多项式的乘法典型例题(整理)
(完整版)多元多项式的乘法与因式分解专题训练

(完整版)多元多项式的乘法与因式分解专题训练多元多项式的乘法与因式分解是代数学中重要的概念和技巧,本文档将提供一些专题训练来帮助您加深理解和掌握这些内容。
1. 多元多项式的乘法多元多项式的乘法是指将两个或多个多项式相乘的过程。
以下是一些乘法的练题:1.1 二元多项式的乘法计算以下二元多项式的乘积:1. \( (x + 2y)(3x - 4y) \)2. \( (2x^2 - 3xy)(x - y) \)3. \( (2a^2 - ab + 3b^2)(a + 2b) \)1.2 三元多项式的乘法计算以下三元多项式的乘积:1. \( (x + y + z)(2x - 3z)(y - z) \)2. \( (3x^2y - 2xy^2z)(x - y + z)(2x - 3z) \)3. \( (2a^2 - ab + 3b^2)(a + 2b)(3a - b) \)2. 多元多项式的因式分解多元多项式的因式分解是指将一个多项式表示为其不可约因式的乘积的过程。
以下是一些因式分解的练题:2.1 二元多项式的因式分解将以下二元多项式进行因式分解:1. \( x^2 - y^2 \)2. \( x^2 + 4xy + 4y^2 \)3. \( 4x^2 - 9y^2 \)2.2 三元多项式的因式分解将以下三元多项式进行因式分解:1. \( x^3 - y^3 + z^3 \)2. \( x^3 + y^3 + z^3 - 3xyz \)3. \( 8a^3 - 27b^3 \)以上是多元多项式的乘法与因式分解的一些专题训练题目,通过解答这些题目,您将能够更好地理解和掌握多元多项式的乘法与因式分解的技巧。
祝您学习愉快!。
整式的乘法多项式与多项式相乘 (2)

12.2.3 多项式与多项式相乘
重难互动探究
探究问题一 多项式与多项式相乘 例 1 [课本例 3 变式题] 计算: (1)(3x+2y)(3x-2y);(2)(2ab-1)2; (3)(2a3-3a+5)(3-a2). [解析] 多项式与多项式相乘时,先用一个多项式的每 一项“遍乘”另一个多项式的每一项,再把所得的积相加.
图 12-2-9
12.2.3 多项式与多项式相乘
[解析] 要拼一个长为(a+2b)、宽为(a+b)的大长方形, 就是看需 A ,B,C 类卡片各多少张,把(a+2b)与(a+b)相乘, 得 a2+3ab+2b2,所以需要 C 类卡片 3 张.
[归纳总结] 有关卡片的拼图问题,看似好难,但只要我 们发挥数形结合的作用,辅之整式乘法的知识即可求解.
12.2.3 多项式与多项式相乘
新知梳理
► 知识点 多项式与多项式相乘的法则 法则:多项式与多项式相乘,先用一个多项式的_每__一_项 分别乘以另一个多项式的_每_ 一项__,再把所得的_积_ 相加__. 字母表达式:(m+n )(a+b)=__ma+mb+na+nb__. 几何背景图:
图 12-2-8 大长方形的面积=四个小长方形的面积之和. 即(m +n )(a+b)=m a+m b+na+n b.
用代数式表示图形的长、宽,再利用面积(或体积)公式求 面积(或体积)是解决此类问题的关键.
12.2.3 多项式与多项式相乘
[备选例题] 有一种打印纸的长为 a cm、宽为 b cm,在 打印某文档设置页边距时,上、下均设置为 2.5 cm,左、右 均设置为 2.8 cm,那么一张这样的打印纸的实际打印面积是 多大?
客厅的面积是_a_m__平方米,餐厅的面积为__a_n_平方米, 房间一的面积是_b_m_平方米,房间二的面积是_b_n__平方米, 这四部分的总面积是(_a_m_+an+bm+b_n平) 方米.由此可以得 到一个等式,这个式是 (a+b)(m+n)=am+an+bm+bn.
多项式的乘法运算

多项式的乘法运算正文:在代数学中,多项式的乘法是一种基本运算,常用于解决各种数学问题。
本文将介绍多项式的乘法运算方法和相关概念。
一、多项式的定义多项式是由常数和变量的乘积所构成的代数表达式。
它的一般形式可以表示为:P(x) = anxn + an-1xn-1 + ... + a2x2 + a1x + a0其中,an、an-1、...、a2、a1、a0 是常数系数,x 是变量。
二、多项式乘法的原理多项式的乘法运算是将一个多项式与另一个多项式相乘,并按照规定的方式进行合并和整理,得到一个新的多项式。
具体来说,假设有两个多项式:P(x) = anxn + an-1xn-1 + ... + a2x2 + a1x + a0Q(x) = bmxm + bm-1xm-1 + ... + b2x2 + b1x + b0它们的乘积可以表示为:P(x) * Q(x) = (anxn + ... + a2x2 + a1x + a0) * (bmxm + ... + b2x2 + b1x + b0)要找出乘积多项式的各项系数,需要使用分配律和合并同类项的原则。
三、多项式乘法的计算步骤1. 将 P(x) 和 Q(x) 中的每一项按照指数从高到低排列。
2. 对于 P(x) 的第 i 项和 Q(x) 的第 j 项,将其系数相乘得到新项的系数,指数相加得到新项的指数。
3. 将所有步骤2得到的新项进行合并,并按指数从高到低的顺序排列,得到最终的乘积多项式。
四、例子说明假设有两个多项式:P(x) = 3x3 + 2x2 + 4x + 1Q(x) = 2x2 + x + 5首先,按照指数从高到低的顺序排列:P(x) = 3x3 + 2x2 + 4x + 1Q(x) = 2x2 + x + 5然后,按照乘法运算的原则,依次计算两个多项式的乘积:P(x) * Q(x) = (3x3 + 2x2 + 4x + 1) * (2x2 + x + 5)= 3x3 * 2x2 + 3x3 * x + 3x3 * 5 + 2x2 * 2x2 + 2x2 * x + 2x2 * 5 + 4x * 2x2 + 4x * x + 4x * 5 + 1 * 2x2 + 1 * x + 1 * 5= 6x^5 + 3x^4 + 15x^3 + 4x^4 + 2x^3 + 10x^2 + 8x^3 + 4x^2 + 20x + 2x^2 + x + 5最后,合并同类项并按指数从高到低的顺序排列,得到最终的乘积多项式:P(x) * Q(x) = 6x^5 + 7x^4 + 19x^3 + 16x^2 + 21x + 5五、总结多项式的乘法运算是代数学中重要的概念之一。
