°,∵⊙O的半径为4,∴AB=2AC=4cm.故答案为4.点评:本题考查了垂径定理及解直角三角形的知识,解题的关键是利用垂径定理得到直角三角形.25.(2010•海南)如图,将半径为4cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为cm.考点:垂径定理;勾股定理.专题:计算题.分析:先过点O作OC⊥AB,垂足为C,连接OA,由题意求得OC,由勾股定理求得AC,再由垂径定理求得AB的值即可.解答:解:如图,过点O作OC⊥AB,垂足为C,连接OA,∵OA=4cm,∴OC=2cm,∴AC=2cm,∴AB=4cm,故答案为:4.点评:本题考查了勾股定理和垂径定理,解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解.26.(2010•玉溪)如图,在半径为10的⊙O中,OC垂直弦AB于点D,AB=16,则CD的长是4.考点:垂径定理;勾股定理.分析:连接OA,在Rt△OAD中,由垂径定理易知AD的长,再由勾股定理可求出OD的长;而CD=OC﹣OD,由此得解.解答:解:连接OA;Rt△OAD中,AD=AB=8,OA=10;由勾股定理得:OD==6;∴CD=OC﹣OD=10﹣6=4.故答案为:4.点评:此题主要考查垂径定理及勾股定理的应用.27.(2010•北京)如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=2.考点:垂径定理;勾股定理.分析:根据垂径定理可以得到CE的长,在直角△OCE中,根据勾股定理即可求得.解答:解:∵AB为圆O的直径,弦CD⊥AB,垂足为点E.∴CE=CD=4.在直角△OCE中,OE===3.则AE=OA﹣OE=5﹣3=2.点评:此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解,常见辅助线是过圆心作弦的垂线.28.(2010•镇江)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE的长为3.考点:垂径定理;勾股定理.分析:连接OC,由垂径定理可求出CE的长度,在Rt△OCE中,根据CE和⊙O的半径,即可由勾股定理求出OE的长.解答:解:连接OC;Rt△OCE中,OC=AB=5,CE=CD=4;由勾股定理,得:OE==3;即线段OE的长为3.点评:此题考查的是垂径定理及勾股定理的应用.29.(2010•厦门)⊙O的直径为10,圆心O到弦AB的距离为3,则弦AB的长是8.考点:垂径定理;勾股定理.分析:先求出半径,再利用勾股定理求出半弦长,弦长就可以求出了.解答:解:如图,根据题意,得OA=×10=5,AE===4∴AB=2AE=8.点评:利用半径、半弦长、弦心距构造直角三角形,利用勾股定理求解.30.(2010•文山州)如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为5.考点:垂径定理;勾股定理.分析:OM最小值为4,即弦AB的弦心距为4,构造直角三角形,根据垂径定理和勾股定理,可求出圆O的半径为5.解答:解:如图,连接OA,OM⊥AB,∴OM=4,∵AB=6,∴AM=BM=AB=3,在Rt△AOM中,OA=,所以⊙O的半径为5.点评:解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个.。
2024年中考数学复习 圆中垂径定理综合应用(3大类题型)(原卷版+答案解析)

圆中垂径定理综合应用(3大类题型)重难点题型归纳【题型1直接运用勾股定理求线段】【题型2勾股定理与方程综合求线段】【题型3垂径定理在实际中应用】满分必练【题型1直接运用勾股定理求线段】1(2023•大连模拟)如图所示,在⊙O中,直径AB=10,弦DE⊥AB于点C,连接DO.若OC:OB =3:5,则DE的长为()A.3B.4C.6D.82(2023•杭州模拟)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE= ( )cm.A.8B.5C.3D.23(2023•宜昌)如图,OA,OB,OC都是⊙O的半径,AC,OB交于点D.