第八章梁的强度与刚度.
梁弯曲的强度条件和刚度条件及应用

范中查到。
在梁的设计计算中,通常是根据强度条件确定截面尺寸,然
后用刚度条件进行校核。具体过程参看下面例题。
工程力学
梁弯曲的强度条件和刚度条件及应用
(1)小跨度梁或荷载作用在支座附近的梁。此时梁的Mm ax可能较小而FSmax较大。
(2)焊接的组合截面(如工字形)钢梁。当梁截面的腹板厚 度与高度之比小于型钢截面的相应比值时,横截面上可能产 生较大的切应力τmax。
(3)木梁。木梁在顺纹方向的抗剪能力差,可能沿中性层 发生剪切破坏。
梁弯曲的强度条件和刚度条件及应用
2. 强度条件的应用 【例8-6】
梁弯曲的强度条件和刚度条件及应用
(2)内力分析。绘制内力图如图8-27(b)和(c)所示, 确定最大剪力、弯矩为
FSmax=60 kN,Mmax=18 kN·m (3)根据正应力强度条件选择截面。由式(8-26)得
查附录型钢表,可选用16号工字钢,其抗弯截面系数 Wz=141 cm3,高h=16 cm,腿厚t=9.9 mm,腹板厚b1= 6 mm。
梁弯曲的强度条件和刚度条件及应用
图8-27
梁弯曲的强度条件和刚度条件及应用
1.2 弯曲梁的刚度条件
梁除满足强度条件外,还应满足刚度要求。根据工程实际的
需要,梁的最大挠度和最大(或指定截面的)转角应不超过某一规
定值,由此梁的刚度条件为
ymax≤y
(8-28)
θmax≤θ
(8-29)
式中,许可挠度y和许可转角θ的大小可在工程设计的有关规
工程力学
ห้องสมุดไป่ตู้
梁弯曲的强度条件和刚度条件及应用
1.1 梁弯曲的强度条件及应用 1. 强度条件
由于梁弯曲变形时横截面上即有正应力又有切应力,因此强度条 件应为两个。当弯曲梁横截面上最大正应力不超过材料的许用正应力, 最大切应力不超过材料的许用切应力时,梁的强度足够,即
梁的强度和刚度计算

梁的强度和刚度计算强度是指梁抵抗外力的能力。
梁的强度计算一般包括了两个方面:弯曲强度和剪切强度。
其中,弯曲强度是指梁在受到弯曲作用时的承载能力,剪切强度是指梁在受到剪切力作用时的承载能力。
弯曲强度的计算通常基于弹性理论,其中最常用的方法是根据梁的截面形状和材料的弹性模量来计算梁的截面抵抗力矩。
弹性模量是材料的一种力学性质,它衡量了材料在受力后产生的应变程度。
根据梁的截面形状和边界条件,可以计算出梁在弯曲作用下的最大应力和最大应变。
将最大应力与材料的弯曲强度进行比较,就可以判断梁是否满足设计要求。
剪切强度的计算也是基于弹性理论。
梁在受到剪切力作用时,梁内部会发生剪切变形。
剪切强度的计算包括两个方面:剪切应力和剪切变形。
剪切应力是指剪切力对梁截面的作用,剪切变形是指梁截面产生的剪切位移。
剪切强度的计算要求同时满足两个条件:剪切应力小于材料的剪切强度,剪切变形小于允许的变形限制。
刚度是指梁在受到力作用后的变形程度。
梁的刚度决定了梁的承载能力和结构的稳定性。
刚度的计算通常考虑梁的弹性变形和塑性变形两个方面。
弹性变形是指梁在小荷载下的弯曲变形,主要涉及梁的截面形状、材料的弹性模量和梁的长度等因素。
塑性变形是指梁在大荷载下的弯曲变形,主要涉及梁的屈服强度、截面形状和材料的塑性性质等因素。
根据梁的受力情况,可以计算出梁的弯曲刚度和剪切刚度。
弯曲刚度表示梁在受到弯曲作用时的抵抗变形能力,剪切刚度表示梁在受到剪切力作用时的抵抗变形能力。
在梁的强度和刚度计算中,需要根据具体的工程要求和设计规范进行。
梁的截面形状、材料的性质和受力情况都会对强度和刚度的计算结果产生影响。
因此,工程师需要根据具体情况选择适当的计算方法和模型进行计算。
同时,还需要进行合理的验算和对比,确保梁的设计满足强度和刚度的要求。
08第八章 弯曲变形

