基于状态机的交通灯控制

合集下载

EDA交通灯课程设计--CPLD实现交通灯控制系统

EDA交通灯课程设计--CPLD实现交通灯控制系统

CPLD实现交通灯控制系统一.预期功能分别成东西走向和南北走向的主干道和支干道,其交通信号灯,分别实现一下状态:S0:支干道没有车辆行驶,支干道绿灯,支干道红灯S1:支干道有车辆行驶,支干道绿灯,支干道红灯S2:主干道黄灯,支干道绿灯S3:主干道红灯,支干道绿灯S4:主干道红灯,支干道黄灯状态亮灯停留时间S0 G2,R2 50秒S1 G2,R2 45秒S2 Y1,G2 5秒S3 R1,G2 25秒S4 R1,Y2 5秒二.原理框图根据设计要求和系统所具有的功能,并参考相关的文献资料,经行方案设计,可以画出如下图所示的交通信号灯控制器的系统框图。

1kHZ根据以上设计思路,可以得到如下的顶层文件原理图顶层文件的实体图:三.单元模块设计与仿真时钟分频模块系统的动态扫描需要1HZ的脉冲,而系统时钟计时模块需要1HZ的脉冲。

分频模块主要为系统提供所需的时钟计时脉冲。

该模块将1kHZ的脉冲信号进行分频,产生1S的方波,作为系统时钟计时信号。

其实体模块如下:将END TIME改为5SCLK采用系统的1KHZ的时钟脉冲仿真波形如下:可以看到能够得到1s的时钟脉冲交通灯控制及计时模块控制模块根据外部输入信号和计时模块产生的输出信号,产生系统的状态机,控制其他部分协调工作。

计时模块用来设定主干道和支干道计时器的初值,并为扫描显示译码模块提供倒计时时间。

控制及计时模块采用状态机进行设计,可以定义出5种状态,分别为S0:主干道绿灯,支干道红灯且没有车辆行驶;S1:主干道绿灯,支干道红灯或支干道有车辆驶入;S2:主干道黄灯,支干道红灯;S3:主干道红灯,支干道绿灯;S4:主干道红灯,支干道黄灯。

利用CASE语句定义状态的转换方式及时间的变换方式,达到主干道绿灯亮45秒,支干道绿灯亮25秒,黄灯亮5秒的设计要求。

其实体模块如下:CAR为支干道车辆检测开关在支干道有车的情况下,模块可以进行减计时CLK1S为1S的时钟脉冲TIME1H、TIME1L、TIME2H、TIME2L分别为主干道时钟高位、主干道时钟低位、支干道时钟高位、支干道时钟低位LED为LED灯发光情况,分别为主干道绿灯、主干道黄灯、主干道红灯、支干道绿灯、主干道黄灯、主干道红灯Count的总的系统时间,用来改变系统的状态仿真波形如下:通过仿真可以看到:当主干道绿灯,支干道红灯时,主干道倒计时高位置数0100,低位置数0101;支干道高位置数0101,低位置数0000;当主干道黄灯,支干道红灯时,主干道黄灯倒计时置数0101;支干道继续刚才的减计数;当主干道红灯,支干道绿灯时,主干道倒计时高位置数0011,低位置数0000;支干道高位置数0010,低位置数0101;当主干道红灯,支干道黄灯时,支干道黄灯倒计时置数0101;主干道继续刚才的减计数。

基于单片机的智能交通灯控制器设计

基于单片机的智能交通灯控制器设计

基于单片机的智能交通灯控制器设计一、本文概述随着城市化进程的加快,交通拥堵问题日益严重,智能交通系统的应用与发展成为解决这一问题的关键。

其中,智能交通灯控制器作为交通系统的重要组成部分,对于提高道路通行效率、保障行车安全具有重要意义。

本文旨在设计一种基于单片机的智能交通灯控制器,通过优化算法和硬件设计,实现交通灯的智能控制,以适应不同交通场景的需求,提升城市交通的整体运行效率。

本文将首先介绍智能交通灯控制器的研究背景和意义,阐述现有交通灯控制系统的不足和改进的必要性。

接着,文章将详细介绍基于单片机的智能交通灯控制器的设计方案,包括硬件电路的设计、控制算法的选择与优化等方面。

在此基础上,本文将探讨如何通过软件编程实现交通灯的智能控制,并讨论如何在实际应用中调试和优化系统性能。

文章将总结研究成果,展望智能交通灯控制器在未来的发展方向和应用前景。

通过本文的研究,旨在为城市交通管理提供一种新的智能化解决方案,为缓解交通拥堵、提高道路通行效率提供有力支持。

本文的研究也有助于推动单片机技术和智能交通系统的发展,为相关领域的研究和实践提供有益的参考和借鉴。

二、单片机技术概述单片机,即单片微型计算机(Single-Chip Microcomputer),是一种集成电路芯片,它采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O 口和中断系统、定时器/计时器等功能集成到一块硅片上,构成一个小而完善的微型计算机系统。

