中考数学填空题专项及答案(共三十套)

合集下载

中考数学试卷及答案

中考数学试卷及答案

一、选择题(每题3分,共30分)1. 下列数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 若a < b,则下列不等式中正确的是()A. a + 1 < b + 1B. a - 1 > b - 1C. a / 2 > b / 2D. a 2 < b 23. 在直角坐标系中,点A(-2,3)关于x轴的对称点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)4. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 平行四边形D. 圆5. 若a² = b²,则下列说法正确的是()A. a = bB. a = -bC. a² = -b²D. a² = b²6. 下列代数式中,同类项是()A. 3x²yB. 2xy²C. 5x²yD. 4x²y7. 下列函数中,y是x的一次函数的是()A. y = 2x + 5B. y = x² + 2C. y = 3x³ + 1D. y = 2/x + 38. 下列方程中,解为x = 2的是()A. 2x + 3 = 7B. 3x - 4 = 5C. 4x + 2 = 8D. 5x - 3 = 79. 下列不等式中,解集为全体实数的是()A. x > 0B. x < 0C. x ≥ 0D. x≤ 010. 下列数列中,第10项是10的是()A. 1, 2, 3, 4, ...B. 1, 3, 5, 7, ...C. 1, 4, 9, 16, ...D. 1, 2, 4, 8, ...二、填空题(每题3分,共30分)11. 若a + b = 7,a - b = 3,则a = ______,b = ______。

12. 下列数中,平方根为整数的是 ______。

2023年中考数学填空题专项复习:方程与不等式(附答案解析)

2023年中考数学填空题专项复习:方程与不等式(附答案解析)

2023年中考数学填空题专项复习:方程与不等式1.(2021•大连)我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:“牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.”
若设有牧童x 人,根据题意,可列方程为.
2.(2021•兴安盟)《九章算术》是我国东汉初年编订的一部数学经典著作,其中一次方程组是用算筹布置而成,如图(1)所示的算筹图用我们现在所熟悉的方程组表示出来,就是,类似的,图(2)所示的算筹图用方程组表示出来,就是.
3.(2021•南通)若m,n是一元二次方程x2+3x﹣1=0的两个实数根,则的值为.
4.(2021•绥棱县模拟)关于x的一元二次方程(m﹣1)x2+(m2﹣4)x+m+5=0的两个实数根互为相反数,则m等于.
5.(2021•佳木斯模拟)若关于x的一元一次不等式组的解集是x≥a,则a 的取值范围是.
6.(2021•黑龙江)已知关于x的不等式组有5个整数解,则a的取值范围是.
7.(2021•雅安)若关于x的分式方程2﹣=的解是正数,则k的取值范围是.
8.(2021•临沂模拟)目前以5G等为代表的战略性新兴产业蓬勃发展,某市2019年底有5G 用户2万户,计划到2021年底全市5G用户数累计达到3.38万户,设全市5G用户数年平均增长率为x,则该市5G用户数平均增长率为.
第 1 页共8 页。

通用版中考数学填空题专题训练(附答案)

通用版中考数学填空题专题训练(附答案)

通用版中考数学填空题专题训练(附答案)一、填空题1.某射手在一次训练中共射出了10发子弹,射击成绩如图所示,则射击成绩的中位数是__环.2.跳高训练时,甲、乙两名同学在相同条件下各跳了10次,统计他们的平均成绩都是1.36米,且方差为,,则成绩较为稳定的是________(填“甲”或“乙”).3.某校航模小组进行航模训练,如图,A,B,C三只小船在平面直角坐标系中的坐标分别为(1,1),(﹣1,3),(﹣2,1),一段时间后,小船A到达A′(4,﹣1)的位置,为了保持队形不变,此时小船B所到达的位置B′的坐标是________.4.某学校足球兴趣小组的五名同学在一次射门训练中,射进球门的次数分别为:6,7,7,8,9.这组数据的众数是___.5.2020年,全市中小学生田径运动会,甲、乙、丙、丁四位运动员在“100米短跑”训练中,每人各跑5次,据统计,平均成绩都是13.8秒,方差分别是=0.11,=0.03,,,则四人的训练成绩最稳定的是________6.为了在体育中考中取得更好的成绩,小明积极训练,体育老师对小明投掷铅球的录像进行技术分析,如图,发现铅球在行进过程中高度y(m)与水平距离x(m)之间的关系为,由此可知小明此次投掷的成绩是___.7.为增强学生体质,感受中国的传统文化,某校将“抖空竹”定为特色体育项目每天大课间进行训练,某同学“抖空竹”的一个瞬间如图①所示,若将图①抽象成图①的数学问题:,,,则的大小是____________度.8.甲、乙、丙、丁四位同学在相同条件下进行“立定跳远”训练,每人各跳10次,统计他们的平均成绩(单位:米)和方差如下表所示:则这四名同学“立定跳远”成绩波动最大的是______.9.2022年冬奥会北京赛区,共举办包括滑冰(含短道速滑、速度滑冰、花样滑冰)、冰球、冰壶在内的3个大项5个分项的所有冰上项目比赛,为了迎接2022年的冬奥会,中小学都积极开展冰上运动.小聪和小明进行500米短道速滑训练,他们的五次成绩如表所示:设两个人的五次成绩的平均数依次为小聪,小明,方差依次为S2小聪,S2小明,你认为两人中技术更好的是,你的理由是____.10.甲、乙、丙三人进行羽毛球比赛赛前训练,每局两人进行比赛,第三个人做裁判,每一局。

初三数学总复习:填空题精选150题(附参考答案)

初三数学总复习:填空题精选150题(附参考答案)

初三数学总复习:填空题精选150题(附参考答案)1.-8的绝对值是8.2.若∠α=35°,则∠α的补角为55°。

3.若分式(x-1)/(x-3)有意义,则实数x的取值范围是x≠3.4.若分式5/(x+3)有意义,则x的取值范围是x≠-3.5.二次根式的自变量x的取值范围是x≥0.6.若在实数范围内有意义,则x的取值范围是x≥1.7.在函数y=x中,自变量x的取值范围是(-∞,+∞)。

8.函数y=x-1的自变量x的取值范围是(-∞,+∞)。

9.函数y=x+3的自变量x的取值范围是(-∞,+∞)。

10.若二次根式√(x-1)有意义,则x的取值范围是x≥1.11.函数y=(x-1)/x中,自变量x的取值范围是x≠0.12.若x-y-3和x-2y+9互为相反数,则x+y的值为-6.13.已知点P(-2,1),则点P关于x轴对称的点的坐标是(-2,-1)。

14.地球与月球的平均距离大约km,用科学计数法表示这个距离为3.84×10^5 km。

15.长城是我国第一批成功入选世界文化遗产的古迹之一,它的总长经过“四舍五入”精确到十万位的近似数约为xxxxxxx 米,将xxxxxxx用科学记数法表示为6.7×10^6 m。

16.目前,世界上能制造出的最小晶体管的长度只有0.xxxxxxxxm,将0.xxxxxxxx用科学记数法表示为4×10^-8 m。

17.在人体血液中,红细胞的直径约为7.7×10^-4 cm,7.7×10^-4用小数表示为0. cm。

18.已知圆锥的底面直径为6,母线长为4,则它的侧面积等于12π。

19.一个多边形每个外角都是36°,则这个多边形的边数是10.20.已知菱形的两条对角线分别为2cm,3cm,则它的面积是3 cm^2.21.若点P(x,y)是平面直角坐标系xOy中第四象限内的一点,且满足2x-y=4,x+y=m,则m的取值范围是m>0.22.真命题的有①对顶角相等;②同位角相等;③全等三角形对应边相等;④菱形的对角线相等,即命题①、②、③、④都是真命题。