2022-2023学年初一数学第二学期培优专题训练17 多项式乘多项式

专题17 多乘多不含某字母【例题讲解】已知多项式()()2232x px q x x ++-+的结果中不含3 x 项和2x 项,求p 和q 的值. 【答案】3p =,7q = 【分析】首先利用多项式乘法去括号,进而利用多项式(x 2+px +q )(x 2﹣3x +2)的结果中不含x 3项和x 2项,进而得出两项的系数为0,进而得出答案.【解答】解:∵()()2232x px q x x ++-+432322323232x x x px px px qx qx q =-++-+++﹣()()432323232x p x p q x px qx q =--+-++-+由多项式()()2232x px q x x ++-+的结果中不含3x 项和2x 项,∴30p -=,230p q -+=,解得:3p =,7q =. 故答案为:3p =,7q =. 【点评】此题主要考查了多项式乘法,正确利用多项式乘法去括号得出是解题关键.【综合解答】1.如()x m +与(3)x +的乘积中不含x 的一次项,则m 的值为( )A .3-B .3C .0D .12.如果()()x a x b ++的结果中不含x 的一次项,那么a 、b 应满足( )A .a b =B .0a =C .1ab =D .0a b +=3.关于字母x 的整式(x +1)(x 2+mx ﹣2)化简后的结果中二次项系数为0,则( )A .m =2B .m =﹣2C .m =1D .m =﹣14.已知多项式2(1)(2)x mx x -+-的积中x 的一次项系数为零,则m 的值是( )A .1B .–1C .–2D .12- 5.已知多项式2(1)(2)x mx x -+-的积中不含x 2项,则m 的值是 ( )A .-2B .-1C .1D .26.若(x +k )(x ﹣5)的积中不含有 x 的一次项,则 k 的值是( )A .0B .5C .﹣5D .﹣5 或 57.若关于x 的多项式(1)(2)ax x -+展开后不含x 的一次项,则=a _______.8.若关于x 的多项式()287()x x x m -++的计算结果中不存在2x 项,则m =______.9.若()()21x a x -+的积中不含x 的一次项,则a 的值为______.10.若(x+2)(x 2-ax+3)的乘积中不含x 的一次项,则a=____11.若()()5x a x ++的结果中不含关于字母x 的一次项,则=a ___________.12.若计算(x +2)(3x +m)的结果中不含关于字母x 的一次项,则m 的值为____________.13.若:(x²+mx+n )(x+1)的结果中不含x 2的项和x 的项,则mn=__________.14.如果2(2)(51)x x ax +-+的乘积中不含2x 项,则a 为______.15.若(42)(3)x m x -+的乘积中不含x 的一次项,则常数m =_________.16.若多项式 x + m 与 x - 5 的乘积中不含 x 的一次项,则 m 的值为_____.17.多项式223368x mxy y xy --+-中不含xy 项,则常数m 的值是___.18.若 (x +2)( x 2+mx +4) 的展开式中不含有 x 的二次项,则 m 的值为_________.19.若(x2﹣mx+1)(x ﹣1)的积中x 的二次项系数为零,则m 的值是__________________.20.已知22()(21)x px x x ---的结果中不含x 3项,则p=___________.21.如果多项式x2+5ab+b2+kab ﹣1不含ab 项,则k 的值为_________-22.若多项式没有二次项,则m 的值是________.23.要使(x 2+ax+1)•(﹣6x 3)的展开式中不含x 4项,则a=___________.24.若()()2282x mx x x n +--+的展开式中不含2x 和3x 项,求m +n 的值. 25.若21(3)3x m x x n ⎛⎫--+- ⎪⎝⎭的计算结果中不含x 2与x 项. (1)求m 、n 的值;(2)求代数式(3m -n )2+m 2020·n 2021的值.26.若()2(2)x x ax b -++的积中不含x 的二次项和一次项,求2(32)2a b ab -+的值.27.若()2133x p x x q ⎛⎫+-+ ⎪⎝⎭的积中不含x 项与2x 项 (1)求p 、q 的值;(2)求代数式20192020p q 的值28.若(x 2+nx )(x 2-3x+m)的乘积中不含x 2和x 3项,求m 和n 的值.29.先化简,再求值:已知代数式2(3)(24)-+--ax x x b 化简后,不含有x 2项和常数项.(1)求a、b的值;(2)求2---+---+的值.()()()(2)b a a b a b a a b专题17 多乘多不含某字母【例题讲解】已知多项式()()2232x px q x x ++-+的结果中不含3 x 项和2x 项,求p 和q 的值. 【答案】3p =,7q = 【分析】首先利用多项式乘法去括号,进而利用多项式(x 2+px +q )(x 2﹣3x +2)的结果中不含x 3项和x 2项,进而得出两项的系数为0,进而得出答案.【解答】解:∵()()2232x px q x x ++-+432322323232x x x px px px qx qx q =-++-+++﹣()()432323232x p x p q x px qx q =--+-++-+由多项式()()2232x px q x x ++-+的结果中不含3x 项和2x 项,∴30p -=,230p q -+=,解得:3p =,7q =. 故答案为:3p =,7q =. 【点评】此题主要考查了多项式乘法,正确利用多项式乘法去括号得出是解题关键.【综合解答】1.