单片机以其体积小、功能强、成本低、可靠性高、应用广泛等特点,广泛应用于工业控制、智能仪表、家用电器、医疗设备、航空航天、军事装备等领域。

单片机作为智能交通灯控制器的核心部件,具有不可替代的重要作用。

它负责接收来自传感器的交通信号输入,根据预设的交通规则和算法,快速作出判断,并输出相应的控制信号,以驱动交通信号灯的亮灭和变化,从而实现交通流量的有序控制和疏导。

基于AT89C51单片机的交通灯系统设计

基于AT89C51单片机的交通灯系统设计

基于AT89C51单片机的交通灯系统设计摘要:本文设计了一种基于AT89C51单片机的交通灯系统。

该系统通过使用AT89C51单片机作为控制核心,结合LED灯、红外传感器等硬件部件,实现了智能交通灯的功能。

利用AT89C51单片机的高性能和可编程性,本文提出了基于状态机的控制算法,实现交通灯的精确控制,以提高交通效率和安全性。

试验结果表明,所设计的交通灯系统稳定可靠,具有一定的应用价值。

关键词:AT89C51、单片机、交通灯、智能控制、状态机1. 引言交通灯作为城市道路交通的重要组成部分,对交通的顺畅和安全起着至关重要的作用。

传统的交通灯系统通常接受定时控制方式,无法依据实际交通状况进行灵活调整,导致交通拥堵和交通事故频发。

因此,设计一种智能交通灯系统,能够依据实时交通状况智能调整交通信号灯的状态,具有重要的现实意义。

2. 系统设计2.1 系统硬件设计本文所设计的交通灯系统接受AT89C51单片机作为控制核心,具有较高的性能和可编程性。

系统硬件部件包括LED灯、红外传感器、电路板等。

其中,LED灯用于表示交通灯的红、黄、绿三种状态;红外传感器用于感知车辆的存在与否。

这些硬件部件通过电路板毗连并与AT89C51单片机进行相应的电路毗连,构成完整的交通灯系统。

2.2 系统软件设计系统软件主要包括控制算法的设计和程序编写。

本文接受了基于状态机的算法,实现交通灯的智能控制。

系统依据红外传感器感知到的车辆状况和交通灯当前的状态来进行裁定,从而确定下一时刻交通灯的状态。

详尽实现过程如下:状态1:红灯状态。

当红灯亮起时,表示该方向的车辆需要停车等待。

系统检测到车辆通过红外传感器时,切换到状态2。

状态2:绿灯状态。

当绿灯亮起时,表示该方向的车辆可以通行。

系统计时一定时间后,切换到状态3。

状态3:黄灯状态。

当黄灯亮起时,表示该方向的车辆应注意停车。

系统计时一定时间后,切换到状态1。

该算法能够依据交通灯的当前状态和车辆的状况进行相应的状态切换,实现智能交通灯的控制。

基于quartusll-交通灯控制系统

基于quartusll-交通灯控制系统

一、设计任务要求交通灯控制器:用于十字路口的交通灯控制器.实验要求:1.东西方向各有一组红,黄,绿灯用于指挥交通,红,黄,绿的持续时间分别为25s,5s,20s。

2.当有紧急情况(如消防车)时,两个方向均为红灯亮,计时停止,当特殊情况结束后,控制器恢复原来状态,正常工作。

3.组数码管,以倒计时方式显示两个方向允许通行或禁止通行的时间.二、设计思路及总体结构框图设计思路:1.硬件:由设计任务要求可知,总体输入电路有:(1)在开始计时之前的等待状态,复位键reset接低电位,接通电源后,首先要将它接高电位,表示计时开始。

(2)当按一下(on_off)键,表示紧急情况发生,两个方向均为红灯亮,计时停止,当再次按下(on_off)键时,控制器恢复原来状态,正常工作。

输出电路:(1)由于东西和南北方向都要显示时间,因此需要4个数码管,这样在设计中就需要四条输出线choose4,用来选通指定一个LED七段显示数码管。

(2)显示器的每一位都采用LED七段显示数码管进行显示,每一个LED七段显示数码管都要有七条输出线控制,一共使用4个七段数码管,故输出电路使用四个七位输出信号:showtime1,showtime2,showtime3,showtime4。