中考数学试题试卷及答案

中考数学试题试卷及答案

中考数学试题试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式2x-3>0的解集?A. x>1B. x<1C. x>3/2D. x<3/2答案:C2. 一个圆的半径为3cm,其面积是多少平方厘米?A. 28.26B. 18.84C. 9.42D. 15.7答案:B3. 如果一个数的立方根等于它本身,那么这个数可能是?A. 0B. 1C. -1D. A和B答案:D4. 计算下列哪个表达式的结果为-1?A. (-2)^3B. (-2)^2C. (-1)^3D. (-1)^2答案:C5. 以下哪个函数的图像是一条直线?A. y = 2x + 3B. y = x^2C. y = √xD. y = 3/x答案:A6. 一个等腰三角形的两边长分别为5cm和10cm,那么它的周长是多少?A. 20cmB. 15cmC. 25cmD. 不能构成三角形答案:D7. 计算下列哪个表达式的结果是正数?A. (-3) × (-2)B. (-3) × 2C. 3 × (-2)D. (-3) × (-2) + 1答案:A8. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A9. 下列哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:A10. 一个等差数列的首项是3,公差是2,那么第5项是多少?A. 13B. 11C. 9D. 7答案:A二、填空题(每题3分,共30分)11. 一个直角三角形的两个直角边长分别是3cm和4cm,那么斜边的长度是_________。

答案:5cm12. 一个数的绝对值是5,那么这个数可能是_________或_________。

答案:5或-513. 一个正数的平方根是2,那么这个数是_________。

答案:414. 一个数除以-1/2等于乘以_________。

(必考题)中考数学填空题专项练习经典测试题(含答案解析)

(必考题)中考数学填空题专项练习经典测试题(含答案解析)

一、选择题1.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023 B .2021 C .2020 D .20192.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒3.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .4 4.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点5.如图,在△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′的度数为( )A .25°B .30°C .50°D .55°6.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( )A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++=8.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x ,则下列方程中,正确的是( )A .()3001x 450+=B .()30012x 450+=C .2300(1x)450+=D .2450(1x)300-= 9.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π-C .32π-D .3π-10.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1211.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A .68°B .58°C .72°D .56°12.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π-B .8433π-C .8233π-D .843π- 13.若a 是方程22x x 30--=的一个解,则26a 3a -的值为( )A .3B .3-C .9D .9-14.下列判断中正确的是( )A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦15.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( )A .0,4B .-3,5C .-2,4D .-3,1二、填空题16.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).17.已知二次函数y =(x −2)2+3,当x _______________时,y 随x 的增大而减小.18.二次函数22(1)3y x =+-上一动点(,)P x y ,当21x -<≤时,y 的取值范围是_____.19.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.20.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.21.一元二次方程22x 20-=的解是______.22.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是23602s t t =-,则飞机着陆后滑行的最长时间为 秒. 23.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x 2﹣6x ﹣16,AB 为半圆的直径,则这个“果圆”被y 轴截得的线段CD 的长为_____.24.如图,点A 是抛物线24y x x =-对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ′,当O ′恰好落在抛物线上时,点A 的坐标为______________.25.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于_____.三、解答题26.如图,斜坡AB 长10米,按图中的直角坐标系可用353y x =-+表示,点A ,B 分别在x 轴和y 轴上,且30OAB ︒∠=.在坡上的A 处有喷灌设备,喷出的水柱呈抛物线形落到B 处,抛物线可用213y x bx c =-++表示.(1)求抛物线的函数关系式(不必写自变量取值范围);(2)求水柱离坡面AB的最大高度;(3)在斜坡上距离A点2米的C处有一颗3.5米高的树,水柱能否越过这棵树?27.在平面直角坐标系中,已知二次函数y=ax2﹣2ax﹣3a(a>0)图象与x轴交于点A,B (点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B的坐标;(2)若M为对称轴与x轴交点,且DM=2AM.①求二次函数解析式;②当t﹣2≤x≤t时,二次函数有最大值5,求t值;③若直线x=4与此抛物线交于点E,将抛物线在C,E之间的部分记为图象记为图象P(含C,E两点),将图象P沿直线x=4翻折,得到图象Q,又过点(10,﹣4)的直线y=kx+b 与图象P,图象Q都相交,且只有两个交点,求b的取值范围.28.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;类别儿童玩具童车童装抽查件数90请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?29.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.30.某企业为响应国家教育扶贫的号召,决定对某乡镇全体贫困初、高中学生进行资助,初中学生每月资助200元,高中学生每月资助300元.已知该乡受资助的初中学生人数是受资助的高中学生人数的2倍,且该企业在2018年下半年7﹣12月这6个月资助学生共支出10.5万元.(1)问该乡镇分别有多少名初中学生和高中学生获得了资助?(2)2018年7﹣12月期间,受资助的初、高中学生中,分别有30%和40%的学生被评为优秀学生,从而获得了该乡镇政府的公开表扬.同时,提供资助的企业为了激发更多受资助学生的进取心和学习热情,决定对2019年上半年1﹣6月被评为优秀学生的初中学生每人每月增加a%的资助,对被评为优秀学生的高中学生每人每月增加2a%的资助.在此奖励政策的鼓励下,2019年1﹣6月被评为优秀学生的初、高中学生分別比2018年7﹣12月的人数增加了3a%、a%.这样,2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元,求a的值.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.A3.B4.D5.C6.D7.B8.C9.B10.D11.D12.C13.C14.C15.B二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能17.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y随x 的增大而减小在对称轴的右边y随x的增大而增大根据性质可得:当x<2时y随x的增大而减小考点:二次函数的性质18.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时19.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P(摸到白球)==20.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+21.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接22.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值23.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt△COM中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D(024.(22)或(2-1)【解析】∵抛物线y=x2-4x对称轴为直线x=-∴设点A坐标为(2m)如图所示作AP⊥y轴于点P作O′Q⊥直线x=2∴∠APO=∠AQO′=90°∴∠QAO′+∠AO′Q=90°25.-1【解析】由题意得ABBC于DBC于EBC交BC于FAB=勾股定理得AE=AD=1DB=-1三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A .【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键. 2.A【解析】【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数.【详解】∵35C ∠=︒∴35BAD C =∠=︒∠∵AB 是圆O 的直径∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠故答案为:A .【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.3.B解析:B【解析】【分析】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=4-x ,MF=2,然后在Rt △MOF 中利用勾股定理求得OF 的长即可.【详解】如图:EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,∵四边形ABCD 是矩形,∴∠C=∠D=90°,∴四边形CDMN 是矩形,∴MN=CD=4,设OF=x ,则ON=OF ,∴OM=MN-ON=4-x ,MF=2,在直角三角形OMF 中,OM 2+MF 2=OF 2,即:(4-x )2+22=x 2,解得:x=2.5,故选B .本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.4.D解析:D【解析】【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误.【详解】当1a =-时,()224125=--+=-++y x x x ,∴当2x =-时,函数取得最大值5,故A 正确;当1a =时,()224125y x x x =--=--,∴函数图象开口向上,对称轴为2x =,∴当2x ≥时,y 随x 的增大而增大,故B 正确;当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误;故选D.【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键. 5.C解析:C【解析】试题解析:∵CC′∥AB ,∴∠ACC′=∠CAB=65°,∵△ABC 绕点A 旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C .6.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、既是轴对称图形,又是中心对称图形,故此选项正确.故选D .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.B解析:B【解析】【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x ,依题意得:()24001640x +=故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键. 8.C解析:C【解析】【分析】快递量平均每年增长率为x ,根据我国2016年及2018年的快递业务量,即可得出关于x 的一元二次方程,此题得解.【详解】快递量平均每年增长率为x ,依题意,得:2300(1x)450+=,故选C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 9.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯ =233π 故选B . 10.D解析:D【解析】【分析】连接AO 、BO 、CO ,根据中心角度数=360°÷边数n ,分别计算出∠AOC 、∠BOC 的度数,根据角的和差则有∠AOB =30°,根据边数n =360°÷中心角度数即可求解.【详解】连接AO 、BO 、CO ,∵AC 是⊙O 内接正四边形的一边,∴∠AOC =360°÷4=90°,∵BC 是⊙O 内接正六边形的一边,∴∠BOC =360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.11.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12=(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD2223OD OC+∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C .【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.13.C解析:C【解析】由题意得:2a 2-a-3=0,所以2a 2-a=3,所以6a 2-3a=3(2a 2-a)=3×3=9, 故选C.14.C解析:C【解析】【分析】根据等弧概念对A 进行判断,根据垂径定理对B 、C 、D 选项进行逐一判断即可. 本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B 错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C 正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误. 故选C.15.B解析:B【解析】【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+=∴整理方程即得:160a c +=∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --=解得:13x =-,25x =故选:B .【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.17.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y 随x 的增大而减小在对称轴的右边y 随x 的增大而增大根据性质可得:当x <2时y 随x 的增大而减小考点:二次函数的性质解析:<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y 随x 的增大而减小,在对称轴的右边,y 随x 的增大而增大.根据性质可得:当x <2时,y 随x 的增大而减小. 考点:二次函数的性质18.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时 解析:35y -≤≤【解析】【分析】先确定抛物线的对称轴和顶点坐标,再根据抛物线的性质以对称轴为界分情况求解即得答案.【详解】解:∵抛物线的解析式是22(1)3y x =+-,∴抛物线的对称轴是直线:1x =-,顶点坐标是(-1,-3),抛物线的开口向上,当x <-1时,y 随x 的增大而减小,当x >-1时,y 随x 的增大而增大,且当2x =-时,1y =-;当x =1时,y =5;∴当21x -<≤-时,31y -≤<-,当11x -<≤ 时,35y -<≤,∴当21x -<≤时,y 的取值范围是:35y -≤≤.故答案为:35y -≤≤.【点睛】本题考查的是二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题关键.19.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P (摸到白球)== 解析:38【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P (摸到白球)=353+ =38. 20.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x 的值直接计算【详解】∵一元二次方程x2﹣2x ﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+解析:-4【解析】【分析】利用根与系数的关系求出所求即可.此题也可解出x 的值,直接计算.【详解】∵一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),∴x 1+x 2=2,x 1x 2=﹣3,则x 1﹣x 2=﹣√(x 1+x 2)2−4x 1x 2=﹣√4+12=﹣4.故答案为﹣4.【点睛】本题考查了根与系数的关系,弄清根与系数的关系是解答本题的关键.21.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x 1=1,x 2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x 2=1,开方得:x =±1,解得:x 1=1,x 2=﹣1.故答案为x 1=1,x 2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.22.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s 取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值解析:【解析】【分析】把解析式化为顶点式,再根据二次函数的性质得出答案即可。

