《并行算法的设计与分析》5-精品文档

合集下载

高性能的并行计算算法设计与分析

高性能的并行计算算法设计与分析

高性能的并行计算算法设计与分析随着计算机技术的不断发展,越来越多的应用需要处理大量的数据和复杂的计算任务。

并行计算算法可以有效地将计算任务分解为多个子任务,并利用多个处理器同时进行计算,提高计算效率。

本文将探讨高性能的并行计算算法的设计与分析,介绍一些常用的并行计算算法和评估方法。

在设计高性能的并行计算算法时,首先需要考虑的是任务的划分与调度。

任务划分是将一个大的计算任务分解为多个子任务的过程,而任务调度是将这些子任务分配给不同的处理器进行计算的过程。

合理的任务划分和调度可以最大程度地提高并行计算的性能。

常用的任务划分策略包括数据划分和任务划分。

数据划分是将数据划分为多个小块,并将每个小块分配给不同的处理器进行计算。

而任务划分则是将计算任务分为多个子任务,并将每个子任务分配给不同的处理器进行处理。

这两种划分策略可以根据问题的特点和计算资源的分布选择合适的方式。

与任务划分相对应的是任务调度。

任务调度决定了每个处理器计算哪些子任务,并控制处理器之间的通信和同步。

常用的任务调度策略包括静态调度和动态调度。

静态调度在计算开始前就确定每个处理器的计算任务,而动态调度则是在计算过程中根据处理器的负载情况动态地调整任务分配。

除了任务划分与调度,算法设计中还需要考虑数据通信和同步的问题。

并行计算中,不同处理器之间需要进行数据交换和同步操作,以保证计算的正确性和一致性。

数据通信和同步的效率对并行计算的性能影响很大,因此需要精心设计和优化。

在进行高性能并行计算算法的分析时,可以采用多种评估指标。

常用的指标包括加速比、效率和可扩展性。

加速比定义为串行算法的执行时间与并行算法的执行时间的比值,反映了并行计算的效率。

效率表示并行计算的实际效果与理论效果之间的比例。

可扩展性表示并行算法在不同规模问题上的可扩展性能力。

为了更好地评估并行算法的性能,可以采用实际测试或者理论分析的方法。

实际测试包括在真实的并行计算环境中进行测试,收集运行时间等信息进行评估。

(2024年)并行计算第并行算法的设计ppt课件

(2024年)并行计算第并行算法的设计ppt课件
基因组学
运用并行计算技术加速基因序列的比对和分析,促进生物医学研究 的发展。
28
工程仿真领域
01
流体动力学仿真
通过并行算法模拟流体的运动状 态,以优化飞行器、汽车等交通 工具的设计。
02
03
结构力学仿真
电磁场仿真
利用并行计算技术对建筑物、桥 梁等结构进行力学分析和优化, 提高工程安全性。
运用并行算法模拟电磁场的分布 和传播,以改进电子设备和通信 系统的性能。
高速互联网络
用于连接处理器和存储器,提供高带宽和低延迟 的数据传输,保证并行计算的效率。
2024/3/26
5
并行计算的软件支持
并行编程模型
包括消息传递模型、数据并行模型和 共享内存模型等,为并行计算提供抽 象的编程接口。
并行编程语言
如MPI、OpenMP、CUDA等,这些 语言提供对并行硬件的直接支持,使 程序员能够方便地编写并行程序。
2024/3/26
并行最长公共子序列算法
通过并行处理多个子序列的比较和合并操作,加速 最长公共子序列的求解过程。
并行最短编辑距离算法
将编辑距离的计算过程拆分成多个步骤,每 个步骤可以在多个处理单元上并行执行,从 而加快计算速度。
18
04
现代并行算法设计
2024/3/26
19
分布式并行算法
2024/3/26
11
并行算法的性能评价
加速比
衡量并行算法相对于串行算法的速度提升程度。
效率
衡量并行算法在给定资源下的性能表现。
2024/3/26
12
并行算法的性能评价
• 可扩展性:衡量并行算法在增加处理单元 数量时的性能提升能力。

