【高考函数复习】函数模型及其应用

合集下载

高中数学复习:函数模型及其应用

高中数学复习:函数模型及其应用
栏目索引
第九节 函数模型及其应用
总纲目录 栏目索引
教 1.几种常见的函数模型 材 2.三种增长型函数模型的图象与性质 研 读 3.解函数应用题的步骤(四步八字)
总纲目录 栏目索引
考 考点一 用函数图象刻画变化过程
点 突
考点二 应用所给函数模型解决实际问题
破 考点三 构建函数模型解决实际问题
教材研读
教材研读 栏目索引
3.在某个物理实验中,测量得变量x和变量y的几组数据如下表:
x
0.50
0.99
2.01
3.98
y
-0.99
0.01
0.98
2.00
则对x,y最适合的拟合函数是 ( D )
A.y=2x B.y=x2-1
C.y=2x-2 D.y=log2x
答案 D 根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0. 98,代入计算,可以排除B,C;将各数据代入函数y=log2x,可知满足题意.
间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关 系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的
是 (B)
考点突破 栏目索引
考点突破 栏目索引
(2)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述 了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确 的是 ( D )
教材研读 栏目索引
教材研读 栏目索引
知识拓展 形如f(x)=x+ a (a>0)的函数模型称为“对勾”函数模型:
x
(1)该函数在(-∞,- a )和( a ,+∞)上单调递增,在[- a ,0)和(0, a ]上单调 递减. (2)当x>0时,在x= a 处取最小值2 a , 当x<0时,在x=- a 处取最大值-2 a .

高考中常用函数模型归纳及应用

高考中常用函数模型归纳及应用

高考中常用函数模型....归纳及应用 一. 常数函数y=a判断函数奇偶性最常用的模型,a=0时,既是奇函数,又是偶函数,a ≠0时只是偶函数。

关于方程解的个数问题时常用。

例1.已知x ∈(0, π],关于方程2sin(x+3π)=a 有两个不同的实数解,则实数a 的取植范围是( )A .[-2,2] B.[3,2] C.( 3,2] D.( 3,2)解析;令y=2sin(x+3π), y=a 画出函数y=2sin(x+3π),y=a 图象如图所示,若方程有两个不同的解,则两个函数图象有两个不同的交点,由图象知( 3,2),选D二. 一次函数y=kx+b (k ≠0)函数图象是一条直线,易画易分析性质变化。

常用于数形结合解决问题,及利用“变元”或“换元”化归为一次函数问题。

有定义域限制时,要考虑区间的端点值。

例2.不等式2x 2+1≤m(x-1)对一切│m │≤2恒成立,则x 的范围是( )A .-2≤x ≤2 B.431- ≤x ≤0 C.0≤x ≤471+ D.471-≤x ≤413- 解析:不等式可化为m(x-1)- 2x 2+1≥0 设f(m)= m(x-1)- 2x 2+1若x=1, f(m)=-3<0 (舍) 则x ≠1则f(m)是关于m 的一次函数,要使不等式在│m │≤2条件下恒成立,只需⎩⎨⎧≥-≥0)2(0)2(f f ,解之可得答案D三. 二次函数y=ax 2+bx+c (a ≠0)二次函数是应用最广泛的的函数,是连接一元二次不等式和一元二次方程的纽带。

很多问题都可以化归和转化成二次函数问题。

比如有关三次函数的最值问题,因其导数是二次函数,最后的落脚点仍是二次函数问题。

例3.(1).若关于x 的方程x 2+ax+a 2-1=0有一个正根和一个负根,则a 的取值范围是( ) 解析:令f(x)= x 2+ax+a 2-1由题意得f(0)= a 2-1 <0,即-1<a <1即可。

高考文科数学《函数模型及其应用》课件

高考文科数学《函数模型及其应用》课件
121n0≥1232,1n0≤32,解得 n≤15.
故今后最多还能砍伐 15 年.
点 拨: 此类增长率问题,在实际问题中常可以用指数型函数模型 y=N(1+p)x(其 中 N 是基础数,p 为增长率,x 为时间)和幂型函数模型 y=a(1+x)n(其中 a 为基
础数,x 为增长率,n 为时间)的形式表示.解题时,往往用到对数运算.
直到达到规定人数 75 人为止.每团乘飞机,旅行社需付给航空公司包机 费 15 000 元.
(1)写出飞机票的价格关于人数的函数; (2)每团人数为多少时,旅行社可获得最大利润?
解:(1)设旅游团人数为 x 人,由题得 0<x≤75,飞机票价格为 y 元, 则 y=990000,-010<(x≤x-303,0),30<x≤75,
某纯净水制造厂在净化水过程中,每增加一次过滤可减少水 中杂质 20%,要使水中杂质减少到原来的 10%以下,则至少需过滤的次数
为________.(参考数据:lg2≈0.301 0)
解:设过滤次数为 x(x∈N*),原有杂质为 a,则 a(1-20%)x<a·10%,
所以 x>1-13lg2≈10.3,即至少需要过滤 11 次.故填 11.
当且仅当 x=40 x000,即 x=200 时取等号.故选 A.
(教材改编题)某家具的标价为 132 元,若降价以九折出售(即优惠 10%),
仍可获利 10%(相对进货价),则该家具的进货价是( )
A.105 元
B.106 元
C.108 元
D.118 元
解:设进货价为 a 元,由题意知 132×(1-10%)-a=10%·a, 解得 a=108.故选 C.
单调____ 函数
相对平稳