如()x m +与(3)x +的乘积中不含x 的一次项,则m 的值为( )A .3-B .3C .0D .1【答案】A【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m 看作常数合并关于x 的同类项,令x 的系数为0,得出关于m 的方程,求出m 的值.【解答】解:22()(3)33(3)3x m x x x mx m x m x m ++=+++=+++,又()x m +与(3)x +的乘积中不含x 的一次项,30m ∴+=, 解得3m =-.故选:A .【点评】本题主要考查了多项式乘多项式的运算,根据乘积中不含哪一项,则哪一项的系数等于0列式是解题的关键.2.如果()()x a x b ++的结果中不含x 的一次项,那么a 、b 应满足( )A .a b =B .0a =C .1ab =D .0a b += 【答案】D 【分析】先根据多项式乘以多项式法则展开,合并后即可得出选项.【解答】解:()()x a x b ++()2x a b x ab =+++ ,∵()()x a x b ++的结果中不含x 的一次项,∴0a b +=,故选:D .【点评】本题考查了多项式乘以多项式法则的应用,能正确根据多项式乘以多项式法则展开是解此题的关键.3.关于字母x 的整式(x +1)(x 2+mx ﹣2)化简后的结果中二次项系数为0,则( )A .m =2B .m =﹣2C .m =1D .m =﹣1 【答案】D【分析】先根据多项式乘以多项式的法则计算,由二次项系数为0得关于m 的方程,解方程即得结果.【解答】解:∵关于字母x 的整式(x +1)(x 2+mx ﹣2)化简后的结果中二次项系数为0,∴(x +1)(x 2+mx ﹣2)=x 3+mx 2﹣2x +x 2+mx ﹣2=x 3+(m +1)x 2+(m ﹣2)x ﹣2,故m +1=0,解得:m =﹣1.故选D .【点评】本题考查了多项式的有关概念和多项式的乘法运算,正确的进行多项式的乘法运算是解题的关键. 4.已知多项式2(1)(2)x mx x -+-的积中x 的一次项系数为零,则m 的值是( )A .1B .–1C .–2D .12-5.已知多项式2(1)(2)x mx x -+-的积中不含x2项,则m 的值是 ( )A .-2B .-1C .1D .2 【答案】A【解答】展开后,x2项为2(2)m x -- ,则20,2m m --==- ,故选A.6.若(x +k )(x ﹣5)的积中不含有 x 的一次项,则 k 的值是( )A .0B .5C .﹣5D .﹣5 或 5 【答案】B【解答】试题分析:根据多项式乘多项式的运算法则,展开后令x 的一次项的系数为0,列式求解即可. 解:(x+k )(x ﹣5)=x 2﹣5x+kx ﹣5k=x 2+(k ﹣5)x ﹣5k ,∵不含有x 的一次项,∴k ﹣5=0,解得k=5.故选B .考点:多项式乘多项式.7.若关于x 的多项式(1)(2)ax x -+展开后不含x 的一次项,则=a _____________.【答案】12##0.5【分析】先运用多项式乘以多项式法则展开,再按字母x 合并同类项,然后根据展开后不含x 的一次项,8.若关于x 的多项式()287()x x x m -++的计算结果中不存在2x 项,则m =______. 【答案】8【分析】根据多项式乘以多项式展开,合并同类项,令2x 的系数为0即可【解答】∵()287()x x x m -++=3228787x x x mx mx m -++-+=()()328787x m x m x m +-+-+,且结果中不存在2x 项,∴m -8=0,∴m =8,故答案为:8【点评】本题考查了多项式乘以多项式,不含项的条件,熟练进行多项式的乘法,清楚不含有项的条件是系数为0是解题的关键.9.若()()21x a x -+的积中不含x 的一次项,则a 的值为______.【答案】2【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x 的一次项,所以让一次项的系数等于0,得a 的等式,再求解.【解答】解:(2x-a )(x+1)=2x 2+(2-a )x-a ,∵积中不含x 的一次项,∴2-a=0,∴a=2,故答案为:2.【点评】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.10.若(x+2)(x 2-ax+3)的乘积中不含x 的一次项,则a=____11.若()()5x a x ++的结果中不含关于字母x 的一次项,则=a ___________. 【答案】-5【分析】根据整式的运算法则即可求出答案.【解答】解:(x +a )(x +5)=x 2+(5+a )x +5a ,由于结果中不含关于字母x 的一次项,故5+a =0,∴a =﹣5,故答案为:﹣5【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.12.若计算(x +2)(3x +m)的结果中不含关于字母x 的一次项,则m 的值为____________.【答案】-6【分析】原式利用多项式乘多项式法则计算,根据结果不含x 的一次项,确定出m 的值即可.【解答】解:原式23(6)2x m x m ,由结果不含x 的一次项,得到60+=m ,解得:6m =-,故答案为:-6【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.13.若:(x²+mx+n )(x+1)的结果中不含x 2的项和x 的项,则mn=__________. 【答案】-1【分析】先计算整式乘法,根据所不含的项得到系数为0求出答案.【解答】232()(1)(1)()x mx n x x m x m n x n +++=+++++,∵计算结果中不含x 2的项和x 的项,∴m+1=0,m+n=0,∴m=-1,n=1,∴mn=-1,故答案为:-1.【点评】此题考查整式的乘法计算,多项式中不含问题,正确计算是解题的关键.14.如果2(2)(51)x x ax +-+的乘积中不含2x 项,则a 为______. 结果不含15.若(42)(3)x m x -+的乘积中不含x 的一次项,则常数m =_________.