并行算法第五章并行算法的基本设计技术

并行算法第五章并行算法的基本设计技术
其潜在的加速比=流水线的级数 流水端所需时间不均衡将降低加速比
流水线存在装入时间和排空时间,使得加速比降低
由于存在相关问题,会导致流水线停顿
32
流水线设计技术
设计思想
将算法流程划分成p个前后衔接的任务片断,每个 任务片断的输出作为下一个任务片断的输入; 所有任务片断按同样的速率产生出结果。
(1.1) p(k)=next(k);
(1.2)if(p(k)!=k) distance(k)=1;
else distance(k)=0; (2)for i=1 to log2 n (2.1) for all k∈L par-do if(p(k)!=p(p(k)) { distance(k)= distance(k)+ distance(p(k)); p(k)=p(p(k));} (2.2) for all k∈L par-do //O(log2n)
30 40
T a s k O r d e r
40
40
40 20 原则上尽可能早 地让工作开始
A
B C D
流水作业完成四人的洗衣任务只需要 3.5 hours
31
流水线技术要点
流水线技术并不能提高单个任务的执行效率,它可 以提高整个系统的吞吐率
流水线中的瓶颈是最慢的那一段
多个任务同时执行,但使用不同的资源
p台处理器并行地求解各子问题
划分原理
常见划分方法
均匀划分
方根划分
对数划分
功能划分
均匀划分技术
划分方法 n个元素A[1..n]分成p组,每组A[(i-1)n/p+1..in/p] 示例:并行正则采样排序(PSRS) Parallel Sorting by Regular Sampling