二、梁计算简图 1支座形式与支反力 作用在梁上的外力,包括载荷和支座反力 载荷和支座反力。工程中常见支座有以下 载荷和支座反力 三种形式: (1)固定铰支座。如图8-3(a)所示,固定铰支座限制梁在支承处 固定铰支座。 固定铰支座 任何方向的线位移,其支座反力可用2个正交分量表示,沿梁轴线方 向的XA和垂直于梁轴线方向的YA。 (2)活动铰支座。如图8-3(b)所示,活动铰支座只能限制梁在支 活动铰支座。 活动铰支座 承处垂直于支承面的线位移,支座反力可用一个分量FRA表示。 (3)固定端。如图8-3(c)所示,固定端支座限制梁在支承处的任 固定端。 固定端 何方向线位移和角位移,其支座反力可用3个分量表示,沿梁轴线方 向的XA和垂直于梁轴线方向的YA,以及位于梁轴平面内的反力偶 MA。
解:(1)列弯矩方程 选取A为坐标原点,坐标轴如图8-13所示。在截 面x处切开,取左段为研究对象,列平衡方程: (2)作弯矩图 由弯矩方程可知,弯矩M为x的一次函数,所以 弯矩图为一条斜直线。(由两点可画出一条直线)
例8-7图8-14(a)所示悬臂梁,在全梁上受集度 为q的均布载荷作用。作该梁的弯矩图。
例8-1:如图8-8所示悬臂梁,求图中1-1和2-2截 面上的剪力和弯矩。
解: (1) 计算1-1上的剪力和弯矩。 假想在1-1截面处把梁截开,考虑左段梁的平衡, 剪力和弯矩按正方向假设。
得:
(2) 计算2-2上的剪力和弯矩。假想在2-2截面 处把梁截开,考虑左段梁的平衡,剪力和弯矩按 正方向假设。
弯矩图如图8-11(b)所示,由于在C点处有集中力 偶Mo作用,C点左侧与C点右侧弯矩不变,有突变, 突变值即为集中力偶Me。如b>a,则最大弯矩发生 在集中力偶作用处右侧横截面上 。
例8-5:图8-12(a)所示简支梁,在全梁上受集 度为q的均布载荷,作此梁的弯矩图。
§8-6 提高梁的刚度的措施

§8-6 提高梁的刚度的措施
影响梁弯曲变形的因素不仅与梁的支承和载荷情况有关,而且还与梁 的材料、截面尺寸、形状和梁的跨度有关。所以,要想提高弯曲刚度,就应 从上述各种因素入手: 一、调整加载方式 二、减小跨度或增加支座 三、选择合理截面 四、合理选用材料
§8-6 提高梁的刚度的措施 一、合理安排梁的约束与加载方式
矩形木梁的合理高宽比 ( h/b= ) 1.5
b
英(T.Young)于1807年著«自然哲学与机械技术讲义 »一书中指出: 矩形木梁的合理高宽比 为
h 2 时,强 度 最 大; h 3 时,刚 度 最 大.
b
b
§8-6 提高梁的刚度的措施
三、选择合理截面
bh2 Wz 6
h2 d 2 b2
Wz
机械加工,镗孔,尾架,减少挠度。
§8-6 提高梁的刚度的措施
跨度为l 的简支梁,承受均布载荷q作用,如果将梁两端的铰支座各向 内移动 l/4,最大挠度将仅为前者的8.75%。
§8-6 提高梁的刚度的措施 三、选择合理截面
§8-6 提高梁的刚度的措施 三、选择合理截面
矩形木梁的合理高宽比
h 北宋李诫于1100年著«营造法式 »一书中指出:
b 6
(d 2
b2 )
d 2b b3 6
ቤተ መጻሕፍቲ ባይዱ
dW 0 db
d 2 3b2 0
b d 3
h d 2 b2 d 2 d 2 2d 33
h b
2d
3 d
23 2
3
h
b
§8-6 提高梁的刚度的措施 四、合理选用材料
各种材料的弹性模量E差别不大。 选用高强度材料,只能提高许用应力 同类的材料,“E”值相差不多,故换用同类材料只能提高强度,不能提高 刚度。
周建方版材料力学习题解答[第八章9]分析
![周建方版材料力学习题解答[第八章9]分析](https://img.taocdn.com/s3/m/cbb06210a417866fb94a8e07.png)