【答案】6【分析】直接利用多项式乘法去括号,进而得出一次项系数为0,求解即可.【解答】∵(42)(3)x m x -+的乘积中不含x 的一次项,∴(42)(3)x m x -+=24(122)6x m x m +--中1220m -=∴6m =故答案为:6.【点评】本题主要考查了多项式乘多项式,解答本题的关键在于正确去括号并计算.16.若多项式 x + m 与 x - 5 的乘积中不含 x 的一次项,则 m 的值为_____.【答案】5【分析】先根据多项式乘以多项式法则求出(x+m)(x-5)=x 2 +(m-5)x-5m,根据已知得出m-5=0,求出即可.【解答】解: (x+m)(x-5)=x 2 +(m-5)x-5m∵x+m 与x-5的 乘积中不含x 的一次项∴m-5=0∴m=5故答案为5.【点评】该题考查了多项式乘以多项式和解一元一次方程,能正确根据多项式乘以多项式法则进行计算是解该题的关键.17.多项式223368x mxy y xy --+-中不含xy 项,则常数m 的值是___. 【答案】2【分析】先将多项式合并同类项,再根据多项式不含xy 项得630m -=,即可解出m.【解答】整理原式22223368(63)38x mxy y xy x m xy y ,∵该多项式不含xy 项,∴630m -=,得m=2.故填:2.【点评】此题考查多项式的意义,多项式中不含有某一项,需先将多项式化简,确定不含有的项的系数为0,由此解得某一未知数的值.18.若 (x +2)( x 2+mx +4) 的展开式中不含有 x 的二次项,则 m 的值为_________. 【答案】m=-2.【分析】原式利用多项式乘以多项式法则计算,合并后根据结果不含x 2项,求出m 的值.【解答】()()()()232242248x x mx x m x m x +++=+++++, 由展开式中不含2x 项,得到m +2=0,则m =−2.故答案为−2.【点评】本题主要考查多项式乘以多项式法则,熟悉掌握法则是关键.19.若(x2﹣mx+1)(x ﹣1)的积中x 的二次项系数为零,则m 的值是__________________.【答案】-1【分析】直接利用多项式乘法运算法则去括号,进而得出二次项的系数为零,求出答案.【解答】∵(x 2-mx+1)(x-1)的积中x 的二次项系数为零,∴x 3-x 2-mx 2+mx+x-1=x 3-(1+m )x 2+(1+m )x-1,则1+m=0,解得:m=-1.故答案为-1【点评】此题主要考查了多项式乘以多项式,正确掌握多项式乘法运算法则是解题关键.20.已知22()(21)x px x x ---的结果中不含x 3项,则p=___________.【答案】-2【解答】分析:先根据多项式乘以多项式法则展开,合并后即可得出方程,求出方程的解即可.解答:(x2-px)•(x2-2x-1)=x4-2x3-x2-px3+2px2+px=x4-(2+p)x3+(2p-1)x2+px,∵(x2-px)•(x2-2x-1)的结果中不含x3项,∴2+p=0,解得:p=-2,故答案为-2.点评:本题考查了多项式乘以多项式法则的应用,能正确根据多项式乘以多项式法则展开是解此题的关键.21.如果多项式x2+5ab+b2+kab﹣1不含ab项,则k的值为_________-【答案】-5【解答】∵不含ab项,∴5+k=0,k=−5,故答案为−5.22.若多项式没有二次项,则m的值是________.【答案】-1【解答】试题分析:因为多项式没有二次项,所以m+1=0,所以m=-1.考点:多项式.23.要使(x2+ax+1)•(﹣6x3)的展开式中不含x4项,则a=___________.【答案】0【解答】试题分析:根据单项式与多项式相乘的法则展开,然后让x4项的系数等于0,列式求解即可.解:(x2+ax+1)•(﹣6x3)=﹣6x5﹣6ax4﹣6x3,∵展开式中不含x4项,∴﹣6a=0,解得a=0.考点:单项式乘多项式.点评:本题考查了单项式与多项式相乘,不含某一项就是让这一项的系数等于0.24.若()()2282x mx x x n +--+的展开式中不含2x 和3x 项,求m +n 的值. 【答案】14【分析】首先根据多项式的乘法法则将多项式进行展开,然后进行合并同类项.根据不含哪一项,则哪一项的系数为零列出方程组,从而得出答案.【解答】解:()()2282x mx x x n +--+ 432322822168x mx x x mx x nx mnx n =+---+++-()()()432228168x m x n m x mn x n =+-+--++-,∵()()2282x mx x x n +--+的展开式中不含2x 和3x 项, ∴20280m n m -=⎧⎨--=⎩, 解得:212m n =⎧⎨=⎩, ∴14m n +=.【点评】本题主要考查多项式的乘法计算法则,代数式求值,解二元一次方程组,属于中等难度的题型.能够进行合并同类项是解决这个问题的关键.25.若21(3)3x m x x n ⎛⎫--+- ⎪⎝⎭的计算结果中不含x 2与x 项. (1)求m 、n 的值;(2)求代数式(3m -n )2+m 2020·n 2021的值.26.若()2(2)x x ax b -++的积中不含x 的二次项和一次项,求2(32)2a b ab -+的值. 【答案】20【分析】原式利用多项式乘多项式法则计算,由积中不含x 的二次项和一次项,求出a 与b 的值,再把a 、b 的值代入计算可得.【解答】解:(x -2)(x 2+ax +b )=x 3+ax 2+bx -2x 2-2ax -2b =x 3+(a -2)x 2+(b -2a )x -2b ,∵(x -2)(x 2+ax +b )的积中不含x 的二次项和一次项,∴a -2=0且b -2a =0,解得:a =2、b =4,将a =2、b =4代入2(32)2a b ab -+=2(3224)224⨯-⨯+⨯⨯=4+16=20.【点评】本题主要考查整式的化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.27.