高考数学考点归纳之函数模型及其应用

高考数学考点归纳之函数模型及其应用

高考数学考点归纳之函数模型及其应用一、基础知识1.常见的8种函数模型(1)正比例函数模型:f (x )=kx (k 为常数,k ≠0); (2)反比例函数模型:f (x )=kx (k 为常数,k ≠0);(3)一次函数模型:f (x )=kx +b (k ,b 为常数,k ≠0); (4)二次函数模型:f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0); (5)指数函数模型:f (x )=ab x +c (a ,b ,c 为常数,a ≠0,b >0,b ≠1); (6)对数函数模型:f (x )=m log a x +n (m ,n ,a 为常数,m ≠0,a >0,a ≠1); (7)幂函数模型:f (x )=ax n +b (a ,b ,n 为常数,a ≠0,n ≠1); (8)“对勾”函数模型:y =x +ax(a >0).(1)形如f (x )=x +ax (a >0)的函数模型称为“对勾”函数模型,“对勾”函数的性质:①该函数在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减. ②当x >0时,x =a 时取最小值2a ,当x <0时,x =-a 时取最大值-2a .(2)函数f (x )=x a +bx (a >0,b >0,x >0)在区间(0,ab ]内单调递减,在区间[ab ,+∞)内单调递增.2.三种函数模型的性质幂函数模型y =x n (n >0)可以描述增长幅度不同的变化,当n ,值较小(n ≤1)时,增长较慢;当n 值较大(n >1)时,增长较快.考点一 二次函数、分段函数模型[典例] 国庆期间,某旅行社组团去风景区旅游,若每团人数在30或30以下,飞机票每张收费900元;若每团人数多于30,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75为止.每团乘飞机,旅行社需付给航空公司包机费15 000元.(1)写出飞机票的价格关于人数的函数; (2)每团人数为多少时,旅行社可获得最大利润?[解] (1)设每团人数为x ,由题意得0<x ≤75(x ∈N *),飞机票价格为y 元,则y =⎩⎪⎨⎪⎧900,0<x ≤30,900-10(x -30),30<x ≤75,即y =⎩⎪⎨⎪⎧900,0<x ≤30,1 200-10x ,30<x ≤75.(2)设旅行社获利S 元,则S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,1 200x -10x 2-15 000,30<x ≤75,即S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,-10(x -60)2+21 000,30<x ≤75.因为S =900x -15 000在区间(0,30]上为增函数,故当x =30时,S 取最大值12 000. 又S =-10(x -60)2+21 000,x ∈(30,75],所以当x =60时,S 取得最大值21 000. 故当x =60时,旅行社可获得最大利润. [解题技法]二次函数、分段函数模型解决实际问题的策略(1)在建立二次函数模型解决实际问题中的最值问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解.(2)对于分段函数模型的最值问题,应该先求出每一段上的最值,然后比较大小. (3)在利用基本不等式求解最值时,一定要检验等号成立的条件,也可以利用函数单调性求解最值.[题组训练]1.某市家庭煤气的使用量x (m 3)和煤气费f (x )(元)满足关系f (x )=⎩⎪⎨⎪⎧C ,0<x ≤A ,C +B (x -A ),x >A .已知某家庭2018年前三个月的煤气费如表:若四月份该家庭使用了20 m 3的煤气,则其煤气费为( ) A .11.5元 B .11元 C .10.5元D .10元解析:选A 根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x )=⎩⎪⎨⎪⎧4,0<x ≤5,4+12(x -5),x >5,所以f (20)=4+12×(20-5)=11.5.2.A ,B 两城相距100 km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使月供电总费用y 最少? 解:(1)由题意知x 的取值范围为[10,90]. (2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25 000 =152⎝⎛⎭⎫x -10032+50 0003, 所以当x =1003时,y min =50 0003.故核电站建在距A 城1003 km 处,能使月供电总费用y 最少.考点二 指数函数、对数函数模型[典例] 某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.[解] (1)由题图,设y =⎩⎪⎨⎪⎧kt ,0≤t ≤1,⎝⎛⎭⎫12t -a ,t >1,当t =1时,由y =4,得k =4,由⎝⎛⎭⎫121-a =4,得a =3.所以y =⎩⎪⎨⎪⎧ 4t ,0≤t ≤1,⎝⎛⎭⎫12t -3,t >1.(2)由y ≥0.25得⎩⎪⎨⎪⎧0≤t ≤1,4t ≥0.25或⎩⎪⎨⎪⎧t >1,⎝⎛⎭⎫12t -3≥0.25,解得116≤t ≤5.故服药一次后治疗疾病有效的时间是5-116=7916(小时).[解题技法]1.掌握2种函数模型的应用技巧(1)与指数函数、对数函数模型有关的实际问题,在求解时,要先学会合理选择模型,在三类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题,必要时可借助导数.2.建立函数模型解应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型. (2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型. (3)求模:求解数学模型,得出数学结论.(4)还原:将利用数学知识和方法得出的结论,还原到实际问题中. [题组训练]1.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A .略有盈利B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况解析:选B 设该股民购进这支股票的价格为a 元,则经历n 次涨停后的价格为a (1+10%)n =a ×1.1n 元,经历n 次跌停后的价格为a ×1.1n ×(1-10%)n =a ×1.1n ×0.9n =a ×(1.1×0.9)n =0.99n ·a <a ,故该股民这支股票略有亏损.2.声强级Y (单位:分贝)由公式Y =10lg ⎝⎛⎭⎫I10-12给出,其中I 为声强(单位:W/m 2).(1)平常人交谈时的声强约为10-6 W/m 2,求其声强级.