(3)东西和南北方向都有交通灯亮的情况,故输出电路中要有两个状态控制信号state1,state2分别控制东西和南北的灯,每个方向上有4个灯(增加了左、右转弯显示控制功能),所以state1,state2的类型应该是4位数组型的。

reset7/2.软件:(1)在VHDL设计描述中,采用自顶向下的设计思路,该思路,首先要描述顶层的接口,上面的描述已经规定了交通灯控制的输入输出信号:输入信号:复位开关信号reset;紧急情况控制信号on_off;外部时钟信号clk。

输出信号:LED七段显示数码管的选通信号choose4(3 downto 0);LED 七段显示数码管的输出信号showtime1(6 downto 0),showntime2(6 downto 0),showtime3(6 downto 0),showtome4(6 downto 0);交通灯状态控制信号state1(3 downto 0),state2(3 downto 0)。

交通灯的PLC程序设计

交通灯的PLC程序设计

交通灯的PLC程序设计摘要PLC(可编程逻辑控制器)是一种用于自动化控制的计算机设备。

本文将介绍在交通灯系统中使用PLC进行控制的程序设计。

介绍随着城市化的发展,交通拥堵已经成为了一个普遍的现象。

为了解决交通拥堵问题,并提高道路交通的安全性,交通灯系统变得越来越重要。

在交通灯系统中,使用PLC控制可以实现精确、可靠、高效的控制方式。

PLC是一种专业的控制器,主要用于工业自动化控制。

PLC能够将输入的控制信号进行逻辑处理,并输出相应的控制信号,实现可编程的自动控制。

在交通灯系统中,PLC负责控制信号灯的开关,保证交通信号灯的正常运转。

本文将介绍在交通灯系统中使用PLC的程序设计。

该设计针对的是普通十字路口,控制红、黄、绿三种信号灯的开关顺序,以保证交通流畅和交通安全。

PLC程序设计逻辑控制在交通灯系统中,PLC将接受来自传感器的信号,根据这些信号进行逻辑运算,从而控制信号灯的开关。

通过逻辑运算,PLC可以实现绿灯亮、黄灯亮、红灯亮等不同的控制方式。

PLC的逻辑运算主要包括开关量逻辑和模拟量逻辑两种方式。

对于交通灯系统来说,开关量逻辑是最常用的控制方式,这是因为信号灯的开关只有两种状态:开和关。

控制程序交通灯系统中使用的PLC程序通常是基于状态机的控制方式。

状态机是一种基于状态转移的控制模型,是一种理论模型,用于描述有限个状态及其之间的转移。

交通灯系统中的PLC程序一般会分为两部分:状态转移表和状态转移图。

状态转移表用于记录系统中所有的状态和它们之间的转移关系,状态转移图则是在状态转移表的基础上对状态之间的关系进行图形化表示。

下面是一个简单的状态转移表,用于描述交通灯系统中红、黄、绿三种灯的控制状态:当前状态输入信号下一状态红灯等待绿灯黄灯等待红灯绿灯等待黄灯红灯或黄灯非等待黄灯绿灯非等待红灯PLC程序实现在实现PLC程序时,需要根据状态转移图和状态转移表编写程序。

在交通灯系统中,PLC的输入端接收传感器信号,根据传感器信号和状态转移表的状态转移关系来更新PLC的输出信号。

华南理工大学数字系统设计实验3报告资料

华南理工大学数字系统设计实验3报告资料

实验三基于状态机的交通灯控制地点:31号楼312房;实验台号:12实验日期与时间:2017年12月08日评分:预习检查纪录:批改教师:报告内容:一、实验要求1、开发板上三个led等分别代表公路上红黄绿三种颜色交通灯。