若AD=CD=8,OD=6,则BD的长为()A.5B.4C.3D.24(2023•金寨县校级模拟)如图,AB是⊙O的直径,弦CD⊥AB于点E,若CD=6,AB=10,则AE 的长为()A.1B.2C.3D.45(2023•亳州三模)如图,在⊙O中,直径AB⊥CD于点H.若AB=10,CD=8,则BH的长为()A.5B.4C.3D.26(2023•容县一模)如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为点E,CD=8cm,AB=10cm,则AE=.7(2023•衡南县三模)在⊙O中,直径AB=4,弦CD⊥AB于P,OP=3,则弦CD的长为.8(2023•东台市校级模拟)如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,若OA=5,AB= 8,则线段CD的长为=.9(2023•望城区模拟)如图,AB是⊙O的直径,且AB=10cm,弦CD⊥AB于点E,CD=8cm,连接OC,则BE=cm.10(2023•长沙县二模)如图,⊙O的半径为5,弦AB=8,点C是AB的中点,连接OC,则OC的长为.【题型2勾股定理与方程综合求线段】11(2023•邯郸模拟)如图,以CD为直径的⊙O中,弦AB⊥CD于M.AB=16,CM=16.则MD 的长为()A.4B.6C.8D.1012(2022秋•南开区校级期末)如图,在⊙O中,半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则EC的长度为()A.215B.8C.210D.21313(2022秋•文登区期末)如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=CD=8,则⊙O的半径为()D.5A.3B.4C.9214(2022秋•西湖区校级期末)如图,AB是⊙O的直径,弦CD⊥AB交于点E.若BE=10,CD= 8,则⊙O的半径为()A.3B.4.2C.5.8D.615(2022秋•泰山区校级期末)一块圆形宣传标志牌简图如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=16dm,DC=4dm,则圆形标志牌的半径为()A.6dmB.5dmC.10dmD.3dm16(2022秋•任城区校级期末)如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=2寸,AB=16寸,直径CD的长是()A.28寸B.30寸C.36寸D.34寸17(2023•汉阳区校级一模)如图,CD为⊙O直径,弦AB⊥CD于点E,CE=1,AB=6,则CD长为()A.10B.9C.8D.518(2023•汇川区三模)在半径为r的圆中,弦BC垂直平分OA,若BC=6,则r的值是()A.3B.33C.23D.23219(2023春•仪征市期末)如图,AB是⊙O的直径,弦CD⊥AB于点E,CE=3,BE=1,则OC=.20(2023•大冶市一模)如图,AB是⊙O的弦,C是AB的中点,连接OC并延长交⊙O于点D.若CD=1,AB=4,则⊙O的半径是 52 .【题型3垂径定理在实际中应用】21(2022秋•海淀区校级月考)如图,一条公路的转弯处是一段圆弧AB,点O是弧AB的圆心,C为弧AB上一点,OC⊥AB,垂足为D.已知AB=60m,CD=10m,求这段弯路的半径.22(2022秋•郾城区期中)如图是一根圆形下水管道的横截面,管内有少量的污水,此时的水面宽AB 为0.6米,污水的最大深度为0.1米.(1)求此下水管横截面的半径;(2)随着污水量的增加,水位又被抬升0.7米,求此时水面的宽度增加了多少?23(2022秋•沭阳县期中)如图是某蔬菜基地搭建一座圆弧型蔬菜棚,跨度AB=3.2米,拱高CD=0.8米(C为AB的中点,D为弧AB的中点).(1)求该圆弧所在圆的半径;(2)在距蔬菜棚的一端0.4米处竖立支撑杆EF,求支撑杆EF的高度.24如图,有一拱桥是圆弧形,它的跨度(所对弦长)为60m,拱高18m,当水面涨至其跨度只有30m时,就要采取紧急措施.