(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少? 解:(1)当声强为10-6 W/m 2时, 由公式Y =10lg ⎝⎛⎭⎫I10-12,得Y =10lg ⎝ ⎛⎭⎪⎫10-610-12=10lg 106=60(分贝). (2)当Y =0时,由公式Y =10lg ⎝⎛⎭⎫I10-12,得10lg ⎝⎛⎭⎫I10-12=0.∴I 10-12=1,即I =10-12W/m 2, 则最低声强为10-12W/m 2.[课时跟踪检测]1.(2018·福州期末)某商场销售A 型商品.已知该商品的进价是每件3元,且销售单价与日均销售量的关系如下表所示:请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为( )A .4B .5.5C .8.5D .10解析:选C 由数据分析可知,当单价为4元时销售量为400件,单价每增加1元,销售量就减少40件.设定价为x 元/件时,日均销售利润为y 元,则y =(x -3)·[400-(x -4)·40]=-40⎝⎛⎭⎫x -1722+1 210,故当x =172=8.5时,该商品的日均销售利润最大,故选C. 2.(2019·绵阳诊断)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月的水费为55元,则该职工这个月实际用水为( ) A .13立方米 B .14立方米 C .15立方米D .16立方米解析:选C 设该职工某月的实际用水为x 立方米时,水费为y 元,由题意得y =⎩⎪⎨⎪⎧ 3x ,0≤x ≤10,30+5(x -10),x >10,即y =⎩⎪⎨⎪⎧3x ,0≤x ≤10,5x -20,x >10.易知该职工这个月的实际用水量超过10立方米,所以5x -20=55,解得x =15.3.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4 000,则每吨的成本最低时的年产量为( )A .240吨B .200吨C .180吨D .160吨解析:选B 依题意,得每吨的成本为y x =x 10+4 000x -30,则yx ≥2x 10 ·4 000x-30=10,当且仅当x 10=4 000x ,即x =200时取等号,因此,当每吨成本最低时,年产量为200吨.4.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P (单位:毫克/升)与过滤时间t (单位:时)之间的函数关系为P =P 0e -kt (k ,P 0均为正常数).如果在前5个小时的过滤过程中污染物被排除了90%,那么排放前至少还需要过滤的时间是( )A.12小时 B.59小时C .5小时D .10小时解析:选C 由题意,前5个小时消除了90%的污染物. ∵P =P 0e -kt , ∴(1-90%)P 0=P 0e -5k,∴0.1=e-5k,即-5k =ln 0.1,∴k =-15ln 0.1.由1%P 0=P 0e -kt ,即0.01=e -kt ,得-kt =ln 0.01, ∴⎝⎛⎭⎫15ln 0.1t =ln 0.01,∴t =10. ∴排放前至少还需要过滤的时间为t -5=5(时).5.(2019·蚌埠模拟)某种动物的繁殖数量y (单位:只)与时间x (单位:年)的关系式为y =a log 2(x +1),若这种动物第1年有100只,则到第7年它们发展到________只.解析:由题意,得100=a log 2(1+1),解得a =100,所以y =100log 2(x +1),当x =7时,y =100log 2(7+1)=300,故到第7年它们发展到300只.答案:3006.某人根据经验绘制了从12月21日至1月8日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象如图所示,则此人在12月26日大约卖出了西红柿________千克.解析:前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析式得⎩⎪⎨⎪⎧10=k +b ,30=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909.答案:19097.候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,求其耗氧量至少要多少个单位? 解:(1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位, 故有a +b log 33010=0,即a +b =0.当耗氧量为90个单位时,速度为1 m/s , 故a +b log 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧ a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1.(2)由(1)知,v =a +b log 3Q 10=-1+log 3Q10.所以要使飞行速度不低于2 m/s ,则有v ≥2, 所以-1+log 3Q10≥2,即log 3Q 10≥3,解得Q10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位. 8.据气象中心观察和预测:发生于沿海M 地的台风一直向正南方向移动,其移动速度v (单位:km/h)与时间t (单位:h)的函数图象如图所示,过线段OC 上一点T (t,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积为时间t 内台风所经过的路程s (单位:km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650 km ,试判断这场台风是否会侵袭到N 城,如果会,在台风发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解:(1)由图象可知,直线OA 的方程是v =3t (0≤t ≤10),直线BC 的方程是v =-2t +70(20<t ≤35).当t =4时,v =12,所以s =12×4×12=24.(2)当0≤t ≤10时,s =12×t ×3t =32t 2;当10<t ≤20时,s =12×10×30+(t -10)×30=30t -150;当20<t ≤35时,s =150+300+12×(t -20)×(-2t +70+30)=-t 2+70t -550.综上可知,s 随t 变化的规律是s =⎩⎪⎨⎪⎧32t 2,t ∈[0,10],30t -150,t ∈(10,20],-t 2+70t -550,t ∈(20,35].(3)当t ∈[0,10]时,s max =32×102=150<650,当t ∈(10,20]时,s max =30×20-150=450<650,当t∈(20,35]时,令-t2+70t-550=650,解得t=30或t=40(舍去),即在台风发生30小时后将侵袭到N城.。