8-49现用某种黄铜材料制成的标准圆柱形试件做拉伸试验。
已知临近破坏时,颈缩中心部位的主应力比值为113321::::=σσσ;并已知这种材料当最大拉应力达到770MPa 时发生脆性断裂,最大切应力达到313MPa 时发生塑性破坏。
若对塑性破坏采用第三强度理论,试问现在试件将发生何种形式的破坏?并给出破坏时各主应力之值。
解: 令主应力分别为:σσ31=,σσσ==32脆性断裂时,由第一强度理论=1r σσσ31==770MPa所以,塑性破坏时,由第三强度理论 所以故,试件将发生脆性断裂。
破坏时MPa 7701=σ,MPa 25732==σσ8-50 钢制圆柱形薄壁压力容器(参见图8-13),其平均直径mm d 800=,壁厚mm 4=δ,材料的M P a ][120=σ,试根据强度理论确定容器的许可内压p 。
解:在压力容器壁上取一单元体,其应力状态为二向应力状态。
p pd 504'==δσ ,p pd1002"==δσ 其三个主应力为p 100"1==σσ, p 50'2==σσ,03=σ据第三强度理论所以 ,MPa p 2.13≤,许可内压MPa p 2.13= 据第四强度理论所以,MPa p 39.14≤,许可内压MPa p 39.14=8-51 空心薄壁钢球,其平均内径mm d 200=,承受内压MPa p 15=,钢的MPa ][160=σ。
试根据第三强度理论确定钢球的壁厚δ。
解:钢球上任一点应力状态如图示 其三个主应力为:σσσ==21,03=σ而 MPa MPa d p R R p δδδδππσ4342.0152222=⨯=⋅=⋅⋅=据第三强度理论 所以 mm m 69.41069.41601433=⨯=⨯≥-δ 8-52 图8-77所示两端封闭的铸铁圆筒,其直径mm d 100=,壁厚mm 10=δ,承受内压MPa p 5=,且在两端受压力kN F 100=和外扭矩m kN T ⋅=3作用,材料的许用拉应力MPa ][40=+σ,许用压应力MPa ][160=-σ,泊松比250.=ν,试用莫尔强度理论校核其强度。
材料力学-第八章叠加法求变形(3-4-5)

C
刚化
P
EI=
C
θc1
fc1
pa3 3EI
fc1
c1
pa2 2EI
2)AB部分引起的位移fc2、 θc2
P
A
θ B B2
C
fc2 刚化
EI=
B2
PaL 3EI
fc2 B2 a
PaL a 3EI
c c1 B2
θB2
P Pa
c
Pቤተ መጻሕፍቲ ባይዱ 2 2EI
PaL 3EI
fc fc1 fc2
fc
pa3 3EI
MPa,[]=100
MPa,E=210
GPa,
w l
1 400
。
例题 5-7
解:一般情况下,梁的强度由正应力控制,选择梁横 截面的尺寸时,先按正应力强度条件选择截面尺寸, 再按切应力强度条件进行校核,最后再按刚度条件 进行校核。如果切应力强度条件不满足,或刚度条 件不满足,应适当增加横截面尺寸。
[例8-3]如图用叠加法求 wC、A、B
解:1.求各载荷产生的位移 2.将同点的位移叠加
=
wC
5qL4 384EI
A
qL3 24EI
B
qL3 24EI
+
PL3 48EI
PL2
16EI PL2
16EI
+
ML2 16EI
ML 3EI
ML 6EI
例题 5-4
试按叠加原理求图a所示简支梁的跨中截面的
16EI
1 qa4 24 EI
()
例题 5-5
图b所示悬臂梁AB的受力情况与原外伸梁AB
段相同,但要注意原外伸梁的B截面是可以转动的,
9第八章 杆件变形分析与刚度

2, 由强度条件可得: 由强度条件可得:
由刚度条件可得: 由刚度条件可得:
所以,空心轴的外径应不小于 所以,空心轴的外径应不小于147mm. .