某次洪水来到时,拱顶离水面只有4m,问是否需要采取紧急措施?25如图,残缺轮片上弦AB的垂直平分线交弧AB于点C,交弦AB于点D,已知AB=24cm,CD=8cm.(1)找出此残缺轮片所在圆的圆心(写出找到圆心的方法);(2)求此圆的半径.26某地有一座圆弧形拱桥,所在圆的圆心为点O,桥下水面宽度AB为7.2m,过点O作OC⊥AB于点D,交圆弧于点C,CD=2.4m(如图).现有一艘宽3m、船舱顶部高出水面AB2m的货船要经过这座拱桥,此货船能否顺利通过这座拱桥?27我国古算书《九章算术》中有“圆材埋壁”一题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径(直径)几何?”(注:如图,⊙O表示圆材截面,CE是⊙O的直径,AB表示“锯道”,CD表示“锯深”,1尺=10寸,求圆材的直径长就是求CE的长.)28如图,半圆拱桥的圆心为O,圆的半径为5m,一只8m宽的船装载一集装箱,箱顶宽6m,离水面AB高3.8m,这条船能过桥洞吗?请说明理由.29(2022秋•沭阳县校级月考)如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26m,OE⊥CD于点E.水位正常时测得OE:CD=5:24(1)求CD的长;(2)现汛期来临,水面要以每小时4m的速度上升,则经过多长时间桥洞会刚刚被灌满?30(2022秋•东台市期中)如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m)圆中垂径定理综合应用(3大类题型)重难点题型归纳【题型1直接运用勾股定理求线段】【题型2勾股定理与方程综合求线段】【题型3垂径定理在实际中应用】满分必练【题型1直接运用勾股定理求线段】1(2023•大连模拟)如图所示,在⊙O中,直径AB=10,弦DE⊥AB于点C,连接DO.若OC:OB =3:5,则DE的长为()A.3B.4C.6D.8【答案】D【解答】解:∵AB=10,∴OA=OB=5,∵OC:OB=3:5,∴OC=3,在Rt△OCD中,CD=OD2-OC2=52-32=4,∵DE⊥AB,∴DE=2CD=8,故选:D.2(2023•杭州模拟)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE= ( )cm.A.8B.5C.3D.2【答案】A【解答】解:∵AB⊥CD,AB是直径,∴CE=ED=4cm,在Rt△OEC中,OE=OC2-EC2=52-42=3(cm),∴AE=OA+OE=5+3=8(cm),故选:A.3(2023•宜昌)如图,OA ,OB ,OC 都是⊙O 的半径,AC ,OB 交于点D .若AD =CD =8,OD =6,则BD 的长为()A.5B.4C.3D.2【答案】B 【解答】解:∵AD =CD =8,∴OB ⊥AC ,在Rt △AOD 中,OA =AD 2+OD 2=82+62=10,∴OB =10,∴BD =10-6=4.故选:B .4(2023•金寨县校级模拟)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若CD =6,AB =10,则AE 的长为()A.1B.2C.3D.4【答案】A 【解答】解:连接OC ,∵直径AB ⊥CD ,∴EC =12CD =12×6=3,∵AB =10,∴OC =OA =5,∴OE =OC 2-CE 2=4,∴AE =OA -OE =1.故选:A .5(2023•亳州三模)如图,在⊙O中,直径AB⊥CD于点H.若AB=10,CD=8,则BH的长为()A.5B.4C.3D.2【答案】D【解答】解:连接OC,∵AB⊥CD,CD=8,∴CH=DH=12CD=4,∠OHC=90°,∵AB=10,∴OB=OC=5,∴OH=OC2-CH2=52-42=3,∴BH=OB-OH=2,故选:D.6(2023•容县一模)如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为点E,CD=8cm,AB=10cm,则AE=2cm.【答案】2cm.【解答】解:由题意可知,AB垂直平分CD,OC=OA=12AB=5cm,∴CE=12CD=4cm,在Rt△CEO中,OE=OC2-CE2=52-42=3(cm),∴AE=OA-OE=2cm.