2023年高考数学总复习第二章 函数概念与基本初等函数第9节:函数模型及其应用(学生版)

2023年高考数学总复习第二章 函数概念与基本初等函数第9节:函数模型及其应用(学生版)

2023年高考数学总复习第二章函数概念与基本初等函数第9节函数模型及其应用考试要求1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义;2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.1.指数、对数、幂函数模型性质比较函数性质y =a x (a >1)y =log a x (a >1)y =x n (n >0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图像的变化随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同2.几种常见的函数模型函数模型函数解析式一次函数模型f (x )=ax +b (a ,b 为常数,a ≠0)二次函数模型f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0)与指数函数相关的模型f (x )=ba x +c (a ,b ,c 为常数,a >0且a ≠1,b ≠0)与对数函数相关的模型f (x )=b log a x +c (a ,b ,c 为常数,a >0且a ≠1,b ≠0)与幂函数相关的模型f (x )=ax n +b (a ,b ,n 为常数,a ≠0)1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长量越来越小.2.充分理解题意,并熟练掌握几种常见函数的图像和性质是解题的关键.3.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.1.思考辨析(在括号内打“√”或“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.()(2)函数y=2x的函数值比y=x2的函数值大.()(3)不存在x0,使a x0<x n0<log a x0.()(4)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=x a(a>0)的增长速度.()2.(易错题)已知f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是()A.f(x)>g(x)>h(x)B.g(x)>f(x)>h(x)C.g(x)>h(x)>f(x)D.f(x)>h(x)>g(x)3.(易错题)当生物死亡后,其体内原有的碳14的含量大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是()A.8B.9C.10D.114.(2022·江苏新高考基地大联考)香农定理是所有通信制式最基本的原理,它可以用香农公式C=B log21+SN来表示,其中C是信道支持的最大速度或者叫信道容量,B是信道带宽(Hz),S是平均信号功率(W),N是平均噪声功率(W).已知平均信号功率为1000W,平均噪声功率为10W,在不改变平均信号功率和信道带宽的前提下,要使信道容量增大到原来的2倍,则平均噪声功率约降为()A.0.1WB.1.0WC.3.2WD.5.0W5.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为________.6.(2020·北京卷)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W与时间t的关系为W=f(t),用-f(b)-f(a)b-a的大小评价在[a,b]这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是__________.考点一利用函数图像刻画变化过程1.已知高为H,满缸水量为V的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图像是()2.小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制图像,拟合了记忆保持量f (x )与时间x (天)之间的函数关系f (x )-720x +1,0<x ≤1,15+920x -12,1<x ≤30.则下列说法错误的是()A.随着时间的增加,小菲的单词记忆保持量降低B.第一天小菲的单词记忆保持量下降最多C.9天后,小菲的单词记忆保持量低于40%D.26天后,小菲的单词记忆保持量不足20%3.(2022·郑州质检)水池有两个相同的进水口和一个出水口,每个口进出水的速度如图甲、乙所示,某天0时到6时该水池的蓄水量如图丙所示,给出以下3个论断:①0时到3时只进水不出水;②3时到4时不进水只出水;③4时到5时不进水也不出水.则一定正确的论断是________(填序号).4.(2021·西安调研)为研究西南高寒山区一种常见树的生长周期中前10年的生长规律,统计显示,生长4年的树高为73米,如图所示的散点图,记录了样本树的生长时间t(年)与树高y(米)之间的关系.请你据此判断,在下列函数模型:①y=2t-a;②y=a+log2t;③y=12t+a;④y=t+a中(其中a为正的常实数),拟合生长年数与树高的关系最好的是________(填写序号),估计该树生长8年后的树高为________米.考点二二次函数模型例1(1)某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是()A.10.5万元B.11万元C.43万元D.43.025万元(2)某地西红柿上市后,通过市场调查,得到西红柿种植成本Q(单位:元/100kg)与上市时间t(单位:天)的数据如下表:时间t60100180种植成本Q11684116根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t 的变化关系:Q=at+b,Q=at2+bt+c,Q=a·b t,Q=a·log b t.利用你选取的函数,求:①西红柿种植成本最低时的上市天数是________;②最低种植成本是________元/100kg.训练1(1)(2021·广州模拟)某工厂生产某种产品固定成本为2000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是________万元.(2)某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),若每年销售量为30-52R万件,要使附加税不少于128万元,则R的取值范围是()A.[4,8]B.[6,10]C.[4%,8%]D.[6%,10%]考点三指数、对数函数模型例2(1)一个放射性物质不断衰变为其他物质,每经过一年就有34的质量发生衰变.若该物质余下质量不超过原有的1%,则至少需要的年数是()A.6B.5C.4D.3(2)(2021·唐山联考)尽管目前人类还无法准确地预报地震,但科学家通过研究,已经对地震有所了解,例如,地震释放出的能量E(单位:焦耳)与地震里氏震级M 之间的关系为lg E=4.8+1.5M.①已知地震等级划分为里氏12级,根据等级范围又分为三种类型,其中小于2.5级的为“小地震”,介于2.5级到4.7级之间的为“有感地震”,大于4.7级的为“破坏性地震”,若某次地震释放能量约1012焦耳,试确定该次地震的类型;②2008年汶川地震为里氏8级,2011年日本地震为里氏9级,问:2011年日本地震所释放的能量是2008年汶川地震所释放的能量的多少倍?