若()2133x p x x q ⎛⎫+-+ ⎪⎝⎭的积中不含x 项与2x 项 (1)求p 、q 的值;(2)求代数式20192020p q 的值201920191)(3)3p q q =⨯【点评】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的28.若(x 2+nx )(x 2-3x+m)的乘积中不含x 2和x 3项,求m 和n 的值. 【答案】9m =,3n =【分析】将已知的式子利用多项式乘以多项式的法则变形,合并后根据乘积中不含x 2和x 3项,得到这两项系数为0,列出关于m 与n 的方程,求出方程的解即可得到m 与n 的值.【解答】解:22()(3)x nx x x m +-+=4323233x x mx nx nx mnx -++-+=432(3)(3)x n x m n x mnx --+-+;∵乘积中不含x 2和x 3项,∴(3)030n m n --=⎧⎨-=⎩, 解得:93m n =⎧⎨=⎩; ∴9m =,3n =;【点评】此题考查了整式的混合运算,涉及的知识有:多项式乘以多项式的法则,合并同类项法则,解二元一次方程组,熟练掌握法则是解本题的关键.29.先化简,再求值:已知代数式2(3)(24)-+--ax x x b 化简后,不含有x 2项和常数项.(1)求a 、b 的值;(2)求2()()()(2)b a a b a b a a b ---+---+的值.。
专题1-5整式的乘法(2)单项式乘多项式-(解析版)

2020-2021学年七年级数学下册尖子生同步培优题典【北师大版】专题1.5整式的乘法(2)单项式乘多项式姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列运算正确的是()A.﹣(﹣3a n b)4=81a4n b4B.(a n+1b n)4=4a4n+4b4nC.(﹣2a n)2•(3a2)3=﹣54a2n+6D.(3x n+1﹣2x n)•5x=15x n+2﹣10x n+1【分析】根据单项式的乘法计算判断即可.【解析】A、﹣(﹣3a n b)4=﹣81a4n b4,错误;B、(a n+1b n)4=a4n+4b4n,错误;C、(﹣2a n)2•(3a2)3=54a2n+6,错误;D、(3x n+1﹣2x n)•5x=15x n+2﹣10x n+1,正确;故选:D.2.m(a2﹣b2+c)等于()A.ma2﹣mb2+m B.ma2+mb2+mc C.ma2﹣mb2+mc D.ma2﹣b2+c【分析】利用单项式乘多项式的计算方法:利用乘法分配律可以将单项式乘多项式转化成单项式乘单项式;直接计算得出结果即可.【解析】m(a2﹣b2+c)=ma2﹣mb2+mc.故选:C.3.(2020秋•南岗区期末)计算3a(5a﹣2b)的结果是()A.15a﹣6ab B.8a2﹣6ab C.15a2﹣5ab D.15a2﹣6ab【分析】根据单项式乘以多项式,先用单项式乘以多项式的每一项,再把所得的积相加计算.【解析】3a(5a﹣2b)=15a2﹣6ab.故选:D.4.(2020秋•万州区校级期中)当a﹣2b=2时,则代数式4a﹣8b﹣6的值为()A.14 B.﹣2 C.﹣4 D.2【分析】根据添括号法则把原式变形,把a﹣2b=2代入计算,得到答案.【解析】4a﹣8b﹣6=4(a﹣2b)﹣6,当a﹣2b=2时,原式=4×2﹣6=2,故选:D.5.(2020春•海伦市校级期末)计算x(1+x)﹣x(1﹣x)等于()A.2x B.2x2C.0 D.﹣2x+2x2【分析】根据单项式乘多项式的法则化简,再合并同类项即可求解.【解析】原式=x+x2﹣x+x2=2x2.故选:B.6.(2020春•新邵县期末)在一次数学课上,学习了单项式乘多项式,小明回家后,拿出课堂笔记本复习,发现这样一道题:﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+□,“□”的地方被墨水弄污了,你认为“□”内应填写()A.1 B.﹣1 C.3x D.﹣3x【分析】单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【解析】﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+3x.故选:C.7.(2020秋•岳麓区校级月考)若一个长方体的长、宽、高分别为2x,x,3x﹣4,则长方体的体积为()A.3x3﹣4x2B.6x2﹣8x C.6x3﹣8x2D.6x3﹣8x【分析】根据长方体的体积=长×宽×高,列出算式,再根据单项式乘多项式的运算法则计算即可.【解析】由题意知,V长方体=(3x﹣4)•2x•x=6x3﹣8x2.故选:C.8.(2020春•嘉兴期末)已知,a+b=2,b﹣c=﹣3,则代数式ac+b(c﹣a﹣b)的值是()A.5 B.﹣5 C.6 D.﹣6【分析】先利用整式的混合计算化简,再代入数值解答即可.【解析】ac+b(c﹣a﹣b)=ac+bc﹣ab﹣b2=c(a+b)﹣b(a+b)=(a+b)(c﹣b),把a+b=2,b﹣c=﹣3代入(a+b)(c﹣b)=2×3=6,故选:C.9.(2020春•张家港市校级月考)要使﹣x3(x2+ax+1)+2x4中不含有x的四次项,则a等于()A.1 B.2 C.3 D.4【分析】先利用多项式乘以单项式法则及合并同类项法则进行运算,再根据不含x的四次项,确定x的值.【解析】原式=﹣x5﹣ax4﹣x3+2x4=﹣x5+(2﹣a)x4﹣x3∵﹣x3(x2+ax+1)+2x4中不含有x的四次项,∴2﹣a=0,解得,a=2.故选:B.10.(2019秋•武汉期末)将大小不同的两个正方形按图1,图2的方式摆放.若图1中阴影部分的面积是20,图2中阴影部分的面积是14,则大正方形的边长是()A.6 B.7 C.8 D.9【分析】设大正方形的边长为a,小正方形的边长为b,根据题意列方程组,即可得到结论.【解析】设大正方形的边长为a,小正方形的边长为b,根据题意可得:ab b(a﹣b)=20,ab=14,解得:a=7.故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•江北区校级期中)计算:﹣2a(3a﹣1)=﹣6a2+2a.