并行计算算法设计与分析

并行计算算法设计与分析

并行计算算法设计与分析一、引言在现代计算机系统中,并行计算已经成为一种重要的技术手段。

并行计算算法的设计与分析是研究并行计算的核心内容之一。

本文将详细介绍并行计算算法的设计与分析方法,并讨论其在实际应用中的意义与挑战。

二、并行计算算法的分类1. 数据并行算法数据并行算法采用将计算任务分割为多个子任务,每个子任务在不同的处理单元上并行执行的方式。

典型的数据并行算法包括矩阵乘法算法、并行排序算法等。

2. 任务并行算法任务并行算法是将计算任务分解为多个相互独立的子任务,并行执行的方式。

各个子任务之间没有数据依赖关系,可以同时进行计算。

典型的任务并行算法包括并行搜索算法、并行图算法等。

3. 流水线并行算法流水线并行算法是将计算任务分解为多个阶段,不同处理单元在不同阶段上并行执行,通过流水线的方式提高计算效率。

典型的流水线并行算法包括多级缓存机制的并行计算算法、指令级并行计算算法等。

三、并行计算算法的设计方法1. 并行分解并行分解是指将原始的计算任务分解为多个子任务的过程。

在并行分解过程中,需要考虑任务的划分方式、任务之间的依赖关系以及负载均衡等问题。

2. 并行通信并行通信是指多个处理单元之间的信息传递与同步。

在并行计算算法的设计中,合理的并行通信方式能够提高计算效率。

常用的并行通信方式包括消息传递接口MPI、共享内存等。

3. 并行合并并行合并是指将多个子任务的计算结果合并为最终的结果的过程。

在并行合并过程中,需要考虑合并方式以及结果的正确性验证等问题。

四、并行计算算法的分析方法1. 速度up与加速比速度up表示并行计算与串行计算相比的计算速度提升程度。

加速比表示并行计算中处理单元数量增加时,计算速度相对于串行计算的提升比例。

通过对速度up与加速比的分析,可以评估并行算法的性能优劣。

2. 并行性的度量与评估并行性是指并行计算中各个子任务可以同时进行的程度。

通过对并行性的度量与评估,可以确定并行计算算法的最佳并行度。

并行算法的设计与分析》培训课件

并行算法的设计与分析》培训课件

• Knuth ==>
CO M(En,n)O(nlon)g
• 当m=n=2t时,不难推得
CO ME(n,n)2CO ME(n/2,n/2)n122CO ME(n/2,n/2)(n1)12
2CO ME(n/2,n/2)(n1)2(2CO ME(n/4,n/4)n/21)(n1)
22CO ME(n/22,n/22)(n2)(n1)...
2020/10/2
Parallel Algorithms 9 / Ch3
3.1.3 双调归并网络
1. 定义及定理
定义3.5: 一个序列a1,a2,…,an是双调序列(Bitonic Sequence),如果: (1)存在一个ak(1≤k≤n), 使得a1≥…≥ak≤…≤an成立;或者 (2)序列能够循环移位满足条件(1)
6
3
1
4
4
5
5
6
8
8
1级交叉比较
(2,2)偶归并
Parallel Algorithms 7 / Ch3
3.1.2 奇偶归并网络
3. 复杂性分析 比较器个数
C O M (m E ,n ) C O M (E m 2 ,n 2 ) C O m M (E m 2 ,n n 2 ) m 2 n 1 m m 1 1 n n
3.2 (m, n)-选择网络
3.2.1 分组选择网络 3.2.2 平衡分组选择网络
2020/10/2
Parallel Algorithms 2 / Ch3
3.1 Batcher归并和排序
3.1.1 比较操作和[0, 1]原理 3.1.2 奇偶归并网络 3.1.3 双调归并网络 3.1.4 Batcher排序网络
2020/10/2

并行算法设计范文

并行算法设计范文

并行算法设计范文
一、算法简介
分布式并行算法是一种把一个大的复杂的计算任务分解成若干个相对简单的计算任务,分别在多个处理器上并行计算的算法。

它利用多台计算机同时处理多项任务,不同的任务分别发送到不同的计算机上,通过网络进行数据的传输与分析。

而这些机器可以是单机的,也可以是分布式的,可以在不同的物理位置分布着。

分布式并行算法是指将一个大型计算任务分解成若干个小型子任务,将这些子任务分发给一组处理器进行处理,并将最终的结果通过网络进行同步,最终形成一个大的完整的计算结果。

分布式并行算法可以显著提升计算效率和准确度,改善原有的计算负荷,有助于提高企业的创新能力和竞争力。

二、典型应用
1、分布式存储系统:将数据保存到多台计算机上,从而使存储空间和计算能力大大增加;
2、分布式计算系统:实现多个计算机之间利用网络互相传递和处理数据,从而提高系统的运行效率;
3、大数据处理应用:将大数据保存到多台计算机上,并利用网络进行分布式处理,实现计算量巨大的数据处理任务;
4、虚拟机技术:将多台计算机组成集群,共享软件资源,实现虚拟机的建立和使用;。

并行算法的设计与

并行算法的设计与
任务层调度针对某个用户的单一并行应用程序的一组任 务(子任务),面向的一般是单应用程序系统,它的调度实 体是任务,调度目标一般就是求得任务最短的执行时间。
作业层调度针对若干个用户的多个并行应用程序构成的 一组作业 ,面向的一般是多应用程序系统,它的调度实体是 传统批处理意义下的作业,调度目标有多个,如最短的平均 作业响应时间、最大的资源利用率或最大的系统吞吐率等。
调度效率(Scheduling Efficiency)主要 指调度系统本身的复杂度。
任务调度的概念
? 并行计算中的任务调度
并行分布计算中的任务调度问题:根据一定的调度规则 和调度策略,把组成并行程序的一组任务或构成工作负载的 一组作业,按照一定执行时序分配到并行分布系统的多个计 算节点上,以期取得较好的系统执行性能。 ? 任务调度与作业调度
对于任务划分,我们通常用任务交互作用图(Task Interaction Graph)来表示并行算法(程序)模型
对于任务调度,通常用带权有向图(Weighted Direct Graph)来表示并行算法(程序)模型 。
பைடு நூலகம்
任务调度的概念
? 并行计算中任务调度的分类
? 静态调度、动态调度和混合调度 静态调度(Static Scheduling)在编译并行程序时,就决定每 个任务的执行处理器及执行时序,它经常用于任务图比较确定 的情况。
任务调度的概念
? 并行计算中任务调度的分类
? 最优调度和启发式调度
最优调度一般是指静态调度,如果一个调度算法能在多 项式复杂度的时间内获得最佳调度结果,那么称之为有效的最 优调度算法。
启发式调度方法将任务调度分配到各处理器上,它虽然不 能确保获得最优解,但可以获得最优调度的近似解。 ? 共享存储结构的任务调度和分布存储结构的任务调度