(取10=3.2)训练2(2021·贵阳调研)一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?考点四分段函数模型例3小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本3万元,每生产x万件,需另投入流动成本W(x)万元,在年产量不足8万件时,W(x)=13x2+x(万元).在年产量不小于8万件时,W(x)=6x+100x-38(万元).每件产品售价5元.通过市场分析,小王生产的商品当年能全部售完.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?训练3某校高三(1)班学生为了筹措经费给班上购买课外读物,班委会成立了一个社会实践小组,决定利用暑假八月份(按30天计算)轮流换班去销售一种时令水果.在这30天内每斤水果的收入p(元)与时间t(天)满足如图所示的函数关系,已知日销售量Q(斤)与时间t(天)满足一次函数关系(具体数据如下表所示).t(天)281624Q(斤)38322416(1)根据提供的图像和表格,写出每斤水果的收入p(元)与时间t(天)所满足的函数关系式及日销售量Q(斤)与时间t(天)的一次函数关系式;(2)写出销售水果的日收入y(元)与t的函数关系式,并求这30天中第几天的日收入最大?最大为多少元?1.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图像正确的是()2.(2022·绵阳诊断)某数学小组进行社会实践调查,了解到某公司为了实现1000万元利润目标,准备制订激励销售人员的奖励方案:在销售利润超过10万元时,按销售利润进行奖励,且奖金y (单位:万元)随销售利润x (单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.同学们利用函数知识,设计了如下函数模型,其中符合公司要求的是(参考数据:1.0021000≈7.37,lg 7≈0.845)()A.y =0.25xB.y =1.002xC.y =log 7x +1D.y =x10-13.(2021·全国大联考)如图,矩形花园ABCD 的边AB 靠在墙PQ 上,另外三边是由篱笆围成的.若该矩形花园的面积为4平方米,墙PQ 足够长,则围成该花园所需要篱笆的()A.最大长度为8米B.最大长度为42米C.最小长度为8米D.最小长度为42米4.(2022·兰州质检)设光线通过一块玻璃,光线强度损失10%,如果光线原来的强度为k(k>0),通过x块这样的玻璃以后光线的强度为y,则y=k·0.9x(x∈N+),那么光线强度减弱到原来的13以下时,至少通过这样的玻璃的块数为(参考数据:lg3≈0.477)()A.9B.10C.11D.125.(2021·济南检测)人们用分贝(dB)来划分声音的等级,声音的等级d(x)(单位:dB)与声音强度x(单位:W/m2)满足d(x)=9lgx1×10-13.一般两人小声交谈时,声音的等级约为54dB,在有50人的课堂上讲课时,老师声音的等级约为63dB,那么老师上课时声音强度约为一般两人小声交谈时声音强度的()A.1倍B.10倍C.100倍D.1000倍6.某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是()A.收入最高值与收入最低值的比是3∶1B.结余最高的月份是7月C.1至2月份的收入的变化量与4至5月份的收入的变化量相同D.前6个月的平均收入为40万元7.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h(单位:米)与时间t(单位:s)之间的关系为h(t)=-4.9t2+14.7t+17,那么烟花冲出后在爆裂的最佳时刻距地面高度约为________米.8.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________.9.(2021·武汉模拟)复利是一种计算利息的方法,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%,若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息________元.(参考数据:1.02255≈1.118,1.04015≈1.217)10.候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为v=a+b log3Q 10 (其中a,b是实数).据统计,该种鸟类在静止时其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a,b的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个单位?11.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资240万元.根据行业规定,每个城市至少要投资80万元,由前期市场调研可知:甲城市收益P与投入a(单位:万元)满足P=42a-6,乙城市收益Q与投入a(单位:万元)满足Q+2,80≤a≤120,,120<a≤160,设甲城市的投入为x(单位:万元),两个城市的总收益为f(x)(单位:万元).(1)当投资甲城市128万元时,求此时公司的总收益;(2)试问:如何安排甲、乙两个城市的投资,才能使公司总收益最大?12.(2022·保定质检)分子间作用力是只存在于分子与分子之间或惰性气体原子间的作用力,在一定条件下,两个原子接近,则彼此因静电作用产生极化,从而导致有相互作用力,称范德瓦尔斯相互作用.今有两个惰性气体原子,原子核正电荷的电荷量为q,这两个相距R的惰性气体原子组成体系的能量中有静电相互作用能U,其计算式子为U=kcq2·(1R+1R+x1-x2-1R+x1-1R-x2),其中,kc为静电常量,x1,x2分别表示两个原子的负电中心相对各自原子核的位移.已知R+x1-x2=1+x1-x2R R+x1=R1+x1R R-x2=R1-x2R(1+x)-1≈1-x+x2,则U的近似值为()A.kcq2x1x2R3B.-kcq2x1x2R3C.2kcq2x1x2R3D.-2kcq2x1x2R313.天文学中为了衡量天体的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,天体就越亮;星等的数值越大,它就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(M.R.Pogson)又提出了衡量天体明暗程度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m1-m2=2.5(lg E2-lg E1).其中星等为m i的天体的亮度为E i(i=1,2).已知“心宿二”的星等是1.00,“天津四”的星等是1.25,“心宿二”的亮度是“天津四”的r倍,则与r最接近的是(当|x|较小时,10x≈1+2.3x+2.7x2)()A.1.24B.1.25C.1.26D.1.2714.已知一容器中有A,B两种菌,且在任何时刻A,B两种菌的个数乘积均为定值1010,为了简单起见,科学家用P A=lg n A来记录A菌个数的资料,其中n A为A 菌的个数.现有以下几种说法:①P A≥1;②若今天的P A值比昨天的P A值增加1,则今天的A菌个数比昨天的A菌个数多10;③假设科学家将B菌的个数控制为5万,则此时5<P A<5.5(注:lg2≈0.3).则正确的说法为________(写出所有正确说法的序号).。