故答案为:2cm.7(2023•衡南县三模)在⊙O中,直径AB=4,弦CD⊥AB于P,OP=3,则弦CD的长为2.【答案】见试题解答内容【解答】解:连接OC,∵在⊙O中,直径AB=4,AB=2,∴OA=OC=12∴弦CD⊥AB于P,OP=3,∴CP=OC2-OP2=1,∴CD=2CP=2.故答案为:2.8(2023•东台市校级模拟)如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,若OA=5,AB= 8,则线段CD的长为=2.【答案】2.【解答】解:∵OC⊥AB,AB=4,∴AD=BD=12在Rt△OAD中,OD=OA2-OD2=52-42=3,∴CD=OC-OD=5-3=2.故答案为:2.9(2023•望城区模拟)如图,AB是⊙O的直径,且AB=10cm,弦CD⊥AB于点E,CD=8cm,连接OC,则BE=2cm.【答案】2.【解答】解:∵弦CD ⊥AB ,CD =8cm ,∴CE =12CD =4cm ,在Rt △OEC 中,OC =12AB =5cm ,∴OE =OC 2-CE 2=3cm ,∴BE =OB -OE =2(cm ),故答案为:2.10(2023•长沙县二模)如图,⊙O 的半径为5,弦AB =8,点C 是AB 的中点,连接OC ,则OC 的长为3.【答案】3.【解答】解:∵B 是AC 的中点,∴AC =12AB =4,OC ⊥AB ,在Rt △OAC 中,OC =OA 2-AC 2=52-42=3.故答案为:3.【题型2勾股定理与方程综合求线段】11(2023•邯郸模拟)如图,以CD 为直径的⊙O 中,弦AB ⊥CD 于M .AB =16,CM =16.则MD 的长为()A.4B.6C.8D.10【答案】A【解答】解:连接OA ,如图,设⊙O 的半径为r ,则OA =r ,OM =16-r ,∵AB ⊥CD ,∴AM =BM =12AB =8,在Rt △AOM 中,82+(16-r )2=r 2,解得r =10,∴MD =CD -CM =20-16=4.故选:A .12(2022秋•南开区校级期末)如图,在⊙O 中,半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接EC ,若AB =8,CD =2,则EC 的长度为()A.215B.8C.210D.213【答案】D【解答】解:如图,连接BE ,设⊙O 的半径为R ,∵OD ⊥AB ,∴AC =BC =12AB =12×8=4,在Rt △AOC 中,OA =r ,OC =r -CD =r -2,由勾股定理,得OC 2+AC 2=OA 2,∴42+(r -2)2=r 2,解得r =5,∴OC =5-2=3,∵O 是AE 的中点,C 是AB 的中点,∴OC 是三角形ABE 的中位线,∴BE =2OC =6,∵AE 为⊙O 的直径,∴∠ABE =90°,在Rt △BCE 中,CE =BC 2+BE 2=213.故选:D .13(2022秋•文登区期末)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,若AE =CD =8,则⊙O 的半径为()A.3B.4C.9D.52【答案】见试题解答内容【解答】解:连接OC,∵AB为⊙O的直径,弦CD⊥AB于点E,AE=CD=8,CD=4,∴CE=DE=12设OC=r,则OE=8-r,在Rt△OCE中,OE2+CE2=OC2,即(8-r)2+42=r2,解得r=5.故选:D.14(2022秋•西湖区校级期末)如图,AB是⊙O的直径,弦CD⊥AB交于点E.