2、交通灯状态机初始状态为红灯,交通灯工作过程依次是红→绿→黄→红。

3、为了方便观察,本次实验要求红灯的显示时间为9s,绿灯显示时间为6s,黄灯显示时间为3s,时间需要倒计时,在数码管上显示。

编程之前要求同学们先画好ASM图。

4、1Hz分频模块请采用第二次实验中的内容,7段码显示模块请参考书本相关内容。

5、第三次实验课用到EP2C8Q208C8通过74HC595驱动数码管,有两种方法写该模块代码:方法1,用VHDL语言写,(自己写VHDL代码有加实验分)。

方法2,可调用verilog数码管驱动模块,该模块在附件“seg.zip”中。

和其它VHDL编写的模块可以混搭在一个电路图中使用。

EP2C8Q208C8的SCTP,SHCP,SER_DATA数码管信号线通过两块74HC595集成块,再驱动数码管。

6、芯片型号:cyclone:EP2C8Q208C8,开发板所有资料都在“新板”附件中,其中管脚配置在实验要求中是不对的,以“新板”附件中为准。

二、实验内容1设计要求开发板上三个led等分别代表公路上红黄绿三种颜色交通灯。

交通灯状态机初始状态为红灯,交通灯工作过程依次是红→绿→黄→红。

本次实验要求红灯的显示时间为9s,绿灯显示时间为6s,黄灯显示时间为3s,时间需要倒计时,在数码管上显示。

2设计思路(1)数码管驱动第三次实验课用到EP2C8Q208C8通过74HC595驱动数码管,有两种方法写该模块代码:方法1,用VHDL语言写,(自己写VHDL代码有加实验分)。

方法2,可调用verilog数码管驱动模块,该模块在附件“seg.zip”中。

和其它VHDL 编写的模块可以混搭在一个电路图中使用。

DSP实验设计报告交通灯

DSP实验设计报告交通灯

DSP实验设计报告交通灯设计目的本实验旨在根据交通灯控制的实际情况,通过DSP进行流程设计,实现交通灯的各种状态的控制,以此提高实验者的DSP编程能力,增加其对控制系统的理解。

设计原理本实验的主要控制器是TMS320C6748 DSP芯片,通过硬件与LED灯连接,实现交通灯的开关控制。

同时为了保证控制系统可靠稳定,使用了光电隔离模块,充分隔离DSP和LED灯的电路。

本设计的交通灯状态转换流程采用了状态机设计思想,为灯控中的状态设计了相应的状态表,每种灯的状态都在状态表里有清晰的描述。

设计方案交通灯设有3种状态:绿灯进车、黄灯过渡、红灯停车,每一种状态都有对应的时间段,为保证交通的顺畅性,在每一个灯的状态下,都会伴随一个闪烁的灯,以提醒司机进行注意。

以此设计的状态图如下图所示。

![State Diagram](state-diagram.png)在进入程序正式实现之前,本设计还首先对TMS320C6748芯片进行了硬件初始化。

然后,通过while(1)循环语句,对交通灯的各个状态进行了详细的代码实现。

在绿灯进车状态下,程序会调用绿灯程序来实现灯的亮灭控制,同时启动两个计时器,一个是绿灯定时器,另一个是闪烁灯定时器,用于定时绿灯亮起的时间和检测闪烁灯是否需要亮起。

设计结果本设计成功实现了交通灯的几种不同状态的控制,在调试过程中,程序运行稳定,性能良好,每种状态的时间也能够精确控制。

同时闪烁灯的提醒功能也能够很好的保证交通的顺畅性。

当交通灯进入红灯时,即停车状态,道路上的车辆就需要停车等待,因此为了达到更好的交通效果,可将道路的长度设置得适当加长,同时还需要设置好交通灯的时间参数,适时地调节程序中各种灯亮起的时间,使得交通灯控制系统的效率和安全性能得到了很大地提升。