初三数学填空题练习试题集

初三数学填空题练习试题集

初三数学填空题练习试题答案及解析1. 20140000用科学记数法表示(保留3个有效数字)为.【答案】2.01×107.【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).因此,∵20140000一共8位,∴20140000=2.014×107.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.∴2.014×107≈2.01×107.【考点】1.科学记数法;2.有效数字.2.在一个不透明的口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地取出一个小球然后放回,再随机地取出一个小球,则两次取出小球的标号的和是3的倍数的概率是.【答案】【解析】树状图如下:共9种情况,两次取出的小球的标号之和是3的倍数的情况数有3种,所以两次取出的小球的标号之和是3的倍数的概率为=.【考点】列表法与树状图法3.计算:-×=.【答案】.【解析】:先把化为最简二次根式,再根据二次根式的乘法法则运算,然后合并即可.原式.【考点】二次根式的混合运算.4.已知在△ABC中,BC=6cm .如果D、E分别是AB、AC 的中点,那么DE= cm .【答案】5.【解析】由D、E分别是边AB、AC的中点可知,DE是△ABC的中位线,运用三角形的中位线定理求解即可.∵D、E分别为AB、AC中点,∴DE=BC,∵△ABC中,BC=10cm,∴DE=BC=×10=5cm考点: 三角形中位线定理.5.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是 .【答案】6【解析】根据多边形的外角和等于360°和正多边形的每一个外角都相等,得多边形的边数=360°÷60°=6。

初三数学总复习:填空题精选150题(附参考答案)

初三数学总复习:填空题精选150题(附参考答案)