若BE=10,CD= 8,则⊙O的半径为()A.3B.4.2C.5.8D.6【答案】C【解答】解:连接OC,设⊙O的半径为R,则OE=10-R,∵CD⊥AB,AB过圆心O,CD=8,∴∠OEC=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,R2=42+(10-R)2,解得:R=5.8,即⊙O的半径长是5.8,故选:C.15(2022秋•泰山区校级期末)一块圆形宣传标志牌简图如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=16dm,DC=4dm,则圆形标志牌的半径为()A.6dmB.5dmC.10dmD.3dm【答案】C【解答】解:连接OA,OD,∵点A,B,C在⊙O上,CD垂直平分AB于点D,AB=16dm,DC=4dm,∴AD=8dm,设圆形标志牌的半径为r,可得:r2=82+(r-4)2,解得:r=10,故选:C.16(2022秋•任城区校级期末)如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=2寸,AB=16寸,直径CD的长是()A.28寸B.30寸C.36寸D.34寸【答案】D【解答】解:如图,连接OA,∵CD⊥AB,CD过圆心O,AB=16寸,∴∠AEO=90°,AE=BE=8寸,设圆的半径是r寸,在直角△OAE中,OA=r寸,OE=(r-2)寸,由勾股定理得:OA2=OE2+AE2,r2=(r-2)2+82,解得:r=17.则CD=2×17=34(寸).故选:D.17(2023•汉阳区校级一模)如图,CD为⊙O直径,弦AB⊥CD于点E,CE=1,AB=6,则CD长为()A.10B.9C.8D.5【答案】A【解答】解:设⊙O的半径为R,则OE=R-1,∵AB⊥CD,AB=6,∴AE=BE=3,∠AEO=90°,在Rt△AEO中,由勾股定理得:AO2=AE2+OE2,R2=(R-1)2+32,解得:R=5,即CD =10,故选:A .18(2023•汇川区三模)在半径为r 的圆中,弦BC 垂直平分OA ,若BC =6,则r 的值是()A.3B.33C.23D.232【答案】C 【解答】解:设OA 交BC 于点D ,如图,∵BC 垂直平分OA ,∴OD =12r ,BD =CD =12BC =3,在Rt △OBD 中,(12r )2+32=r 2,解得r 1=23,r 2=-23(舍去),即r 的值为23.故选:C .19(2023春•仪征市期末)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,CE =3,BE =1,则OC =2.【答案】2.【解答】解:设OC =x ,则OE =x -1,在Rt △COE 中由勾股定理得,OC 2=CE 2+OE 2,即x 2=(3)2+(x -1)2,解得x =2,即OC =2,故答案为:2.20(2023•大冶市一模)如图,AB 是⊙O 的弦,C 是AB 的中点,连接OC 并延长交⊙O 于点D .若CD =1,AB =4,则⊙O 的半径是 52 .【答案】见试题解答内容【解答】解:连接OA ,∵C 是AB 的中点,∴AC =12AB =2,OC ⊥AB ,∴OA 2=OC 2+AC 2,即OA 2=(OA -1)2+22,解得,OA =52,故答案为:52.【题型3垂径定理在实际中应用】21(2022秋•海淀区校级月考)如图,一条公路的转弯处是一段圆弧AB ,点O 是弧AB 的圆心,C 为弧AB 上一点,OC ⊥AB ,垂足为D .已知AB =60m ,CD =10m ,求这段弯路的半径.【答案】这段弯路的半径为50m .【解答】解:连接OB ,∵OC ⊥AB ,∴AD =BD =12AB =30m ,设半径为r ,则OD =r -10,在Rt △OBD 中,OD 2+BD 2=OB 2,即(r -10)2+302=r 2,解得r =50m ,答:这段弯路的半径为50m .22(2022秋•郾城区期中)如图是一根圆形下水管道的横截面,管内有少量的污水,此时的水面宽AB 为0.6米,污水的最大深度为0.1米.(1)求此下水管横截面的半径;(2)随着污水量的增加,水位又被抬升0.7米,求此时水面的宽度增加了多少?【答案】(1)下水管半径为0.5米;(2)水位又被抬升0.7米,水面的宽度增加了0.2米.【解答】解:(1)作半径OD ⊥AB 于C ,连接OB ,则CD =0.1米,由垂径定理得:BC =12AB =0.3米,在Rt △OBC 中,OB 2=OC 2+BC 2,∴OB 2=(OB -0.1)2+0.09,∴BO =0.5,即下水管半径为0.5米;(2)如图,过点O 作OH ⊥MN 于H ,∴NH =MH ,∵水位又被抬升0.7米,∴OH =0.1+0.7-0.5=0.3米,∴NH =ON 2-OH 2=0.25-0.09=0.4米,∴MN =0.8米,∴增加了0.2米,∴水位又被抬升0.7米,水面的宽度增加了0.2米.23(2022秋•沭阳县期中)如图是某蔬菜基地搭建一座圆弧型蔬菜棚,跨度AB =3.2米,拱高CD =0.8米(C 为AB 的中点,D 为弧AB 的中点).