并行算法的设计与分析课件

并行算法的设计与分析课件

2.3 分治策略
n设计思想
• 将原问题划分成若干个相同的子问题分而治之,若子问题仍然
较大,则可以反复递归应用分治策略处理这些子问题,直至子 问题易求解。
n求解步骤
• 将输入划分成若干个规模相等的子问题; • 同时(并行地)递归求解这些子问题; • 并行地归并子问题的解成为原问题的解。
n示例
• SIMD-SM模型上的FFT递归算法
Parallel Algorithms 3 / Ch2
2.1 平衡树方法
n算法2.1 SIMD-SM上求最大值算法
Begin for k=m-1 to 0 do for j=2k to 2k+1-1 par-do A[j]=max{A[2j], A[2j+1]} end for end for
end
时间分析 t(n)=m×O(1)=O(logn) p(n)=n/2 c(n)=O(nlogn) 非成本最优
2023/10/19
Y.Xu Copyright
USTC
Parallel Algorithms 4 / Ch2
2.1 平衡树方法
前缀和
n 问题定义
n个元素{x1,x2,…,xn},前缀和是n个部分和: Si=x1*x2*…*xi, 1≤i≤n 这里*可以是+或×
for j=1 to n/2h par-do B[h,j]=B[h-1,2j-1]*B[h-1,2j]
end for end for
时间分析:
(3)for h=logn to 0 do //反向遍历
for j=1 to n/2h par-do (i) if j=even then //该结点为其父结点的右儿子 C[h,j]=C[h+1,j/2]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1.3 示例 5.1.4 时间分析
2019/3/6
Y.Xu Copyright
USTC
Parallel Algorithms 3 / Ch5
5.1.1 MIMD异步算法的基本框架 ①开始时所有处理器空闲,用某个开始算法, 产生一些过程或进程(算法的一段),进入进程
等待队列;
②若有空闲的机器,分配进程;进程执行完之后,
2 . 1 步( 8 与 8 )( 8 与 6 )( 8 与 6 )( 8 与 9 ) ( 8 与 7 ) 2 . 3 步 2 . 2 步
(3)进程2: 1+3+3+3+3+3+1=17 类似地,进程3(18),进程4(13),进程5(15)
P 1 : P 2 :
2019/3/6
进 程 1进 程 3


2019/3/6
Y.Xu Copyright
USTC
Parallel Algorithms 8 / Ch5
5.2 MIMD-TC模型上的异步快排序算法 5.2.1 SISD上的快排序算法