初三数学总复习:填空题精选150题(附参考答案) 一、概念理解应用类1.-8的绝对值是________.2.若∠α=35°,则∠α的补角为 度. 3.若分式53x -有意义,则实数x 的取值范围是___. 4.若分式13x x -+有意义,则x 的取值范围是 . 5.二次根式中,x 的取值范围是 .6.若在实数范围内有意义,则x 的取值范围是 .7.在函数y =中,自变量x 的取值范围是 . 8.函数y =中自变量x 的取值范围是 . 9.函数y =的自变量x 的取值范围是 .10.若二次根式在实数范围内有意义,则x 的取值范围是 .11.函数y =1-x x中,自变量x 的取值范围是 . 12.若29x y -+与3x y --互为相反数,则x +y 的值为_________.13.已知点P (﹣2,1),则点P 关于x 轴对称的点的坐标是 .14.地球与月球的平均距离大约384000km ,用科学计数法表示这个距离为 km . 15.长城是我国第一批成功入选世界文化遗产的古迹之一,它的总长经过“四舍五入”精确到十万位的近似数约为6700000米,将6700000用科学记数法表示为 .16.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为17. 在人体血液中,红细胞的直径约为7.7×10-4 cm ,7.7×10-4用小数表示为 18.已知圆锥的底面直径为6,母线长为4,则它的侧面积等于 . 19.一个多边形每个外角都是36︒,则这个多边形的边数是20.已知菱形的两条对角线分别为2cm ,3cm ,则它的面积是 2cm . 21.若点()P x y ,是平面直角坐标系xOy 中第四象限内的一点,且满足24x y -=,x y m +=,则m 的取值范围是 .22.下列四个命题中:①对顶角相等;②同位角相等;③全等三角形对应边相等;④菱形的对角线相等.其中,真命题的有 (填序号).23.如果5x +3与﹣2x +9是互为相反数,则x ﹣2的值是 . 24.若a m =2,a n =3,则a m ﹣n 的值为 . 25.若a ,b 都是实数,b =+﹣2,则a b 的值为 .26.用半径为30的一个扇形纸片围成一个底面半径为10的圆锥的侧面,则这个圆锥的侧面积为 .27.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为 . 28.如果点(m ,﹣2m )在双曲线上,那么双曲线在 象限.29.一个多边形的每一个外角为30°,那么这个多边形的边数为 . 30.命题“同旁内角互补”是一个 命题(填“真”或“假”) 31.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于 . 32.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为 . 33.在平面直角坐标系中,点P (m ,1﹣m )在第一象限,则m 的取值范围是 . 34.已知x m =6,x n =3,则x m ﹣n 的值为 . 35.9的平方根是 .36.若一个多边形的内角和是540°,则这个多边形是 边形. 37.若∠α=35°,则∠α的补角为 度.38.如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积为 cm². 二、计算、化简、因式分解类、 39.计算:23()a =________. 40.计算:182⨯=________. 41.分解因式:4m 2﹣16n 2= . 42.化简﹣(﹣)的结果是 . 43.因式分解2a 3b -8ab 3= . 44.因式分解:a 3﹣ab 2= .45.在实数范围内因式分解:23x y y -=_________. 46.计算:|﹣3|﹣1= . 47.化简:= .48.分解因式:3x 2﹣6x+3= . 49.化简:22(5)x x +-= . 50.已知a <0,那么|﹣2a |可化简为 .51.分解因式:x 3y ﹣2x 2y +xy = .52.分解因式:a 3﹣4ab 2= . 53.因式分解2a 3b -8ab 3= .54.在实数范围内分解因式:2232x -= . 55.化简:239m m --= .56.当﹣1<a <0时,则= .三、方程、不等式类57.不等式组()112333x x x +≥+->⎧⎨⎩的解集是__________.58.平面直角坐标系中一点P (m ﹣3,1﹣2m )在第三象限,则m 的取值范围是 . 59.若m 、n 是一元二次方程x 2–5x –2=0的两个实数根,则m +n –mn =_________. 60.设0a <,0b >,且a b >,用“<”号把a ,a -,b ,b -连接起来为__________. 61.关于x 的一元二次方程x 2+2x +m =0有两个相等的实数根,则m 的值是 . 62.已知关于x 的方程x 2+3x ﹣m =0有两个相等的实数根,则m 的值为 . 63.已知关于x 的一元二次方程x 2﹣2x +k =0有两个不相等的实数根,则k 的取值范围是 .64.关于x 的一元二次方程x 2﹣2mx +(m ﹣1)2=0有两个不相等的实数根.则m 的取值范围是 .65.已知关于x 的一元二次方程x 2+bx +1=0有两个相等的实数根,则b 的值为 .66.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y (米)与甲出发的时间x (秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是 米.67.已知x =-m 和x =m -4时,多项式ax 2+bx +4a +1的值都相等,且m ≠2.若当-1<x<2时,存在x 的值,使多项式ax 2+bx +4a +1的值为3,则a 的取值范围是 .四、函数类68.反比例函数y=kx(k≠0)的图像经过点A(-2,4),则在每一个象限内,y随x的增大而________.(填“增大”或“减小”)69.已知二次函数y=24x x k-+的图像的顶点在x轴下方,则实数k的取值范围是________.70.如图,点A(1,n)和点B都在反比例函数xky=(x>0)的图像上,若∠OAB=90°,23OAAB=,则k的值是.71.下列关于变量x和y的关系式:①y=x,②2x2-y=0,③y2=x,④2x-y2=0,其中y是x的函数的是 .72.如图,抛物线1C:223y x x=+-的顶点为P,将该抛物线绕点(0)A a,(0)a>旋转180︒后得到抛物线2C,抛物线2C的顶点为Q,与x轴的交点为B,C,点B在点C的右侧.若90PQB∠=︒,则a=.73.已知A(m,3)、B(﹣2,n)在同一个反比例函数图象上,则=.74.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是.xyBOA75.如图所示,反比例函数y=(x<0)的图象经过矩形OABC的对角线AC的中点M,分别与AB,BC交于点D、E,若BD=3,OA=4,则k的值为.76.如图,在平面直角坐标系中,A(1,0),B(3,0),点C在第一象限,∠ABC=90°,AC=2,直线l的关系式为:y=﹣x﹣3.将△ABC沿x轴向左平移,当点C落在直线l 上时,线段AC扫过的面积为平方单位.77.已知:M,N两点关于y轴对称,点M的坐标为(a,b),且点M在双曲线y=上,点N在直线y=x+3上,则抛物线y=﹣abx2+(a+b)x的顶点坐标是.78.如图,已知抛物线y=ax2﹣4x+c(a≠0)与反比例函数y=的图象相交于点B,且B 点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线y=ax2﹣4x+c的顶点,P 点是x轴上一动点,当PA+PB最小时,P点的坐标为.79.如图,点A(1,n)和点B都在反比例函数xky=(x>0)的图像上,若∠OAB=90°,23OAAB=,则k的值是.80.如图,点A是反比例函数kyx=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C 为y轴上的一点,连接AC,BC,若△ABC的面积为4,则k的值是.五、几何计算、证明类81.如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB= .82.如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是.83.如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是.xyBOA84.如图,在Rt △ABC 中,90C ∠=︒,CD 是AB 边上的中线,且5CD =,则△ABC 的中位线EF 的长是 .85.如图,12∠=∠,添加一个条件 ,使得△ADE ∽△ACB .86.圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为______.87.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是 .88.在Rt △ABC 中,∠ABC =90°,AB =6,BC =8,则这个三角形的外接圆的直径长为 .89.如图,△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则在 ①3.6②4,③5.5,④7,这四个数中AP 长不可能是 (填序号)90.如图,在矩形ABCD 中,AB =4,BC =6,E 是矩形内部的一个动点,且AE ⊥BE ,则线段CE 的最小值为 .91.直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=85°,则∠2=.92.如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是.93.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC =4,则AD的长为.94.在平面直角坐标系中,已知A(2,4)、P(1,0),B为y轴上的动点,以AB为边构造△ABC,使点C在x轴上,∠BAC=90°.M为BC的中点,则PM的最小值为.95.如图将两块三角板的直角顶点重叠在一起,∠DOB与∠DOA的比是2:11,则∠BOC =.96.如图所示,⊙O是△ABC的外接圆,AD⊥BC于D,且AB=5,AC=4,AD=4,则⊙O 的直径的长度是.597.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为.98.我们发现:若AD是△ABC的中线,则有AB2+AC2=2(AD2+BD2),请利用结论解决问题:如图,在矩形ABCD中,已知AB=20,AD=12,E是DC中点,点P在以AB为直径的半圆上运动,则CP2+EP2的最小值是.99.若圆锥的底面半径是10,侧面展开图是一个半圆,则该圆锥的母线长为.100.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.101.如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于O点,则AB=.102.把一块矩形直尺与一块直角三角板如图放置,若∠1=40°,则∠2的度数为.103.如图,在Rt△ABC中,∠C=90°,CD是AB边上的中线,且CD=5,则△ABC的中位线EF的长是.104.已知□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,若AB=3,则□ABCD 的面积为.105.