2022年高考数学总复习:函数模型及其应用

2022年高考数学总复习:函数模型及其应用

第 1 页 共
18 页
2022年高考数学总复习:函数模型及其应用
1.几类函数模型
函数模型 函数解析式
一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 反比例函数模型 f (x )=k
x
+b (k ,b 为常数且k ≠0)
二次函数模型 f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0)
指数函数模型 f (x )=ba x +c (a ,b ,c 为常数,b ≠0,a >0且a ≠1) 对数函数模型 f (x )=b log a x +c (a ,b ,c 为常数,b ≠0,a >0且a ≠1) 幂函数模型
f (x )=ax n +b (a ,b 为常数,a ≠0)
2.三种函数模型的性质
函数
性质
y =a x (a >1) y =log a x (a >1) y =x n (n >0) 在(0,+∞)上的增减性
单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图象的变化 随x 的增大逐渐表现为与y 轴平行
随x 的增大逐渐表现为与x 轴平行
随n 值变化而各有不同
值的比较
存在一个x 0,当x >x 0时,有log a x <x n <a x
知识拓展
1.解函数应用题的步骤
2.“对勾”函数
形如f (x )=x +a
x
(a >0)的函数模型称为“对勾”函数模型:
(1)该函数在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减. (2)当x >0时,x =a 时取最小值2a ,。

高考数学 2.8 函数模型及其应用复习

高考数学 2.8 函数模型及其应用复习
解析 依题意 y=ax-2 中,当 x=3 时,y=6,故 6= a3-2,解得 a=2.所以加密为 y=2x-2,因此,当 y= 14 时,由 14=2x-2,解得 x=4.
精品课件
2.某工厂生产某种产品固定成本为 2 000 万元,并且每 生产一单位产品,成本增加 10 万元.又知总收入 K 是单位产品数 Q 的函数,K(Q)=40Q-210Q2,则总 利润 L(Q)的最大值是__2__5_0_0__万元.
精品课件
题型分类 深度剖析
题型一 一次函数、二次函数模型 例 1 某企业生产 A,B 两种产品,根据市场调查与预
测,A 产品的利润与投资成正比,其关系如图 1;B 产品的利润与投资的算术平方根成正比,其关系如图 2(注:利润和投资单位:万元).
精品课件
(1)分别将 A、B 两种产品的利润表示为投资的函数关系 式; (2)已知该企业已筹集到 18 万元资金,并将全部投入 A, B 两种产品的生产. ①若平均投入生产两种产品,可获得多少利润? ②问:如果你是厂长,怎样分配这 18 万元投资,才能使 该企业获得最大利润?其最大利润约为多少万元? 思维启迪 (1)根据函数模型,建立函数解析式.(2)根据 资金分配情况,建立利润解析式.
精品课件
[难点正本 疑点清源] 解决函数应用问题重点解决以下问题 (1)阅读理解、整理数据:通过分析、画图、列表、归类 等方法,快速弄清数据之间的关系,数据的单位等等; (2)建立函数模型:关键是正确选择自变量将问题的目标 表示为这个变量的函数,建立函数的模型的过程主要是 抓住某些量之间的相等关系列出函数式,注意不要忘记 考察函数的定义域; (3)求解函数模型:主要是研究函数的单调性,求函数的 值域、最大(小)值,计算函数的特殊值等,注意发挥函 数图象的作用; (4)回答实际问题结果:将函数问题的结论还原成实际问 题,结果明确表述出来.精品课件