5.2.2 SIMD-CRCW上的快排序算法
5.2.3 MIMD-TC模型上的异步快排序算法
2019/3/6
(3)for i=q+1 to r do
if Ai≤x then (i)s=s+1 (ii)swap(As, Ai) end if (4)swap(Aq, As) (5)QUICKSORT(A, q, s)
(6)QUICKSORT(A, s+1, r)
2019/3/6
end
Y.Xu Copyright
(4)n个处理器Pi存有A[i]
(5)得到二叉排序树后,只要中序遍历即可得到排序序列 (6)二叉排序树如下:
A [L c[root]] A [root] A [R c[root]]
A [L c[L c[root]]] A [Rc[L c[root]]]
2019/3/6
Y.Xu Copyright
USTC
1 4 3 2
时 间 时 间
Parallel Algorithms 6 / Ch5
进 程 2进 程 4进 程 5
1 7 3 0 4 5
ห้องสมุดไป่ตู้USTC
Y.Xu Copyright
5.1.4 异步枚举排序算法的时间分析
1.假定:第(1)步之前无任何进程启动; 可在常数时间内解决读冲突; 不考虑进程间的调度时间 2.MIMD-异步枚举排序算法时间 n个进程:每个进程时间O(n)
5.2 MIMD-TC模型上的异步快排序算法 5.3 分布式k-选择算法


2019/3/6
Y.Xu Copyright
USTC
Parallel Algorithms 2 / Ch5
5.1 MIMD-CREW模型上的异步枚举排序算法 5.1.1 MIMD异步算法的基本框架



5.1.2 异步枚举排序算法
Y.Xu Copyright
USTC
Parallel Algorithms 9 / Ch5
5.2.1 SISD上的快排序算法
Procedure QUICKSORT(A, q, r) //输入无序序列(Aq,…,Ar);输出有序序列(Aq,…,Ar) begin if q<r then (1)x= Aq (2)s=q
机器进入等待;
③若无等待进程,机器空闲,排队进入等待状态。 注:SIMD每个时刻各处理器执行的操作相同
2019/3/6
Y.Xu Copyright
USTC
Parallel Algorithms 4 / Ch5
5.1.2 异步枚举排序算法
1.输入待排序数组X[1..n],输出已排序数组T[1..n]。 2.算法:MIMD-CREW枚举排序
USTC
Parallel Algorithms 10 / Ch5
5.2.2 SIMD-CRCW上的快排序算法
1.算法说明
(1)SIMD-CRCW上的快排序算法的核心是构造二叉排序树。
(2)排序树的树根为root,左孩子为Lc[root],右孩子为Rc[root] (3)SM变量root, Lc[1..n], Rc[1..n], 及待排序数组A[1..n]
n n2 t(n) O(n) O( ) p p p(n) p c(n) O(n2)
2019/3/6
Y.Xu Copyright
USTC
Parallel Algorithms 7 / Ch5
主要内容

5.1 MIMD-CREW模型上的异步枚举排序算法
5.2 MIMD-TC模型上的异步快排序算法 5.3 分布式k-选择算法
注:算法生成n个进程,第i个进程计算X中比xi小的元素数k,将xi置于SM 数组T[k+1],各进程间无通讯要求,可互相独立完成。
2019/3/6
Y.Xu Copyright
USTC
Parallel Algorithms 5 / Ch5
5.1.3 异步枚举排序算法示例
输入X={8,6,6,7,9},p(n)=2,P1生成5个进程,设进程调度按 FIFO,P1与P2首先执行进程1和进程2 (1)进程内的运算(假定各操作时间相同,X数组已在本地) k=0, X(i)>X[j], X(i)=X[j], i>j, k=k+1, T[k+1]=X[i] (2)进程1: 1 + 3 + 2 + 2 + 3 + 2 + 1=1 4
Parallel Algorithms 11 / Ch5
5.2.2 SIMD-CRCW上的快排序算法
2.SIMD-CRCW上的快排序二叉树构造算法
begin
(1)for i=1 to n do create process i end for (2)process i: (2.1)k=0
(2.2)for j=1 to n do
if X[i]>X[j] then k=k+1 else if (X[i]=X[j] and i>j) then k=k+1 end if (2.3)T[K+1]=X[i] end
Parallel Algorithms
Chapter 5 Sorting and Selecting in Asynchronous
2019/3/6
Y.Xu Copyright
USTC
Parallel Algorithms 1 / Ch5
主要内容

5.1 MIMD-CREW模型上的异步枚举排序算法
相关文档
最新文档