不过需要注意的是,在程序运行过程中,还需要注重一些细节问题的处理,如各种定时器的时间调整、闪烁灯的速度设置等。

只有这样才能够保证一套良好的交通灯控制系统的建立。

实验五交通灯控制

实验五交通灯控制
*
操作规则实现电路
功能:根据交通红绿灯控制器的功能要求,确定不同工作状态下计时器的计数值。可用8位计数器来实现定时计数。
正常运行时,计数器按照规定的定时要求加1计数;若要人工放行某方向,只要使计时器运行到该放行状态的最后一刻时,计时器保持此时的计数值,使红绿灯信号生成器暂停状态的转移即可。
*
再按下键2,表示欲人工放行B方向,则相应LED有显示;同时两个方向的红绿灯按正常运行规律自动切换,当运行到放行B方向时,则保持放行该方向。
再按下键3,表示清除人工方向的控制,则交通灯开始自动转换红黄绿灯的状态。
3
2
1
4
*
1
2
3
4
5
6
预习时请画出其状态转移图。
*
设计方案的选择
01
图文混合设计方法:先将电路划分为几个子模块,每个子模块由Verilog HDL语言描述实现,然后生成逻辑符号,顶层文件采用图形文件来实现。
02
纯文本描述方法:每个子模块和顶层电路的连接关系都采用Verilog HDL语言描述实现,对子模块的调用采用模块元件例化的方法。
起始状态的选择
采用log2N个触发器来表示这N个状态 采用N个触发器来表示这N个状态——称为一位热码状态机编码(One-Hot State Machine Encoding)。
状态编码
采用Verilog HDL语言实现基于状态机的设计,就是在时钟信号的触发下,完成两项任务: 用case或if-else语句描述出状态的转移; 描述状态机的输出信号。
在线校验
下载后,仔细观察:红绿灯应按设定的时间规律自动切换,D1~D8八个LED分别对应的是:A方向的红黄绿,B方向的红黄绿,A方向的放行状态,B方向的放行状态。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交通灯状态机程序:
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_arith.ALL;
ENTITY traffic_light_dianlian IS
PORT(clk:IN std_logic;
reset:IN std_logic;
rl,gl,yl:OUT std_logic;
counter_time:OUT std_logic_vector(3 DOWNTO 0)); END ENTITY;
ARCHITECTURE nan OF traffic_light_dianlian_32 IS SIGNAL mtime:integer RANGE 0 TO 9;
BEGIN
PROCESS(clk,reset)
TYPE state_type IS(R,G,Y);
VARIABLE state:state_type;
BEGIN
IF reset='1'
THEN state:=R;
rl<='1';
gl<='0';
yl<='0';
mtime<=9;
counter_time<=conv_std_logic_vector(mtime,4); ELSIF clk'event and clk='1' THEN
CASE state IS
WHEN R=>rl<='1';gl<='0'; yl<='0';
mtime<=mtime-1;
counter_time<=conv_std_logic_vector(mtime,4);
IF(mtime=1)THEN state:=G; mtime<=6;
ELSE state:=R;
END IF;
WHEN G=>gl<='1'; rl<='0';yl<='0';
mtime<=mtime-1;
counter_time<=conv_std_logic_vector(mtime,4);
IF(mtime=1)THEN state:=Y; mtime<=3;
ELSE state:=G;
END IF;
WHEN Y=>yl<='1'; gl<='0'; rl<='0';
mtime<=mtime-1;
counter_time<=conv_std_logic_vector(mtime,4);
IF(mtime=1)THEN state:=R; mtime<=9;
ELSE state:=Y;
END IF;
END CASE;
END IF;
END PROCESS;
END nan;
数码管显示:
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
ENTITY led IS
PORT(counter_time:IN std_logic_vector(3 DOWNTO 0);
EN:IN std_logic;
seven_seg_input:OUT std_logic_vector(7 DOWNTO 0)); END led;
ARCHITECTURE led_arch OF led IS
SIGNAL counter_time_input:std_logic_vector(4 DOWNTO 0); SIGNAL seven_seg_input_reg:std_logic_vector(7 DOWNTO 0); BEGIN
counter_time_input<=EN&counter_time;
display:PROCESS(counter_time_input,seven_seg_input_reg) BEGIN
CASE counter_time_input IS
WHEN"00000"=>seven_seg_input_reg<="00000010"; WHEN"00001"=>seven_seg_input_reg<="10011110"; WHEN"00010"=>seven_seg_input_reg<="00100100"; WHEN"00011"=>seven_seg_input_reg<="00001100"; WHEN"00100"=>seven_seg_input_reg<="10011000"; WHEN"00101"=>seven_seg_input_reg<="01001000"; WHEN"00110"=>seven_seg_input_reg<="01000000"; WHEN"00111"=>seven_seg_input_reg<="00011110"; WHEN"01000"=>seven_seg_input_reg<="00000000"; WHEN"01001"=>seven_seg_input_reg<="00001000"; WHEN OTHERS=>seven_seg_input_reg<="11111111"; END CASE;
seven_seg_input<=seven_seg_input_reg;
END PROCESS;
END led_arch;
分频器:
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
ENTITY frequencies IS
PORT(clk:IN std_logic;
q:OUT std_logic);
END frequencies;
ARCHITECTURE behav OF frequencies IS BEGIN
PROCESS(clk)
VARIABLE time:integer RANGE 0 TO 50000000; BEGIN
IF rising_edge(clk) THEN
time:=time+1;
IF time<=25000000 THEN
q<='1';
ELSE IF time<50000000 THEN
q<='0';
else
time:=0;
END IF;
END IF;
END IF;
END PROCESS;
END BEHAV;。

相关文档
最新文档