【分析】根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解析】﹣2a(3a﹣1)=﹣6a2+2a.故答案为:﹣6a2+2a.12.(2020秋•南岗区期中)计算:(x﹣2y)(﹣5x)=﹣5x2+10xy.【分析】直接利用单项式乘多项式运算法则计算得出答案.【解析】(x﹣2y)(﹣5x)=﹣5x2+10xy.故答案为:﹣5x2+10xy.13.(2020春•舞钢市期末)计算()•()=x3y3+3x2y3.【分析】直接利用单项式乘多项式计算得出答案.【解析】()•()x2y•()﹣6xy•(xy2)x3y3+3x2y3.故答案为:x3y3+3x2y3.14.(2020秋•沙坪坝区校级月考)已知等式(2A﹣7B)x+(3A﹣8B)=8x+10,对一切实数x都成立,则A+B=.【分析】根据题意可得方程组,再解出A、B的值,然后可得A+B的值即可.【解析】由题意得:,解得:,则A+B,故答案为:.15.(2020春•白云区期末)已知a﹣b=3,b﹣c=﹣4,则代数式a2﹣ac﹣b(a﹣c)的值是﹣3.【分析】直接利用分组分解法分解因式,进而把已知代入得出答案.【解析】∵a﹣b=3,b﹣c=﹣4,∴a﹣b+b﹣c=a﹣c=﹣1,∴a2﹣ac﹣b(a﹣c)=a(a﹣c)﹣b(a﹣c)=(a﹣c)(a﹣b)=﹣1×3=﹣3.故答案为:﹣3.16.(2020•海陵区一模)已知a﹣2b=﹣2,则代数式a(b﹣2)﹣b(a﹣4)的值为4.【分析】直接利用单项式乘多项式计算,再把已知代入得出答案.【解析】a(b﹣2)﹣b(a﹣4)=ab﹣2a﹣ab+4b=﹣2a+4b=﹣2(a﹣2b),∵a﹣2b=﹣2,∴原式=﹣2×(﹣2)=4.故答案为:4.17.(2020•岳阳)已知x2+2x=﹣1,则代数式5+x(x+2)的值为4.【分析】直接将原式变形,再利用已知代入原式得出答案.【解析】∵x2+2x=﹣1,∴5+x(x+2)=5+x2+2x=5﹣1=4.故答案为:4.18.(2020春•北镇市期中)某同学计算一个多项式乘﹣3x2时,因抄错符号,算成了加上﹣3x2,得到的答案是x2x+1,那么正确的计算结果是﹣12x4.【分析】用错误结果减去已知多项式,得出原式,再乘以﹣3x2得出正确结果.【解析】这个多项式是(x2x+1)﹣(﹣3x2)=4x2x+1,正确的计算结果是:(4x2x+1)•(﹣3x2)=﹣12x4x3﹣3x2.故答案为:﹣12x4x3﹣3x2.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•袁州区校级期中)计算:(1)2b(4a﹣b2);(2)(﹣2a3)2+(﹣a2)3.【分析】(1)直接利用单项式乘多项式运算法则计算得出答案;(2)直接利用积的乘方运算法则化简,再合并同类项即可.【解析】(1)2b(4a﹣b2)=8ab﹣2b3;(2)(﹣2a3)2+(﹣a2)3=4a6﹣a6=3a6.20.计算:(1)2x(x2﹣1)﹣3x(x2);(2)(﹣2a2)•(ab+b2)﹣5a(a2b﹣ab2).【分析】(1)直接去括号,进而合并同类项得出答案.(2)直接去括号,进而合并同类项得出答案.【解析】(1)原式=x3﹣2x﹣x3﹣2x,=﹣4x.(2)原式=﹣2a3b﹣2a2b2﹣5a3b+5a2b2,=﹣7a3b+3a2b2.21.已知A=﹣2x2,B=x2﹣3x﹣1,C=﹣x+1,求:(1)A•B+A•C;(2)A•(B﹣C);(3)A•C﹣B.【分析】(1)直接利用已知结合单项式乘多项式运算法则化简,再合并同类项得出答案;(2)直接利用已知结合单项式乘多项式运算法则化简得出答案;(3)直接利用已知结合单项式乘多项式运算法则化简,再合并同类项得出答案.【解析】(1)∵A=﹣2x2,B=x2﹣3x﹣1,C=﹣x+1,∴A•B+A•C=﹣2x2•(x2﹣3x﹣1)﹣2x2•(﹣x+1)=﹣4x4+6x3+2x2+2x3﹣2x2=﹣4x4+8x3;(2)∵A=﹣2x2,B=x2﹣3x﹣1,C=﹣x+1,∴A•(B﹣C)=﹣2x2(x2﹣3x﹣1+x﹣1)=﹣2x2(x2﹣2x﹣2)=﹣2x4+4x3+4x2;(3)∵A=﹣2x2,B=x2﹣3x﹣1,C=﹣x+1,∴A•C﹣B=﹣2x2(﹣x+1)﹣(x2﹣3x﹣1)=2x3﹣2x2﹣x2+3x+1=2x3﹣3x2+3x+1.22.(2020秋•安居区期中)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(xy)=3x2y﹣xy2xy(1)求所捂的多项式;(2)若x,y,求所捂多项式的值.【分析】(1)设多项式为A,则A=(3x2y﹣xy2xy)÷(xy)计算即可.(2)把x,y代入多项式求值即可.【解析】(1)设多项式为A,则A=(3x2y﹣xy2xy)÷(xy)=﹣6x+2y﹣1.(2)∵x,y,∴原式=﹣621=﹣4+1﹣1=﹣4.23.(2019秋•闵行区校级月考)已知x(x﹣m)+n(x+m)=x2+5x﹣6对任意数都成立,求m(n﹣1)+n (m+1)的值.【分析】把x(x﹣m)+n(x+m)去括号、合并同类项,然后根据与x2+5x﹣6对应项的系数相同,即可求得n﹣m和mn的值,然后代入求值即可.【解析】x(x﹣m)+n(x+m)=x2﹣mx+nx+mn=x2+(n﹣m)x+mn,∴则m(n﹣1)+n(m+1)=n﹣m+2mn=5﹣12=﹣7.24.(2019春•金安区校级期中)已知:A x,B是多项式,王虎同学在计算A+B时,误把A+B看成了A ×B,结果得3x3﹣2x2﹣x.(1)求多项式B.(2)求A+B.【分析】(1)根据整式的除法运算即可求出答案;(2)根据整式的加法运算即可求出答案.【解析】(1)由题意可知:x•B=3x3﹣2x2﹣x,∴B=(3x3﹣2x2﹣x)x=6x2﹣4x﹣2;(2)A+B x+(6x2﹣4x﹣2)=6x2x﹣2;。
专题复习:乘法公式知识点归纳及典例+练习题及答案(师)