8.5.2 杆件的刚度设计 从挠曲线的近似微分方程及其积分可以看出, 从挠曲线的近似微分方程及其积分可以看出, 弯曲变形与弯矩大小,跨度长短,支座条件, 弯曲变形与弯矩大小,跨度长短,支座条件,梁 有关. 截面的惯性矩 ,材料的弹性模量 有关.故提高 梁刚度的措施为: 梁刚度的措施为: 1) 改善结构受力形式,减小弯矩 ; 改善结构受力形式, 2) 增加支承,减小跨度 ; 增加支承, 3) 选用合适的材料,增加弹性模量 .但因各 选用合适的材料, 种钢材的弹性模量基本相同, 种钢材的弹性模量基本相同,所以为 提高梁的刚 度而采用高强度钢,效果并不显著; 度而采用高强度钢,效果并不显著; 4) 选择合理的截面形状,提高惯性矩 ,如工字形 形状,
4,由于实际无变形,所以: ,由于实际无变形,所以:
解得: 解得:
已知α=30.,杆长 杆长L=2m,直径 直径d=25mm, 【例8.3 】已知 直径 , E=210GPa,P=100kN,求节点 的位移. 求节点A的位移 , 求节点 的位移.
【解】
§8.2 圆轴的扭转变形
圆截面直杆在扭转时,小变形情况下, 圆截面直杆在扭转时,小变形情况下,可认为各 横截面之间的距离保持不变,仅绕轴线作相对转动, 横截面之间的距离保持不变 , 仅绕轴线作相对转动 , 表示. 两横截面间相对转过的角度称为 扭转角 , 用 φ表示 . 表示 取一微段dx研究,设徽段d 的相对扭转角为dφ, 取一微段 x研究,设徽段dx的相对扭转角为 ,沿 轴线方向的变化率为dφ/dx . 在线弹性范围内 , 由 轴线方向的变化率为 x 在线弹性范围内, 5-22) 式(5-22)可知 :
梁的刚度计算

梁得强度与刚度验算
1.如图1所示一根简支梁长m,梁得自重为;钢材得等级与规格(,),,,,均为已知。梁上作用恒荷载,荷载密度为,荷载分项系数为1、2,截面塑性发展系数为,。试验算此梁得正应力及支座处剪应力。
图1
解:
(1)计算作用在梁上得总弯矩
需要计算疲劳得梁,按弹性工作阶段进行计算,宜取。
(2)梁得抗剪强度
一般情况下,梁同时承受弯矩与剪力得共同作用。工字形与槽形截面梁腹板上得剪应力分布如图5-3所示。截面上得最大剪应力发生在腹板中与轴处。在主平面受弯得实腹式梁,以截面上得最大剪应力达到钢材得抗剪屈服点为承载力极限状态。因此,设计得抗剪强度应按下式计算
ﻩﻩﻩﻩ(5-7)
式中:——腹板计算高度边缘同一点上得弯曲正应力、剪应力与局部压应力。按式(5-5)计算,按式(5-6)计算,按下式计算
ﻩﻩﻩﻩﻩﻩﻩﻩ(5-8)
——净截面惯性矩;
y——计算点至中与轴得距离;
均以拉应力为正值,压应力为负值;
——折算应力得强度设计值增大系数。当异号时,取=1、2;当同号或=0取=1、1。
ﻩﻩﻩﻩﻩﻩﻩ(5-5)
式中:V——计算截面沿腹板平面作用得剪力设计值;
S——中与轴以上毛截面对中与轴得面积矩;
I——毛截面惯性矩;
tw——腹板厚度;
fv——钢材得抗剪强度设计值。
图5-3腹板剪应力
当梁得抗剪强度不满足设计要求时,最常采用加大腹板厚度得办法来增大梁得抗剪强度。型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力得计算。
梁得强度与刚度计算
1.梁得强度计算
梁得强度包括抗弯强度、抗剪强度、局部承压强度与折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定得相应得强度设计值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章梁的强度与刚度
第二十四讲梁的正应力截面的二次矩
第二十五讲弯曲正应力强度计算(一)
第二十六讲弯曲正应力强度计算(二)
第二十七讲弯曲切应力简介
第二十八讲梁的变形概述提高梁的强度和刚度
第二十四讲纯弯曲时梁的正应力常用截面的二次矩
目的要求:掌握弯曲梁正应力的计算和正应力分布规律。
教学重点:弯曲梁正应力的计算和正应力分布规律。