如图,在Rt△ABC中,∠C=90°,点D是线段AB的中点,点E是线段BC上的一个动点,若AC=6,BC=8,则DE长度的取值范围是.106.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,CD=6,OA交BC 于点E,则AE的长度是.ABDE107.如图,正方形ABCD中,BC=2,点M是AB边的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,若∠DFE=45°,PF=,则DP的长为;则CE=.108.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.109.如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长.110.如图,⊙O与正五边形ABCDE的两边AE、CD分别相切于A、C两点,则∠AOC的度数为.111.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是.112.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=cm.113.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.114.四边形ABCD为⊙O的内接四边形,已知∠A:∠B=4:5,则∠A=度.115.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x 的取值范围为.116.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为.117.如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数y=(x>0)的图象上,则矩形ABCD的周长为.118.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.则CG =.119.如图,AB∥EF,设∠C=90°,那么x,y,z的关系是.120.已知□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,若AB=3,则□ABCD 的面积为.121.在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为.122.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论:(1)∠DCF+∠D=90°;(2)∠AEF+∠ECF=90°;(3)S△BEC=2S△CEF;(4)若∠B=80°,则∠AEF=50°.其中一定成立的是(把所有正确结论的序号都填在横线上)123.T1、T2分别为⊙O的内接正六边形和外切正六边形.设T1的半径r,T1、T2的边长分别为a、b,T1、T2的面积分别为S1、S2.下列结论:①r:a=1:1;②r:b=;③a:b =1:;④S1:S2=3:4.其中正确的有.(填序号)124.如图,点G是△ABC的重心,AG的延长线交BC于点D,过点G作GE∥BC交AC于点E,如果BC=6,那么线段GE的长为.125.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.126.如图,在△ABC中,∠C=90°,BC=6,AC=9,将△ABC平移使其顶点C位于△ABC 的重心G处,则平移后所得三角形与原△ABC的重叠部分面积是.127.如图,将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB :BC =4:5,则tan ∠CFD= .128.如图,在△ABC 中,CA =CB =4,∠ACB =90°,以AB 中点D 为圆心,作圆心角为90°的扇形DEF ,点C 恰好在弧EF 上,则图中阴影部分面积为 .129.如图,∠AOB =45°,点M ,N 在边OA 上,OM =x ,ON =x +4,点P 是边OB 上的点,若使点P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 满足的条件是130.如图,在Rt △ABC 中,∠C =90°,点D 是线段AB 的中点,点E 是线段BC 上的一个动点,若AC =6,BC =8,则DE 长度的取值范围是 .131.如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD =50°,则∠ACB =________°C DABOABCDE132.如图,△ABC中,∠BAC>90°,BC=5,将△ABC绕点C按顺时针方向旋转90°,点B对应点B′落在BA的延长线上,若sin∠B′AC=910,则AC=________.133.如图,点E,F,G分别在菱形ABCD的边AB,BC,AD上,AE=13AB,CF=13CB,AG=13A D.已知△EFG的面积等于6,则菱形ABCD的面积等于________.六、统计、概率类134.已知一组数据3,4,6,x,9的平均数是6,那么这组数据的方差等于.135.已知一组数据1,2,0,–1,x,1的平均数是1,则这组数据的中位数为__________.136.在九年级体育考试中,某校某班参加仰卧起坐测试的8名女生成绩如下(单位:次/分):44,45,42,48,46,43,47,45,则这组数据的众数为.137.中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是.138.三张扑克牌中只有一张黑桃,三位同学依次抽取,第一位同学抽到黑桃的概率为.139.初三(1)班统一购买夏季校服,统计出各种尺码的校服的数量如下表所示:CDFGABECABB'A'校服的尺码(单位:厘米)160 165 170 175 180 185 195 数量(单位:件) 2 4 10 22 14 6 1 由表可以看出,在校服的尺码组成的一组数据中,众数是.140.某市园林部门为了扩大城市的绿化面积,进行了大量的树木移栽,下表记录的是在相同的条件下移栽某种幼树的棵树与成活棵树:移栽棵树100 1000 10000 20000成活棵树89 910 9008 18004 依此估计这种幼树成活的概率是.(结果用小数表示,精确到0.1)141.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.142.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是万步.143.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.144.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是.145.如图,⊙O的半径为,圆心与坐标原点重合,在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点,则⊙O上格点有个,设L为经过⊙O上任意两个格点的直线,则直线L同时经过第一、二、四象限的概率是.七、规律探究类146.下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是.147.如图:已知正方形的边长为a,将此正方形按照下面的方法进行剪拼:第一次,先沿正方形的对边中点连线剪开,然后对接为一个长方形,则此长方形的周长为;第二次,再沿长方形的对边(长方形的宽)中点连线剪开,对接为新的长方形,如此继续下去,第n次得到的长方形的周长为.148.如图,第一个图形有1个正方形;第二个图形有5个正方形;第三个图形有14个正方形……;则按此规律,第五个图形有个正方形.149.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…当AB=n时,△AME的面积记为S n.当n≥2时,S n﹣S n﹣1=.150.观察下列运算并填空:1×2×3×4+1=25=52;2×3×4×5+1=121=112:3×4×5×6+1=361=192;…根据以上结果,猜想并研究:(n+1)(n+2)(n+3)(n+4)+1=.参考答案:1. 82.1453. x ≠34.3x ≠-5. x ≥﹣16.x ≤27. x ≥﹣1且x ≠08. x ≥9. x ≥﹣且x ≠3 10. x ≥2019 11. x ≥0且x ≠112. 27 13.(﹣2,﹣1) 14. 3.84×10515. 6.7×10616. 4×10-8 17. 0.00077 18. 12π 19. 10 20. 3 21. 42m -<< 22. ①③ 23.﹣6 24. 25. 4 26. 300π 27. 60°或120°28. 第二、四 29. 12 30. 假31. 4 32. 60°或120° 33.0<m <1 34. 2 35. ±3 36. 五 37. 145 38. 10π 39. a 640. 2 41. 4(m +2n )(m ﹣2n ) 42. 43. 2ab (a +2b ) (a -2b ) 44. a (a +b )(a ﹣b ) 45. y(x+3)(x- 3 ) 46. 2 47. 1 48. 3(x ﹣1)2 49. 1025x + 50. ﹣3a . 51. xy (x ﹣1)2 52. a (a +2b )(a ﹣2b ) 53. 2ab (a +2b ) (a -2b ) 54. 2(4)(4)x x +- 55.13m + 56. 2 57. 0 ≤ x <358. 0.5<m <3 59. 7 60. a < - b < b < - a 61. 1 62.- 63. k <3. 64. m >. 65. ±2. 66. 175 67.81<a <2 68. 增大 69. k < 4 70. 2 71. ①② 72.7 73.- 74. x <﹣2. 75. ﹣4. 76. 40 77. (,), 78. (,0) 79. 2 80. ﹣881. 40° 82. 2 83. 3≤AP <4. 84. 5 85. C D ∠=∠(答案不唯一) 86. 3 87. 10 88. 10. 89. ④ 90. 2﹣2.91. 40° 92. 30° 93. 94.95. 70°96. 5 97. 6 98. 68 99. 20 100. 22° 101.102. 130° 103. 5 104. 93 105. 3≤DE ≤5106. 3 107.108. 57° 109. 12 110. 144°.111. 47° 112.3 113. 2 114. 80 115. x =4或x ≥8.116. 12 117.12 118.12.5. 119. x +y ﹣z =90°. 120. 93 121. 122. (1)(2)(4). 123. ①②④ 124.2 125. 22° 126. 3 127. 43128. 2π﹣4129. 0x =,424x =-或442x << 130. 3≤DE ≤5131.40 132. 25 2 /9 133. 27 134. 5.2 135.1 136. 45 137.138 . 1/3 139. 175 140. 0.9141. 142. 1.3 143. 2 144. 85 145. 28146.15a 16 147. 4a +2×a , 2n ﹣1•4a +2×()n a .148. 55 149.150. (n 2+5n +5)2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年中考数学填空题专项训练(共三十套)本试题均按照中考要求设计,覆盖中考数学填空题所有题型及考点,难度较中考略难。