专题复习:乘法公式知识点归纳及典例+练习题一、知识概述 1、平方差公式 由多项式乘法得到 (a+b)(a-b) =a -b . 即两个数的和与这两个数的差的积,等于它们的平方差. 2、平方差公式的特征 ①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数; ②右边是乘式中两项的平方差(相同项的平方减去相反项的平方); ③公式中的 a 和 b 可以是具体数,也可以是单项式或多项式; ④对于形如两数和与这两数差相乘的形式,就可以运用上述公式来计算. 3、完全平方公式 由多项式乘法得到(a±b) =a ±2ab+b2 2 2 2 2即两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的 2 倍. 推广形式:(a+b+c) =a +b +c +2ab+2bc+2ca 4、完全平方公式的特征 (a+b) =a +2ab+b 与(a-b) =a -2ab+b 都叫做完全平方公式,为了区别,我们把前者叫做两数 和的完全平方公式,后者叫做两数差的完全平方公式. ①两公式的左边:都是一个二项式的完全平方,二者仅有一个符号不同;右边:都是二次三项式,其 中有两项是公式左边两项中每一项的平方,中间是左边二项式中两项乘积的 2 倍,两者也仅有一个符号不 同. ②公式中的 a、b 可以是数,也可以是单项式或多项式. ③对于形如两数和(或差)的平方的乘法,都可以运用上述公式计算. 5、乘法公式的主要变式 (1)a -b =(a+b)(a-b); (2)(a+b) -(a-b) =4ab; (3)(a+b) +(a-b) =2(a +b ); (4)a +b =(a+b) -2ab=(a-b) +2ab (5)a +b =(a+b) -3ab(a+b). 熟悉这些变形公式,明确它们间联系,综合运用,常可简化解题过程. 注意:(1)公式中的 a,b 既可以表示单项式,也可以表示多项式. (2)乘法公式既可以单独使用,也可以同时使用. (3)这些公式既可以正用,也可以逆用,因此在解题时应灵活地运用公式,以计算简捷为宜.3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2二、典型例题讲解 例 1、计算: (1)(3a+2b)(2b-3a); (2)(x-2y)(-x-2y);(3) (4)(a+b+c)(a-b-c). 解:;(1)原式=(2b+3a)(2b-3a) =(2b) -(3a) =4b -9a2 2 2 2(2)原式=(-2y+x)(-2y-x) =(-2y) -x =4y -x2 2 2 2(3)原式=== (4)原式=[a+(b+c)][a-(b+c)] =a -(b+c)2 2 2 2=a -(b +2bc+c ) =a -b -2bc-c 例 2、计算: (1)2004 -19962 2 2 2 2 22(2)(x-y+z) -(x+y-z)2(3)(2x+y-3)(2x-y-3). 解:(1)2004 -1996 =(2004+1996)(2004-1996) =4000×8=32000 (2)(x-y+z) -(x+y-z)2 2 2 2=[(x-y+z)+(x+y-z)][ (x-y+z)-(x+y-z)]=2x(-2y+2z)=-4xy+4xz (3)(2x+y-3)(2x-y-3)=[(2x-3)+y][(2x-3)-y] =(2x-3) -y =4x -12x+9-y =4x -y -12x+9; 例 3、计算: (1)(3x+4y) ; (3)(2a-b) ;2 2 2 2 2 2 2 2 2(2)(-3+2a) ; (4)(-3a-2b)22解:(1)原式=(3x) +2·3x·4y+(4y) =9x +24xy+16y2 2 22(2)原式=(-3) +2·(-3)·2a+4a =4a -12a+922(3)原式=(2a) +2·2a·(-b)+(-b) =4a -4ab+b2 222(4)原式=[-(3a+2b)] =(3a+2b)2 22=(3a) +2·(3a)·2b+(2b) =9a +12ab+4b2 22例 4、已知 m+n=4, mn=-12,求(1);(2);(3).解:(1);(2);(3)2.例 5、多项式 9x +1 加上一个单项式后,使它能够成为一个整式的完全平方,那么加上的单项式可以是 ________(填上一个你认为正确的即可). 分析: 解答时,很多学生只习惯于课本上的完全平方的顺序,认为只有添加中间(两项的乘积的 2 倍)项,即 9x +1+6x=(3x+1) 或 9x -6x+1=(3x-1) ;但只要从多方面考虑,还会得出2 2 2 2,9x +1-1=9x =(3x) , 9x +1-9x =12, 所以添加的单项式可以是 6x,22222-6x,,-1,-9x .2答案:±6x 或 例 6、计算:或-1 或-9x2,并说明结果与 y 的取值是否有关. 解:从上述结果可以看出,结果中不含 y 的项,因此结果与 y 的取值无关. 点评: (1)利用平方差公式计算的关键是弄清具体题目中,哪一项是公式中的 a,哪一项是公式中的 b; (2)通常在各因式中, 相同项在前, 相反项在后, 但有时位置会发生变化, 因此要归纳总结公式的变化, 使之更准确的灵活运用公式. ①位置变化:(b+a)(-b+a)=(a+b)(a-b)=a -b ; ②符号变化:(-a-b)(a-b)=(-b-a)(-b+a)=(-b) -a =b -a ; ③系数变化:(3a+2b)(3a-2b)=(3a) -(2b) =9a -4b ; ④指数变化:(a +b )(a -b )=(a ) -(b ) =a -b ; ⑤连用公式变化:(a-b)(a+b)(a +b )(a +b ) =(a -b )(a +b )(a +b )=(a -b )(a +b ) =a -b ; ⑥逆用公式变化:(a-b+c) -(a-b-c)2 2 8 8 2 2 2 2 4 4 4 4 4 4 2 2 4 4 3 3 3 3 3 2 3 2 6 6 2 2 2 2 2 2 2 2 2 2=[(a-b+c)+(a-b-c)][(a-b+c)-(a-b-c)] =4c(a-b). 例 7、已知 .求 分析:的值.若直接代入求解则十分繁杂。
2.1.4多项式的乘法(1)

(4)已知a2(2ax-3ay)=2a6-3a3,则x= 4 ,y= 1 .