教学难点:平行移轴定理及其应用。
教学内容:
第八章平面弯曲梁的强度与刚度计算
§8-1 纯弯曲时梁的正应力
一、纯弯曲概念:
1、纯弯曲:平面弯曲中如果某梁段剪力为零,该梁段称为纯弯曲梁段。
2、剪切弯曲:平面弯曲中如果某梁段剪力不为零(存在剪力),该梁段称为剪切弯曲梁段。
二、纯弯曲时梁的正应力:
1、中性层和中性轴的概念:
中性层:纯弯曲时梁的纤维层有的变长,有的变短。
其中有一层既不伸长也不缩短,这一层称为中性层。
中性轴:中性层与横截面的交线称为中性轴。
2、纯弯曲时梁的正应力的分布规律:
以中性轴为分界线分为拉区和压区,正弯矩上压下拉,负弯矩下压上拉,正应力成线性规律分布,最大的正应力发生在上下边沿点。
3、纯弯曲时梁的正应力的计算公式:
(1)、任一点正应力的计算公式:
(2)、最大正应力的计算公式:
其中:M---截面上的弯矩;I Z---截面对中性轴(z轴)的惯性矩; y---所求应力的点到中性轴的距离。
说明:以上纯弯曲时梁的正应力的计算公式均适用于剪切弯曲。
§8-2 常用截面的二次矩平行移轴定理
一、常用截面的二次矩和弯曲截面系数:
1、矩形截面:
2、圆形截面和圆环形截面:
圆形截面
圆环形截面
其中:
3、型钢:
型钢的二次矩和弯曲截面系数可以查表。
二、组合截面的二次矩平行移轴定理
1、平行移轴定理:
截面对任一轴的二次矩等于它对平行于该轴的形心轴的二次矩,加上截面面积与两轴之间的距离平方的乘积。
I Z1=I Z+a2A
2、例题:
例1:试求图示T形截面对其形心轴的惯性矩。
解:1、求T形截面的形心座标yc
2、求截面对形心轴z轴的惯性矩
第二十五讲弯曲正应力强度计算(一)
目的要求:掌握塑性材料弯曲正应力强度计算。
教学重点:弯曲正应力强度条件的应用。
教学难点:弯曲正应力强度条件的理解。
教学内容:
§8-3 弯曲正应力强度计算
一、弯曲正应力强度条件:
1、对于塑性材料,一般截面对中性轴上下对称,最大拉、压应力相等,而塑性材料的抗拉、压强度又相等。
所以塑性材料的弯曲正应力强度条件为:
(1)、强度校核
(2)、截面设计
(3)、确定许可荷载
2、弯曲正应力强度计算的步为:
(1)、画梁的弯矩图,找出最大弯矩(危险截面)。
(2)、利用弯曲正应力强度条件求解。
二、例题:
例1:简支矩形截面木梁如图所示,L=5m,承受均布载荷q=3.6kN/m,木材顺纹许用应力[σ]=10MPa,梁截面的高宽比h/b=2,试选择梁的截面尺寸。
解:画出梁的弯矩图如图,最大弯矩在梁中点。
由
得
矩形截面弯曲截面系数:
h=2b=0.238m
最后取h=240mm,b=120mm
例2:悬臂梁AB如图,型号为No.18号式字钢。
已知[σ]=170MPa,L=1.2m 不计梁的自重,试求自由端集中力F的最大许可值[F]。
解:画出梁的恋矩图如图。
由M图知:M max=FL=1.2F
查No.18号工字钢型钢表得
Wz=185cm3
由
得
M max≤W z[σ]
1.2F≤185×10-6×170×106
[F]=26.2×103N=26.2kN
第二十六讲弯曲正应力强度计算(二)
目的要求:掌握脆性材料的弯曲正应力强度计算。
教学重点:脆性材料的弯曲正应力强度计算。
教学难点:脆性材料的正应力分布规律及弯曲正应力强度条件的建立。
教学内容:
一、脆性材料梁的弯曲正应力分析
1、脆性材料的弯曲梁其截面一般上下不对称,例如T字形截面梁(图)。
2、脆性材料的弯曲正应力强度计算中,脆性材料的抗拉强度和抗压强度不等,抗拉能力远小于抗压能力,弯曲正应力强度计算要分别早找出最大拉应力和最大压应力。
3、由于脆性材料的弯曲梁其截面一般上下不对称,上下边沿点到中性轴的距离不等,因此最大拉、压应力不一定发生在弯矩绝对值最大处,要全面竟进行分析。
三、例题:
例1:如图所示的矩形截面外伸梁,b=100mm,h=200mm,P1=10kN,P2=20kN,[σ]=10MPa,试校核此梁的强度。
解:1、作梁的弯矩图如图