每套试题最上方均配备标准答题卡,试题最后配备参考答案。

本试题是众享填空题专项训练的训练载体,是课程《2013中考数学真题演练(一)分题型训练》第3讲、第4讲、第5讲的讲义及作业。

1.建议与众享在线课程《2013中考数学真题演练(一)分题型训练》配套使用。

重在对填空题进行中考适应性训练,熟悉中考填空题题型结构,掌握填空题答题的一整套标准动作,确保中考考试中,填空题答案准确、完整、规范,会做的拿满分。

2.三十套题不一定要全部做完,关键是每做一套都按训练要求做,并能认真总结考点,分析自己的问题,积极解决。

针对自己不会的题,务必查找资源查漏补缺,尤其是超过3分钟无思路的题型;对自己会做、却屡次出错的题型务必借助资源找到根本原因,对症解决。

(课本、老师、同学、众享在线课程都是您可以利用的资源)3.当考试一样,限时做题,模拟考试场景,提升实战能力。

建议限时8分钟完成所有题目及答题卡的填写,最多10分钟。

为更好的模拟中考考场情境,建议您打印使用。

中考数学填空题专项训练(一)二、填空题(每小题3分,共21分)9.写出一个大于的负整数___________.10.如图,在△ABC中,∠C=90°,若BD∥AE,∠DBC=20°,则∠CAE的度数是___________.ED CBA第10题图 第11题图则x 的取值范围是___________.12. 在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从如图的五张卡片中任意拿走三张,使剩下的卡片从左到右连成一个两位数,该数就是他猜的价格.如果商品的价格是50元,那么他一次就能猜中的概率是___________.N第12题图 第13题图13. 如图所示,正方形ABCD 内接于⊙O ,直径MN ∥AD ,则阴影部分面积占圆面积的____________. 14. 如图,在五边形ABCDE 中,∠BAE =125°,∠B =∠E =90°,AB =BC ,AE =DE ,在BC ,DE 上分别找一点M ,N ,使得△AMN 周长最小时,∠AMN +∠ANM 的度数为__________.E D CB A MN15. 已知□ABCD 的周长为28,自顶点A 作AE ⊥DC 于点E ,AF ⊥BC 于点F .若AE =3,AF =4,则CE -CF =____________.中考数学填空题专项训练(二)9.把命题“如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2”的逆命题改写成“如果……,那么……”的形式:_____________________________________________________________________________________.11.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线交于点A2,得∠A2;……;∠A2012BC与∠A2012CD的平分线交于点A2013,得∠A2013.则∠A2013=.中考数学填空题专项训练(四)二、填空题(每小题3分,共21分)DBAC图3图2图1DCBA中考数学填空题专项训练(五)二、填空题(每小题3分,共21分)11.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,那么圆锥的母线长是__________.10. 如图,梯形ABCD 中,AD ∥BC ,DC ⊥BC ,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A ′处,若∠A ′BC =15°,则∠A ′BD 的度数为__________.A'DCBAC'B'CB A第10题图 第11题图 第13题图11. 如图,△ABC 是等腰直角三角形,∠ACB =90°,BC =AC ,把△ABC 绕点A 按顺时针方向旋转45°后得到△AB ′C ′,若AB =2,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是 _________(结果保留π).12. 有A ,B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字-2,-3和-4.小明从A 布袋中随机取出一个小球,记其标有的数字为x ,15. 在矩形ABCD 中,AB =3,AD =4,将其沿对角线BD 折叠,顶点C 的对应位置为G (如图1),BG 交AD 于E ;再折叠,使点D 落在点A 处,折痕MN 交AD 于F ,交DG 于M ,交BD 于N ,展开后得图2,则折痕MN 的长为___________.图2图1F MG EANDBG EADCB中考数学填空题专项训练(七)二、填空题(每小题3分,共21分) 9.方程22x x =的解为___________.10.如图,在菱形ABCD 中,点E ,F 分别是BD ,CD 的中点,若EF =6cm ,则AB =____________cm .FECB DA乙甲第10题图第11题图第14题图第15题图15.如图,在平面直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,2),将矩形沿对角线AC翻折,点B落在点D的位置,且AD交y轴于点E.那么点D的坐标为__________________.中考数学填空题专项训练(八)二、填空题(每小题3分,共21分)9°=_____________.EFCPO10.如图所示,四边形ABCD中,AE,AF分别是BC,CD的垂直平分线,∠EAF=80°,∠CBD=30°,则∠ABC的度数为______________.11.数学老师布置10道选择题作业,批阅后得到如下统计表.根据表中数据可知,这45名同学答对题数组成的样本的中位数是________题.12.二次函数y=-(x-2)2+94的图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有___________个.(提示:必要时可利用下面的备用图画出图象来分析)图2图1第12题图第13题图中考数学填空题专项训练(九)二、填空题(每小题3分,共21分)11. 已知在△ABC 中,AB =6,AC =8,∠A =90°,把Rt △ABC 绕直线AC 旋转一周得到一个圆锥,其表面积为S 1,把Rt △ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,则S 1:S 2等于________.14. 如图,在等腰Rt △ABC 中,∠A =90°,AC =9,点O 在AC 上,且AO =2,点P 是AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转90°,得到线段OD ,要使点D 恰好落在BC 上,AP 的长度为__________.第14题图 第15题图15. 如图所示,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,AD =AB =6,BC =14,点M 是线段BC 上一定点,且MC =8.动点P 从C 点出发沿C →D →A →B 的路线运动,运动到点B 停止.在点P 的运动过程中,使△PMC 为等腰三角形的点P 有__________个.中考数学填空题专项训练(十)二、填空题(每小题3分,共21分) 第10题图 第11题图ED CB A中考数学填空题专项训练(十一)二、填空题(每小题3分,共21分)9.计算:2sin30°.10.如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在点C′处,连接BC′,那么BC′的长为________.60°C′DBAA第10题图第12题图第14题图11.甲、乙两名同学同时从学校出发,去15千米处的景区游玩,甲比乙每小时多行1千米,结果比乙早到半小时,甲、乙两名同学每小时各行多少千米?若设乙每小时行x千米,则根据题意列出的方程是_____________________.12.如图,有一直径为4的圆形铁皮,要从中剪出一个圆心角为60°的最大扇形ABC.那么剪下的扇形ABC(阴影部分)的面积为___________.13.在4张卡片上分别写有1~4的整数,随机抽取一张后不放回,再随机抽取一张,那么抽取的两张卡片上的数字之和等于4的概率是________.点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为________.15.如图,矩形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:AB CDE第一步:如图1,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图2,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,在线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图3,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN 右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最大值与最小值之和为____________.中考数学填空题专项训练(十二)二、填空题(每小题3分,共21分)数为__________.10.如图,是我们生活中经常接触的小刀,刀柄的外形是一个直角梯形(下底挖去一个小半圆),刀片上、下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=__________.21第10题图第13题图11.将半径为10,弧长为12π的扇形围成圆锥(接缝忽略不计),那么圆锥母线与圆锥高的夹角的余弦值是__________.12.已知M(a,b)是平面直角坐标系中的点,其中a是从1,2,3三个数中任取的一个数,b是从1,2,3,4四个数中任取的一个数.定义“点M(a,b)在直线x+y=n上”为事件Q n(2≤n≤7,n为整数),则当Q n的概率最大时,n的所有可能的值为__________.15.如图,点A的坐标为(1,1),点C是线段OA上的一个动点(不与O,A两点重合),过点C作CD⊥x轴,垂足为D,以CD为边在右侧作正方形CDEF.连接AF并延长交x轴的正半轴于点B,连接OF,若以B,E,F为顶点的三角形与△OFE相似,则点B的坐标是__________.中考数学填空题专项训练(十三)二、填空题(每小题3分,共21分)9.分解因式:3m2-6mn+3n2=____________.10.如图,计划把河AB中的水引到水池C中,可以先作CD⊥AB,垂足为D,然后沿CD开渠,则能使所开的水渠最短,这种方案的设计依据是________.第10题图第11题图11.已知电路AB是由如图所示的开关控制,闭合a,b,c,d,e五个开关中的任意两个,则使电路形15.如图,等边三角形ABC中,D,E分别为AB,BC边上的动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则FGAF的值是______________.