(1)求该圆弧所在圆的半径;(2)在距蔬菜棚的一端0.4米处竖立支撑杆EF ,求支撑杆EF 的高度.【答案】0.4米.【解答】解:(1)设弧AB 所在的圆心为O ,D 为弧AB 的中点,CD ⊥AB 于C ,延长DC 经过O 点,则BC =12AB =1.6(米),设⊙O 的半径为R ,在Rt △OBC 中,OB 2=OC 2+CB 2,∴R 2=(R -0.8)2+1.62,解得R =2,即该圆弧所在圆的半径为2米;(2)过O 作OH ⊥FE 于H ,则OH =CE =1.6-0.4=1.2=65(米),OF =2米,在Rt △OHF 中,HF =OF 2-OH 2=22-652=1.6(米),∵HE =OC =OD -CD =2-0.8=1.2(米),∴EF =HF -HE =1.6-1.2=0.4(米),即支撑杆EF 的高度为0.4米.24如图,有一拱桥是圆弧形,它的跨度(所对弦长)为60m ,拱高18m ,当水面涨至其跨度只有30m 时,就要采取紧急措施.某次洪水来到时,拱顶离水面只有4m ,问是否需要采取紧急措施?【答案】不需要.【解答】解:∵AB =60米,MP =18米,OP ⊥AB ,∴AM =12AB =30(米),OM =OP -MP =(x -18)米,在Rt △OAM 中,由勾股定理得OA 2=AM 2+OM 2,∴x 2=302+(x -18)2,∴x =34(米).当PN =4时,∵PN =4,OP =x ,∴ON =34-4=30(米),设A ′N =y 米,在Rt △OA ′N 中,∵OA ′=34,A ′N =y ,ON =30,∴342=y 2+302,∴y =16或y =-16(舍去),∴A ′N =16,∴A ′B ′=16×2=32(米)>30米,∴不需要采取紧急措施.25如图,残缺轮片上弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D ,已知AB =24cm ,CD =8cm .(1)找出此残缺轮片所在圆的圆心(写出找到圆心的方法);(2)求此圆的半径.【答案】(1)圆的圆心如图所示;(2)13.【解答】解:(1)连接AC,作线段AC的垂直平分线交直线CD为O,则点O为此残缺轮片所在圆的圆心;(2)连接OA,设此圆的半径为rcm,则OD=(r-8)cm,∵CD是弦AB的垂直平分线,AB=24cm,∴AD=12cm,在Rt△AOD中,OA2=OD2+AD2,即r2=(r-8)2+122,解得:r=13.26某地有一座圆弧形拱桥,所在圆的圆心为点O,桥下水面宽度AB为7.2m,过点O作OC⊥AB于点D,交圆弧于点C,CD=2.4m(如图).现有一艘宽3m、船舱顶部高出水面AB2m的货船要经过这座拱桥,此货船能否顺利通过这座拱桥?【答案】此货船能顺利通过这座拱桥.【解答】解:如图,连接ON,OB.∵OC⊥AB,∴D为AB中点,∵AB=7.2m,AB=3.6m.∴BD=12又∵CD=2.4m,设OB=OC=ON=rm,则OD=(r-2.4)m.在Rt△BOD中,根据勾股定理得:r2=(r-2.4)2+3.62,解得r=3.9.∵CD=2.4m,船舱顶部为正方形并高出水面AB2m,∴CE=2.4-2=0.4m,∴OE=r-CE=3.9-0.4=3.5m,在Rt△OEN中,EN2=ON2-OE2=3.92-3.52=2.96(m2),∴EN= 2.96(m).∴MN=2EN=2× 2.96≈3.44m>3m.∴此货船能顺利通过这座拱桥.27我国古算书《九章算术》中有“圆材埋壁”一题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径(直径)几何?”(注:如图,⊙O 表示圆材截面,CE 是⊙O 的直径,AB 表示“锯道”,CD 表示“锯深”,1尺=10寸,求圆材的直径长就是求CE 的长.)