(b)
由梁的弯矩图可得:
2、强度校核
σmax>[σ]
即:此梁的强度不够。
例2:T型截面铸铁梁如图,Iz=136×104mm4,y1=30mm,y2=50mm,铁铸的抗拉许用应力[σt]=30MPa,抗压许用应力[σc]=160MPa,F=2.5kN,q=2kN/m,试校核梁的强度。
解:(1)求出梁的支座反力为
F A=0.75kN,F B=3.75kN
(2)作梁的弯矩图如图(b)
(3)分别校核B、C截面
B截面
可见最大拉应力发生在C截的
下边缘。
以上校核知:梁的正
应力强度满足。
C截面
可见最大拉应力发生在C截的下边缘。
以上校核知:梁的正应力强度满足。
第二十七讲弯曲切应力简介
目的要求:掌握弯曲切应力的强度计算。
教学重点:最大弯曲切应力的计算。
教学难点:弯曲切应力公式的理解。
教学内容:
§8-4 弯曲切应力简介
一、弯曲切应力:
1、梁横截面上的剪力由
弯曲切应力组成。
2、梁横截面上的弯曲切
应力成二次抛物线规律分布,中
性
轴处最大,上下边沿点为零。
(如图)
三、最大弯曲切应力的计算:
1、矩形截面梁:最大弯曲切应力是平均应力的1、5倍
2、圆形截面梁:最大弯曲切应力是平均应力的三分之四
3、工字钢:最大弯曲切应力有两种算法
(1)、公式:
(2)、认为最大弯曲切应力近似等于腹板的平均切应力。
四、弯曲切应力的强度计算:
1、强度条件:
τmax≤[τ]
[τ]---梁所用材料的许用切应力
2、例题:
例1:如图所示简支梁,许用正应力[σ]=140MPa,许用切应力[τ]=80MPa,试选择工字钢型号。
解:
(1)由平衡方程求出支座反力
F A=6kN,F B=54kN
(2)画出剪力图弯矩图
(3)由正应力强度条件选择型号
查型钢表:选用No.12.6号工字钢。
W z=77.529cm3,h=126mm,δ=8.4mm, b=5mm
(4)切应力校核
故需重选。
重选No.14号工字钢,h=140mm,δ=9.1mm,b=5.5mm。
虽然大于许用应力,但不超过5%,设计规范允许。
故可选用No.14工字钢。
第二十八讲梁的变形概述提高梁的强度和刚
度的措施
目的要求:掌握叠加法计算梁的变形。
教学重点:叠加法计算梁的变形。
教学难点:提高梁的强度和刚度的措施的理解。
教学内容:
§8-5 梁的变形概述
概念:
1、挠度和转角:梁变形后杆件的轴线由直线变为一条曲线。
梁横截面的形心在铅垂方向的位移称为挠度。
挠度向上为正,向下为负。
梁横截面转动的角度称为转角,转角逆时针转动为正,顺时针转动为负。
2、挠曲线方程:梁各点的挠度若能表达成坐标的函数,其函数表达式称为挠曲线方程。
挠曲线方程w=f(x)
挠曲线方程对坐标的一阶导数等于转角方程。
§8-6 用叠加法计算梁的变形
一、叠加原理:在弹性范围内,多个载荷引起的某量值(例如挠度),等于每单个载荷引起的某量值(挠度)的叠加。
二、用叠加法计算梁的变形:
1、步骤:将梁分为各个简单载荷作用下的几个梁,简单载荷作用下梁的变形(挠度和转角)可查表得到。
然后再叠加。
2、例题:
例1:用叠加法求(a)图所示梁的最大挠度yc和最大转角θc。
解:图(a)可分解为(b)、(c)两种情况的叠加,分别查表得
三、梁的刚度条件:梁的刚度计算以挠度为主
梁的刚度条件:
ωmax≤[ω]
θmax≤[θ]
1、刚度校核
2、截面设计
3、确定许可荷载
在设计梁时,一般是先按强度条件选择截面或许可荷载,再用刚度条件校核,若不满足,再按刚度条件设计。
§8-7 提高梁的强度和刚度的措施
一、合理安排梁的支承:
例如剪支梁受均布载荷,若将两端的支座均向内移动0.2L,则最大弯矩只有原来最大弯矩的五分之一。
(图)
二、合理布置载荷:
将集中力变为分布力将减小最大弯矩的值。
(图)
三、选择合理的截面:
1、截面的布置应该尽可能远离中性轴。
工字形、槽形和箱形截面都是很好的选择。
2、脆性材料的抗拉能力和抗压能力不等,应选择上下不对称的截面,例如T字形截面。