中考数学填空题专项训练(十四)二、填空题(每小题3分,共21分)9. 方程组321026x y x y +=⎧⎨+=⎩的解是___________.10. 如图,在△ABC 中,AB =AC ,CD 平分∠ACB ,交AB 于点D ,AE ∥DC ,交BC 的延长线于点E .若∠E =36°,则∠B =_______度.EBAD第10题图 第13题图11. 有4张背面相同的扑克牌,正面数字分别为2,3,4,5.若将这4张扑克牌背面向上洗匀后,从中任意抽取一张,放回后洗匀,再从中任意抽取一张,则抽取的这两张扑克牌正面数字之和是3的倍数的概率为______.12. 为参加毕业晚会,小敏用圆心角为120°,半径为20cm 的扇形纸片围成一顶圆锥形的帽子,若小敏的头围约60cm ,则她戴这顶帽子大小合适吗?_______.(填“合适”或“不合适”) 13. 如图,双曲线11=y x (x >0),24=y x (x >0),点P 为双曲线24=y x上的一点,且PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,PA ,PB 分别交双曲线11=y x于D ,C 两点,则△PCD 的面积为______.14. 如图,正方形ABCD 的边长为4,M ,N 分别是BC ,CD 上的两个动点,且始终保持AM ⊥MN .当BM =______时,四边形ABCN 的面积最大. NMDCBA433323第14题图 第15题图15. 一个自然数的立方可以分裂成若干个连续奇数的和,例如:23,33和43分别可以按如图所示的方式“分裂”出2个、3个和4个连续奇数的和,即23=3+5,33=7+9+11,43=13+15+17+19,…,若63也按照此规律进行“分裂”,则“分裂”出的奇数中,最大的那个奇数是______.中考数学填空题专项训练(十五)二、填空题(每小题3分,共21分)9. 写出一个在实数范围内能用平方差公式分解因式的多项式:_____________.10. 如图,在△ABC 中,AB =AC ,将△ABC 绕点C 顺时针旋转180°得到△FEC ,连接AE ,BF .当∠ACB为_________度时,四边形ABFE 为矩形.E第10题图 第11题图 第12题图11. 如图所示,A ,B 是边长为1的小正方形组成的5×5网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是_________.12. 如图,Rt △ABC 中,∠ACB =90°,∠B =30°,AB =12cm ,以AC 为直径的半圆O交AB 于点D ,点E 是AB 的中点,CE 交半圆O 于点F ,则图中阴影部分的面积为________.13. 如图,以等腰Rt △ABC 的斜边AB 为边作等边△ABD ,C ,D 在AB 的同侧,连ACBDE中考数学填空题专项训练(十六)二、填空题(每小题3分,共21分)ENMPD CBAx+3第14题图 第15题图15.如图,点M 是直线y =2x +3上的动点,过点M 作MN ⊥x 轴于点N ,y 轴上是否存在点P ,使△MNP为等腰直角三角形?小明发现:当动点M 运动到(-1,1)时,y 轴上存在点P (0,1),此时有MN =MP ,△MNP 为等腰直角三角形.请你写出y 轴上其他符合条件的点P 的坐标__________________.中考数学填空题专项训练(十七)二、填空题(每小题3分,共21分) 9.函数12y x =-的自变量x 的取值范围是__________. 10.如图,AB ∥CD ,EF 与AB ,CD 分别相交于点E ,点F ,∠BEF 的平分线EG 交CD 于点G ,若∠1=50°,则∠2=__________度.G21FEDCBAC第10 题图 第11题图 第13题图11.如图,AB 是⊙O 的直径,点E 为BC 的中点,AB =4,∠BED =120°,则图中阴影部分的面积之和为___________.12.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,将该小球上的数字作为点P 的横坐标,将该数的平方作为点P 的纵坐标,则点P 落在抛物线y =-x 2+2x +5与x 轴所围成的区域内(不含边界)的概率是___________.15.已知:如图,AB =10,点C ,D 在线段AB 上,且AC =DB =2,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边三角形AEP 和等边三角形PFB ,连接EF ,设EF 的中点为点G .当点P 从点C 运动到点D 时,点G 移动的路径长是___________.中考数学填空题专项训练(十八)二、填空题(每小题3分,共21分)10. 如图,直线a ∥b ,直线l 分别与a ,b 交于E ,F 两点,FP 平分∠EFD ,交a 于P 点,若∠1=70°,则∠2=___________.21PDFE lba第10题图 第12题图11. 已知圆锥的底面直径和母线长都是10cm ,则圆锥的侧面积为_________.12. “五一”黄金周期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有2条公路,乙地到中考数学填空题专项训练(十九)二、填空题(每小题3分,共21分)9. 已知方程x y =16,写出两对满足此方程的x 与y 的值______________. 10. 如图,DE ∥BC ,CD 是∠ACB 的平分线,∠ACB =50°,则∠EDC =____度.CBED A第10题图 第13题图11. 在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:对于多项式x 4-y 4,因式分解的结果是(x -y )(x +y )(x 2+y 2),若取x =9,y =9,则各个因式的值是:(x -y )=0,(x +y )=18,(x 2+y 2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x 3-xy 2,取x =10,y =10时,用上述方法产生的密码可能是_______.(写出一个即可)12. 某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是________. 13. 如图,反比例函数ky x(x >0)的图象经过矩形OABC 对角线的交点M ,分别与AB ,BC 相交于点D ,E .若四边形ODBE 的面积为6,则k 的值为________.14. 如图,把矩形ABCD 对折,折痕为MN (图1),展开后再折叠,使点B 落在折痕MN 上的B ′处,得到Rt △AB ′E (图2),延长EB ′交AD 于F ,则 ∠EFA =________.图2图1NC NDF AB'M ED C AB M第14题图 第15题图15. 如图所示,AB 是⊙O 的直径,弦BC =2cm ,F 是弦BC 的中点,∠ABC =60°.若动点E 以2cm/s 的速度从A 点出发,沿着A →B →A 的方向运动,设运动时间为t (s )(0≤t <3),连接EF ,当t 为________s 时,△BEF 是直角三角形.中考数学填空题专项训练(二十)二、填空题(每小题3分,共21分) 9.分解因式:32a ab =________________.10.如图,AB ∥CD ,EG ⊥AB ,垂足为G .若∠1=50°,则∠E =_______.1GED CBACABD第10题图第11题图 第12题图11.何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为_______.(结果保留π)12.已知菱形ABCD 中,对角线AC =8cm ,BD =6cm ,在菱形内部(包括边界)任取一点P ,得到△ACP ,则△ACP 的面积大于6cm 2的概率为___________.13.身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形纸片ABCD (矩形纸片要足够长),我们按如下步骤操作可以得到一个特定的角: (1)以点A 所在直线为折痕,折叠纸片,使点B 落在AD 边上,折痕与BC 交于点E ; (2)将纸片展平后,以E 所在直线为折痕,再一次折叠纸片,使点A 落在BC 上,折痕EF 交AD 于点F ,则∠AFE =____________.14.如图,在Rt △ABC 中,∠ACB =90°,∠A <∠B ,CM 是斜边AB 上的中线,BC=△ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,垂足为点E ,则DE 的长为_______.第14题图 第15题图15.如图是反比例函数9y x(x >0)的图象,点C 的坐标为(0,2),若点A 是函数图象上一点,点B 是x 轴正半轴上一点,当△ABC 是等腰直角三角形时,点B 的坐标为___________.中考数学填空题专项训练(二十一)二、填空题(每小题3分,共21分)DBAC②AD =BC ;③AB ∥CD ;④∠A =∠C 中任取两个作为条件,能够得出四边形ABCD 是平行四边形的概率是_______.12.如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动),那么小羊A 在草地上的最大活动区域的面积是_______.象与边BC 交于点E ,与边CD 交于点F .若BE :CE =3:1,则DF :FC =________.14.如图,在面积为7的梯形ABCD 中,AD ∥BC ,AD =3,BC =4,P 为边AD 上不与A ,D 重合的一动点,Q 是边BC 上的任意一点,连接AQ ,DQ ,过P 作PE ∥DQ ,交AQ 于点E ,作PF ∥AQ ,交DQ 于点F ,则△PEF 面积的最大值是_______.QPABCE FD15.已知在Rt△ABC中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D处,折痕交另一直角边于点E,交斜边于点F,则tan∠CDE的值为_______.中考数学填空题专项训练(二十二)二、填空题(每小题3分,共21分)9.如果在等式5(x+2)=2(x+2)的两边同除以(x+2)就会得到5=2.我们知道5≠2,由此可以猜测(x+2)等于_______.10.如图,在边长相同的小正方形组成的网格中,点A,B,C,D都在这些小正方形的顶点上,AB,CD相交于点P,则tan∠APD的值是___________.P D B CA第10题图第11题图11.如图,以边长为6的正三角形ABC的顶点A为圆心,作弧DE与BC相切,分别交AB,AC于点D,E,若用阴影部分围成一个圆锥,则圆锥底面半径是_______.12.一只不透明的箱子中放了3副黑色手套和1副白色手套,假设手套不分左右,小明从这只箱子中任意取出2只手套,恰好配成两只颜色相同的一副手套的概率是_______.13.如图1,矩形ABCD中,AB=3cm,BC=4cm.沿对角线AC剪开,将△ABC向右平移至△A1BC1的位置,如图2,若重叠部分的面积为3cm2,则平移的距离AA1=______.14.