【答案】见试题解答内容【解答】解:连接OA ,如图所示:∵AB ⊥CE ,∴AD =BD ,∵AB =10,∴AD =5,在Rt △AOE 中,∵OA 2=OD 2+AD 2,∴OA 2=(OA -1)2+52,解得:OA =13,∴CD =2A 0=26;即直径为26寸.28如图,半圆拱桥的圆心为O ,圆的半径为5m ,一只8m 宽的船装载一集装箱,箱顶宽6m ,离水面AB 高3.8m ,这条船能过桥洞吗?请说明理由.【答案】见试题解答内容【解答】解:如图,过点O 作OF ⊥DE 于点F ,则EF =DF =12DE ,假设DE =6m ,则DF =3m ,∵圆的半径为5m ,∴OD =5m ,∴OF =OD 2-DF 2=52-32=4>3.8,∴这条船能过桥洞.29(2022秋•沭阳县校级月考)如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且AB =26m ,OE ⊥CD 于点E .水位正常时测得OE :CD =5:24(1)求CD 的长;(2)现汛期来临,水面要以每小时4m 的速度上升,则经过多长时间桥洞会刚刚被灌满?【答案】见试题解答内容【解答】解:(1)∵直径AB=26m,∴OD=12AB=12×26=13m,∵OE⊥CD,∴DE=12CD,∵OE:CD=5:24,∴OE:ED=5:12,∴设OE=5x,ED=12x,∴在Rt△ODE中(5x)2+(12x)2=132,解得x=1,∴CD=2DE=2×12×1=24m;(2)由(1)得OE=1×5=5m,延长OE交圆O于点F,∴EF=OF-OE=13-5=8m,∴84=2(小时),即经过2小时桥洞会刚刚被灌满.30(2022秋•东台市期中)如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m)【答案】见试题解答内容【解答】解:如图,连接OC,AB交CD于E,由题意知:AB=1.6+6.4+4=12,所以OC=OB=6,OE=OB-BE=6-4=2,由题意可知:AB⊥CD,∵AB过O,∴CD=2CE,在Rt△OCE中,由勾股定理得:CE=OC2-OE3=62-22=42,∴CD=2CE=82≈11.3m,所以路面CD的宽度为11.3m.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学垂径定理练习
一.选择题(共13小题)
1.(2015•大庆模拟)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()
A.
B.9 cm C.cm D.cm
cm
2.(2015•东河区一模)如图,⊙O过点B、C,圆心O在等腰直角三角形的ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()
A.6B.13C.D.2
3.(2015•上城区一模)一张圆心角为45°的扇形纸板和一张圆形纸板分别剪成两个大小相同的长方形,若长方形长和宽的比值为2:1,则扇形纸板和圆形纸板的半径之比为()
A.2:1B.:1C.2:1D.:1
4.(2014•乌鲁木齐)如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA 最大时,PA的长等于()
A.B.C.3D.2
5.(2014•安溪县校级二模)如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()
A.点P B.点Q C.点R D.点M 6.(2014•简阳市模拟)如图,⊙O的半径为5,若OP=3,则经过点P的弦长可能是()
A.3B.6C.9D.12
7.(2014•宝安区二模)如图,将半径为6的⊙O沿AB折叠,与AB垂直的半径OC交于点D且CD=2OD,则折痕AB的长为()
A.B.C.6D.
8.(2014•河北区三模)如图,以(3,0)为圆心作⊙A,⊙A与y轴交于点B(0,2),与x 轴交于C、D,P为⊙A上不同于C、D的任意一点,连接PC、PD,过A点分别作AE⊥PC 于E,AF⊥PD于F.设点P的横坐标为x,AE2+AF2=y.当P点在⊙A上顺时针从点C运到点D的过程中,下列图象中能表示y与x的函数关系的图象是()
A.B.C.D.