13
3、先化简,再求值: (1)、2a(a-b)-b(2a-b)+2ab,其中a=2,b= -3
当 a=2,b= -3时 原式= 2a2 – 2ab + b2 = 2×4-2×2×(-3)+9 = 8 + 12+ 9 = 29 (2)-2 xy
原式的值为 3×23×(-1) +2×22×(-1)2 = -24+8 = -16.
4. 先化简,再求值:yn(yn +9y-12)-3(3yn+1-4yn),
其中y=-3,n=2. 解: yn(yn + 9y-12)-3(3yn+1-4yn)
= y2n+9yn+1-12yn-9yn+1+12yn = y2n
例1. 下列各题的解法是否正确,如果错了,指出错
在什么地方,并改正过来.
1 2 1 3 3 1 a 3b3c ① -2a b × - 4 ab c = 2 a b 2 ×
2
2 3 3 2 2 3 3 ② × 3a b 1 - ab c = -3a b 3a b - 3a b ca
系数化为1,得x=2.
2. 解方程:2x(x+1)=2x2-5
解:去括号得: 2x2+2x=2x2-5
移项合并得: 解得: 2x=-5 x=-2.5
中考 试题
已知A=2x,B是多项式,在计算B+A时, 小马虎同学把B+A看成了B÷A,结果得x2+0.5x, 3+x2+2x 2 x 则B+A=____________. 解析:
因为 A= 2x,B÷A=x2+0.5x,
《多项式乘以多项式》典型例题(答案)

《多项式乘以多项式》典型例题例 1 计算(3x4 3x2 1)(x4 x2 2)例2计算(3x 1)(x 1) (2x 1)(x 1) 3x(x 2) 2x( 3x)例3 利用(x a)(x b) x2 (a b)x ab,写出下列各式的结果;(1)(x 5)(x 6)(2)(3x 2)( 3x 5)例4 计算(x 1)( x 1)(x21)例5 已知x2 x 1 0,求x3 2x 4的值。
例6 计算题:(1)(2x 5y)(3x 4y);(2) (x2y)(x2 y);(3)(2x 3y)(3x 4y)1 1 (4) (-x 4)(- x 3).2 2例7 已知计算(x3mx n)(x2 5x 3)的结果不含x3和x2项,求m,n的值。
例8 计算(1) (x 7)(x 9) ; (2) (x 10)(x 20);(3) (x 2)(x 5) ; (3) (x a)(x b)。
参考答案例 1 解:原式3x8 3x6 6x4 3x6 3x4 6x2x4x2 23x8 8x4 7x2 2说明:多项式乘法在展开后合并同类项前,要检查积的项数是否等于相乘的两项式项数的积,防止“重”、“漏”。
例 2 解:原式3x23x x 1 (2x22x x 1) 3x26x 6x23x2 3x x 1 2x2 2x x 1 3x26x 6x24x2 13x说明:本题中(2x 1)(x 1)前面有“-”号,进行多项式乘法运算时,应把结果写在括号里,再去括号,以防出错。
例 3 解:(1) (x 5)(x 6)x2 (5 6)x 5 ( 6)x2 x 30(2) ( 3x 2)( 3x 5)( 3x)2(2 5)( 3x) 2 529x221x 10说明:(2)题中的( 3x) 即相当于公式中x例 4 解:(x 1)(x 1)(x2 1)[x2( 1 1)x ( 1) 1](x21)22(x21)(x21)2 2 2(x2)2( 1 1)x2( 1) 1 x41说明:三个多项式相乘,可先把两个多项式相乘,再把积与剩下的一个多项式相乘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多项式的乘法
多项式的乘法的法则: 一般地,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项。
然后把所得的积相加。
整式的乘法运算与化简
多项式的乘法 转化为单项式
与多项式相乘 代数式的化简求值
典型例题
一.整式的计算
1.)1-n -m )(n 3m (+
2.若c bx ax x x ++=+-2
)3)(12(,求c b a ,,的值.
二.确定多项式中字母的值
1.多项式)32)(8x mx -+(中不含有x 的一次项,求m 的值?
2.若))(23(22q px x x x +++-展开后不含3x 和2x 项,求q p ,的值。
三.与方程相结合 解方程:8)2)(2(32-=-+x x x x
四.化简求值:
化简并求值:)3(2)42)(2(2
2--++-m m m m m ,其中2=m
五.图形应用 1.有若干张如图所示的正方形A 类、B 类卡片和长方形C 类卡片,如果要拼成一个长为(2a +b ),宽为(a +2b )的大长方形,则需要C 类卡片 张.
2.如图所示的正方形和长方形卡片若干张,拼成一个长为(a+3b ),宽为(2a+b )的矩形,需要这三类卡片共________ 张.
3.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形,把余下的部分剪成两个直角梯形后,再拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,这个等式是( )
A .a 2-b 2=(a +b )(a -b )
B .(a +b )2=a 2+2ab +b 2
C .(a -b )2=a 2-2ab +b 2
D .a 2-ab =a (a -b )
补充练习
一.选择题
1.若(x+a)(x+b)=x2-kx+ab,则k的值为()
A.a+b B.-a-b C.a-b D.b-a
2.(x2-px+3)(x-q)的乘积中不含x2项,则()
A.p=q B.p=±q C.p=-q D.无法确定
3.方程(x+4)(x-5)=x2-20的解是()
A.x=0B.x=-4C.x=5D.x=40
4.若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于()
A.36B.15C.19D.21
二.填空题
1.(3x-1)(4x+5)=__________.
2.当k=__________时,多项式x-1与2-kx的乘积不含一次项.
3.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.
4.如果三角形的底边为(3a+2b),高为(9a2-6ab+4b2),则面积=__________.
5.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.
三.简答题
1.求(a+b)2-(a-b)2-4ab的值,其中a=2002,b=2001.
2.已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.。