如图,正三角形ABO的顶点B的坐标为(-2,0),过点C(2,0)作直线CE交AO于点D,交AB于点E,点E在双曲线kyx=(x<0)的图象上,若S△ADE=S△OCD,则k=_____.15.将三角形纸片ABC按如图所示的方式折叠,使点B落在边AC上的点B′处,折痕为EF.已知AB=AC=3,BC=4,若以点B',F,C为顶点的三角形与△ABC相似,则BF的长是________.中考数学填空题专项训练(二十三)二、填空题(每小题3分,共21分)10.如图,将正方形纸片ABCD分别沿AE,BF折叠(点E,F是边CD上的两点),使点C与点D在正方形内重合于点P处,则∠EPF=_______.PFED CBA第10题图第11题图第12题图11.如图,有一块直径为2m的圆形铁皮,要从中裁出一个圆心角为90°的最大扇形,做成一个圆锥形容器,那么这个圆锥形容器的底面直径约为_______. (精确到0.1m )12.如图,一个正方形花坛分成编号为①、②、③、④的四块,现有红、黄、蓝、紫四种颜色的花供选种.要求每块只种一种颜色的花,且相邻的两块种不同颜色的花,如果编号为①的那块已经种上红色花,那么其余三块不同的种法有_______种.13.如图,在△ABC 中,E 是BC 边上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC=12,则S △ADF -S△BEF=______.14.如图,在平面直角坐标系中有Rt △ABC ,∠A =90°,AB =AC ,A (-1,0),中考数学填空题专项训练(二十四)二、填空题(每小题3分,共21分)9. 若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m 的值是___________.ABFED C10. 在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED =∠B ,如果AE =2,△ADE 的面积与四边形BCED的面积之比为4:5,那么AB 的长为_________.E D CBAOEADCB第10题图 第11题图 第13题图11. 已知:如图,点E 是⊙O 上的点,B ,C 分别是劣弧AD 的三等分点,∠AED =69°,则∠OBC 的度数15.如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点C,D分别落在C′,D′处,且C′D′经过点B,中考数学填空题专项训练(二十五)二、填空题(每小题3分,共21分)9.函数y=的自变量x的取值范围是__________________.10.如图所示,某江段江水流向经过B,C,D三点拐弯后与原来相同,若∠ABC=120°,∠BCD=80°,则∠CDE的度数为______________.点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为_____________.12.小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E,F分别是矩形ABCD的两边AD,BC 上的点,EF∥AB,点M,N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率为_______________.第12题图第13题图13.以正方形ABCD的边BC为直径作半圆O,过点D作半圆O的切线,交AB边于点E,切点为F.则△ADE与直角梯形EBCD的周长之比为_______.14.如图,在Rt△ABC中,∠C=90°,AB=10,BC=6,点D在AC边上,将△ADB沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么线段DE的长为_____________.CBAEDCBA第14题图 第15题图15.如图,在Rt △ABC 中,∠C =90°,∠ABC =45°,AB =6,点D 在AB 边上,点E 在BC 边上(不与B ,C 两点重合).若DA =DE ,则AD 的取值范围是___________________.中考数学填空题专项训练(二十六)二、填空题(每小题3分,共21分)9. 不等式组6103452x x x -⎧⎨<+⎩≤的解集是________.10. 已知一次函数y =kx +b (k ≠0)的图象经过点(0,1),且y 随x 的增大而增大,请你写出一个符合上述条件的函数______________.11. 如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D ,C 两点分别落在点D ′,C ′的位置,并利用量角器量得∠EFB =65°,则∠AED ′=度.D'C'FEDCBA主视图 左视图 俯视图第11题图 第12题图12. 如图是某几何体的三视图及相关数据(单位:cm ),则该几何体的表面积为_______cm 2.13. 如图,O 是正方形ABCD 的两条对角线BD ,AC 的交点,EF 过点O ,若图中阴影部分的面积为1,则正方形ABCD 的周长为_________.14. 如图,将Rt △ABC 绕点C 按顺时针方向旋转90°到△A ′B ′C 的位置,已知斜边AB =10cm ,BC =6cm ,设M 是A ′B ′的中点,连接AM ,则AM =_________cm .中考数学填空题专项训练(二十七)第10题图第12题图第13题图11.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前4位,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是_________.12.如图,点A的坐标为(-1,0),点B在直线y=2x-4上运动,当线段AB最短时,点B的坐标是___________.13.如图,在梯形ABCD中,AB∥CD,∠A+∠B=90°,CD=5,AB=11,点M,N分别为AB,CD的中点,则线段MN=_________.14.如图是某公园的一角,∠AOB=90°,弧AB的半径OA的长是8米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是_______.中考数学填空题专项训练(二十八)二、填空题(每小题3分,共21分)AB11. 如图,在Rt △ABC 中,∠ACB =90°,∠BAC =60°,AB =6,Rt △AB'C'可以看作由Rt △ABC 绕点A 逆时针旋转60°得到的,则线段B ′C 的长为__________.12. 一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有_________个黑球.13. 如图,在平面直角坐标系中,点A 的坐标为(0,2),点C 是第二象限内一点,且AC =1,则∠AOC的取值范围是_____________.14. 如图,矩形ABCD 中,AB =4,BC =8,E 为CD 边的中点,点P ,Q 为BC 边上两个动点,且PQ =2,当BP =_________时,四边形APQE 的周长最小. 第14题图 第15题图15. 如图所示,点A 1,A 2,A 3在x 轴上,且OA 1=A 1A 2=A 2A 3,分别过点A 1,A 2,A 3作y 轴的平行线,与反比例函数8y x=(x >0)的图象分别交于点B 1,B 2,B 3,分别过点B 1,B 2,B 3作x 轴的平行线,分别交y轴于点C1,C2,C3,连接OB1,OB2,OB3,则图中阴影部分的面积之和为_________.中考数学填空题专项训练(二十九)二、填空题(每小题3分,共21分)4cos30=_______.α图3图2图1D'C'G G CBAF E DCBAF EDDEF ABC中考数学填空题专项训练(三十)二、填空题(每小题3分,共21分) 9. 分解因式:a 4-16a 2=_________.10. “一根弹簧原长为10cm ,在弹性限度内最多可挂质量为5kg 的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比,,则弹簧的总长度y (cm )与所挂物体质量x (kg )之间的函数关系式为y =10+0.5x (0≤x ≤5).”王刚同学在阅读上面材料时发现部分内容被墨迹污染,被污染的部分是确定函数关系式的一个条件,你认为该条件可以是:_____________________.(只需写出1个)11. 把一个体积是64立方厘米的立方体木块的表面涂上红漆,然后锯成体积为1立方厘米的小立方体,从中任取一块,则取出的这一块至少有一面涂红漆的概率是_________.12. 如图,圆心角都为90°的扇形OAB 与扇形OCD 叠放在一起,OA =1,OC =3,将扇形OAB 绕O 点旋转一定的角度得到右图(0°<∠AOC <90°),分别连接AC ,BD ,则图中阴影部分的面积为__________.AC OODCBA第12题图 第13题图S3S2mS1GNFHDCAME15.在□ABCD中,AB=6,AD=8,∠B是锐角,将△ACD沿对角线折叠,点D落在△ABC所在平面内的点E处,如果AE恰好经过BC的中点,则□ABCD的面积是______.2013年中考数学填空题专项训练(一)答案9. -4(答案不唯一)10. 70°11.1<x<4或x<0 12.1513.1414. 110°15. 14-22013年中考数学填空题专项训练(二)答案9. (6)(2)x x x-+10. 40°11. 18° 12.2913.314. 8 15. 122013年中考数学填空题专项训练(三)答案9. 如果三角形三边长a,b,c,满足a2+b2=c2,那么这个三角形是直角三角形10.52-11.20132α12. 26+10π13.()014. 215. 50或40或302013年中考数学填空题专项训练(四)答案14. 15.2013年中考数学填空题专项训练(五)答案9. 4 10. 30°11.4π12.1313.88115或15. 25122013年中考数学填空题专项训练(七)答案9.0x =或2x = 10. 1211. 王红 12.3y x=13.35 14. 15°或165°15. 3655⎛⎫⎪⎝⎭-,2013年中考数学填空题专项训练(八)答案9. 1 10. 40°532013年中考数学填空题专项训练(九)答案2013年中考数学填空题专项训练(十)答案14. (,)(,)2442m m --或15. 2013(2,2--2013年中考数学填空题专项训练(十一)答案2013年中考数学填空题专项训练(十三)答案2013年中考数学填空题专项训练(十六)答案2013年中考数学填空题专项训练(十九)答案2013年中考数学填空题专项训练(二十三)答案2013年中考数学填空题专项训练(二十四)答案2013年中考数学填空题专项训练(二十五)答案2013年中考数学填空题专项训练(二十六)答案9.-10. 105°11.1612.7655⎛⎫ ⎪⎝⎭,-13.3 14.32π3⎛ ⎝-米²15.2013 2013年中考数学填空题专项训练(二十八)答案。

相关文档
最新文档