2023版高考数学一轮总复习第二章函数2.7函数的应用第2课时函数模型及其应用课件

2023版高考数学一轮总复习第二章函数2.7函数的应用第2课时函数模型及其应用课件

70 ≈100r.
若 r=3%,f(x)≥2a,则 x 的最小整数值为
()
A. 22
B. 25
C. 23
D. 24
解:依题意可得
a(1+3%)x≥2a,即
ln2
0.693
x≥ln(1+3%)≈ 3%
15≈1007×03%=730≈23.
2. 三种函数模型性质比较
性质
在(0,+∞) 上的单调性
增长速度
图象的 变化
y=ax(a>1)
增函数
越来越快 随 x 值增大,
图象与 y 轴 接近平行
函数 y=logax(a>1)
增函数
越来越慢 随 x 值增大,
图象与 x 轴 接近平行
y=xn(n>0) 增函数
相对平稳 随 n 值变 化而不同
3. 用函数建立数学模型解决实际问题的基本过程 (1)分析和理解实际问题的增长情况(是“对数增长”“直线上升”还是“指数爆炸”或其他); (2)根据增长情况选择函数类型构建数学模型,将实际问题化归为数学问题; (3)通过运算、推理求解函数模型; (4)用得到的函数模型描述实际问题的变化规律、解决有关问题.
利息与本金加在一起作为本金,再计算下一期利息. 假设最开始本金f(x).

f(x)≥2a,则
a(1+r)x≥2a,解得
ln2 x≥ln(1+r).
银行业中经常
使用“70 原则”,因为 ln2≈0. 693 15,而且当 r 比较小时,ln(1+r)≈r,所以ln(l1n+2 r)≈0.69r3 15
≈3α3,则 r 的近似值为
()
A.
MM21R
B.
2MM21R
C. 3 3MM12R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过3 km按起步价付费);超过3 km但不超过8 km时,超过部分按每千
米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘
坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次
出租车行驶了
km.
关闭
设出租车行驶了 x km 时,付费 y 元,则
9,0 < ������ ≤ 3,
6
3
此时 8=S(100)≤S(t)≤S(41)=1 4291.
综上,当 t=12 时,S(t)取最大值2 5300;当 t=100 时,S(t)取最小值 8.
答案
考点1 考点2 考点3 考点4
思考生活中常见的哪些问题涉及的两个变量之间的关系是二次 函数关系?
解题心得在现实生活中,很多问题涉及的两个变量之间的关系是 二次函数关系,如面积问题、利润问题、产量问题等.构建二次函 数模型,利用二次函数的图象与单调性解决.
y=0.1x2+10x+300(0<x≤240,x∈N),若每台产品的售价为25万元,生
产的产品全部卖出,则该工厂获得最大利润(利润=销售收入-产品
成本)时的产量是( )
A.70台
B.75台 C.80台D.85台
关闭
根据题意知销售收入是25x,所以利润是w=25x-(0.1x2+10x+300),即w=-
所当此当天地 ff和((tt以时内满 ))最14==≤1的足 14-小≤S712t6(t+≤tt销t8值+)≤g2==54(2售.St201()(1(,0=量4t4--0≤∈-011312,13和)t≤������N∈tt≤������+≤++价t时1NS≤431(15格20t,时13)21S(,2≤t均(10∈,tS≤ 0)S=(为,-14(Nttt1)13-∈���≤)=1���时21���,2���+)后1N(+1=(间t)t-022-,11601试 2t51323(0,002单)t80求 ∈2(天+,)1(位24N该 2-的≤815):3,天0商 .价前���≤0��� ,)≤品格的������44≤的0为函0天1日,数������0∈的销0,且,N���价售���∈)日,格额N销为).S售(t)量的近最似大值
40 000 ������2
,������
>
40.
(1)写出年利润W(单位:万元)关于年产量x(单位:万台)的函数解析 式;
(2)当年产量为多少万台时,该公司在该款手机的生产中所获得的 利润最大?并求出最大利润.
考点1 考点2 考点3 考点4
解: (1)当 0<x≤40 时,W=xR(x)-(16x+40)=-6x2+384x-40,
(1)写出飞机票的价格关于人数的函数; (2)每团人数为多少时,旅行社可获得最大利润?
考点1 考点2 考点3 考点4
解: (1)设每团人数为x,由题意得0<x≤75(x∈N*),飞机票价格为y元,

y=
900,0 < ������ ≤ 30, 900-10(������-30),30
<
������

3 ������
2
3������
+ ������ + ������
= =
1,解得 4.
������ ������
= =
2, -2.
∴y=2log4x-2,当 y=8 时,即 2log4x-2=8,x=1 024(万元).
1 024
关闭
解析 答案
知识梳理 考点自测
12345
5.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超