9.(2014秋•大竹县校级期末)如图,⊙O的半径为1,点A是半圆上的一个三等分点,点B 是弧的中点,P是直径MN上的一个动点,则PA+PB的最小值为()
A.1B.C.D.
10.(2014秋•扬中市校级月考)如上图,在直角坐标系中,以点P 为圆心为半径的圆弧与x轴交于A、B两点,已知A(2,0),B(6,0),则点P的坐标是()
A.(4,)B.(4,2)C.(4,4)D.(2,)11.(2013•海门市模拟)圆弧形蔬菜大棚的剖面如图所示,AB=8m,∠CAD=30°,则大棚
高度CD约为()
A.2.0m B.2.3m C.4.6m D.6.9m
12.(2012•天宁区校级模拟)如图,正方形ABCD内接于⊙O,E为DC的中点,直线BE 交⊙O于点F,如果⊙O的半径为,则O点到BE的距离OM=()
A.B.C.D.
13.(2012秋•镇赉县校级期末)如图,AB为⊙O的一固定直径,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆上(不包括A、B两点)移动时,则对点P的判断正确的是()
A.到CD的距离保持不变B.与点C的距离保持不变
D.位置不变
C.
平分
二.填空题(共16小题)
14.(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为cm.
15.(2011•鄂城区校级模拟)在半径为5的⊙O中,有两平行弦AB.CD,且AB=6,CD=8,则弦AC的长为.
16.(2010•海南)如图,将半径为4cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为cm.
17.(2004•山西)如图,已知Rt△ABC中,∠C=90°,AC=,BC=1,若以C为圆心,CB为半径的圆交AB于点P,则AP= .
18.(2003•宁波)如图,AB是半圆O的直径,E是的中点,OE交弦BC于点D,已知BC=8cm,DE=2cm,则AD的长为cm.
19.(2008•邵阳)如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD,BC,AB=5,AC=4,则BD= .
20.(2006•龙岩)如图,已知⊙O的半径为5,弦AB=8,P是弦AB上一点,且PB=2,则OP= .
21.(2005•中原区)如图,已知⊙O的直径为10,P为⊙O内一点,且OP=4,则过点P且长度小于6的弦共有条.
22.(2004•郑州)如图,A、B、C、D是⊙O上的四点,且D是弧AB的中点,CD交OB 于E,∠AOB=100°,∠OBC=55°,那么∠OEC=度.
23.(2015•黄冈中学自主招生)如图所示,动点C在⊙O的弦AB上运动,AB=,连接OC,CD⊥OC交⊙O于点D.则CD的最大值为.
24.(2015•浠水县校级模拟)如图,AB是⊙O的直径CD是弦,若AB=10cm,CD=8cm,那么A、B两点到直线CD的距离之和为.
25.(2015•嘉定区一模)如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果BC=6,那么MN= .
26.(2015•泰兴市二模)如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.
27.(2015•广陵区一模)如图,⊙O的半径是4,△ABC是⊙O的内接三角形,过圆心O分别作AB、BC、AC的垂线,垂足为E、F、G,连接EF.若OG﹦1,则EF为.
28.(2015•滨州模拟)已知圆的两条平行弦分别长6dm和8dm,若这圆的半径是5dm,则两条平行弦之间的距离为.
29.(2015春•萧山区校级月考)如图,在平面直角坐标系中,⊙P的圆心坐标是(4,a)(a >4),半径为4,函数y=x的图象被⊙P截得的弦AB的长为,则⊙P的弦心距
是;a的值是.
三.解答题(共1小题)
30.(2015•德州)如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:;
(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;
(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.
2015年07月12日1161622024的初中数学组卷
参考答案
一.选择题(共13小题)
1.C 2.C 3.A 4.B 5.B 6.C 7.B 8.A 9.C 10.C 11.B 12.D 13.C
二.填空题(共16小题)
14.2 15.或5或7 16.17.18.19.20.21.0 22.80 23.24.6cm 25.3 26.4 27.28.7dm或1dm 29.14+
三.解答题(共1小题)
30.等边三角形。