75,

y=
900,0 < ������ ≤ 30, 1 200-10������,30 < ������

75.
(2)设旅行社获利 S 元,则 S=
900������-15 000,0 < ������ ≤ 30,

1 200������-10������2-15 000,30 < ������ ≤ 75,
0.1x2+15x-300,所以当x=75时,wmax=-0.1×752+15×75-300=262.5(万元).
关闭
B
解析 答案
知识梳理 考点自测
12345
3.在某个物理实验中,测量得变量x和变量y的几组数据,如下表,则 x,y最适合的函数是( )
x 0.50 y -0.99
0.99
2.01
3.98
考点1 考点2 考点3 考点4
思考分段函数模型适合哪些问题? 解题心得1.在现实生活中,很多问题的两个变量之间的关系不能 用同一个关系式给出,而是由几个不同的关系式构成分段函数.如 出租车票价与路程之间的关系就是分段函数. 2.分段函数主要是每一段上自变量变化所遵循的规律不同,可以 先将其作为几个不同问题,将各段的规律找出来,再将其合在一起. 要注意各段变量的范围,特别是端点.
(2)分别求出投资生产这两种产品的最大年利润; (3)如何决定投资可使年利润最大?
解: (1)y1=(10-a)x-20(1≤x≤200,x∈N*), y2=-0.05x2+10x-40(1≤x≤120,x∈N*).
(2)∵10-a>0,∴y1为增函数, ∴当x=200时,y1取得最大值1 980-200a,即投资生产甲产品的最大
2.9 函数模型及其应用
知识梳理 考点自测
1.常见的函数模型 (1)一次函数模型:f(x)=kx+b(k,b为常数,k≠0); (2)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0); (3)反比例函数模型:f(x)=������������(k 为常数,k≠0); (4)指数型函数模型:f(x)=abx+c(a,b,c为常数,a≠0,b>0,b≠1); (5)对数型函数模型:f(x)=mlogax+n(m,n,a为常数,m≠0,a>0,a≠1); (6)幂型函数模型:f(x)=axn+b(a,b,n为常数,a≠0);
年利润为(1 980-200a)万美元. y2=-0.05(x-100)2+460(1≤x≤120,x∈N*),
∴当x=100时,y2取得最大值460,即投资生产乙产品的最大年利润
为460万美元.
考点1 考点2 考点3 考点4
(3)为研究生产哪种产品年利润最大,我们采用作差法比较: 由(2)知生产甲产品的最大年利润为(1 980-200a)万美元,生产乙 产品的最大年利润为460万美元, (1 980-200a)-460= 1 520-200a,且6≤a≤8, 当1 520-200a>0,即6≤a<7.6时,投资生产甲产品200件可获得最 大年利润; 当1 520-200a=0,即a=7.6时,生产甲产品200件或生产乙产品100 件均可获得最大年利润; 当1 520-200a<0,即7.6<a≤8时,投资生产乙产品100件可获得最 大年利润.
当 x>40 时,W=xR(x)-(16x+40)=-40���0��� 00-16x+7 360.
-6������2 + 384������-40,0 < ������ ≤ 40,
所以,W=
-
40
000 ������
-16������
+
7
360,������
> 40.
0.01
0.98
2.00
A.y=2x
B.y=x2-1
关闭
根据C.xy==02.x5-02,y=-0.D99.,y代=l入og计2x算,可以排除A;根据x=2.01,y=0.98,代入计算,
可以排除B,C;将各数据代入函数y=log2x,可知满足题意.故选D.
关闭
D
解析 答案
知识梳理 考点自测
12345
甲产品 20
a
乙产品 40
8
10
200
18
120
其中年固定成本与年生产的件数无关,a为常数,且6≤a≤8.另外,
当年销售x件乙产品时需上交0.05x2万美元的特别关税,假设所生产
的产品均可售出.
考点1 考点2 考点3 考点4
(1)写出该集团分别投资生产甲、乙两种产品的年利润y1,y2与生 产相应产品的件数x(x∈N*)之间的函数关系式;
1.判断下列结论是否正确,正确的画“ ”,错误的画“×”.
(1)幂函数增长比一次函数增长更快.( )
(2)在(0,+∞)内,随着x的增大,y=ax(a>1)的增长速度会超过并远远
大于y=xα(α>0)的增长速度.( )
(3)指数型函数模型,一般用于解决变化较快,短时间内变化量较
大的实际问题.( )
(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)<f(x)<g(x).(
)
(5)“指数爆炸”是指数型函数y=a·bx+c(a>0,b>1)增长速度越来
越快的形象比喻.( )
关闭
(1)× (2)√ (3)√ (4)√ (5)√
答案
知识梳理 考点自测
12345
2. (教材例题改编P123例1) 一个工厂生产一种产品的总成本y(单 位:万元)与产量x(单位:台)之间的函数关系是
考点1 考点2 考点3 考点4
对点训练1(2017河南洛阳月考)为了维持市场持续发展,壮大集团
力量,某集团在充分调查市场后决定从甲、乙两种产品中选择一种
相关文档
最新文档