高等代数2-2(数学类)--期末考试--2014级

合集下载

高代2期末考试试题及答案

高代2期末考试试题及答案

高代2期末考试试题及答案# 高代2期末考试试题及答案一、选择题(每题2分,共10分)1. 线性空间中,向量组的线性相关性意味着:- A. 向量组中至少有一个向量可以由其他向量线性表示- B. 向量组中所有向量都是零向量- C. 向量组中任意向量都可以由其他向量线性表示- D. 向量组中存在非零向量可以由其他向量线性表示答案:A2. 设矩阵A是n阶方阵,如果存在一个非零向量x,使得Ax=0,则称x为矩阵A的:- A. 特征向量- B. 零空间向量- C. 特征值- D. 逆矩阵答案:B3. 矩阵的秩是指:- A. 矩阵中非零行的最大数目- B. 矩阵中非零列的最大数目- C. 矩阵的行向量组的秩- D. 矩阵的列向量组的秩答案:D4. 对于线性变换T: V → W,如果存在矩阵P,使得P^(-1)AP=B,则称矩阵A和B是:- A. 相似矩阵- B. 等价矩阵- C. 合同矩阵- D. 正交矩阵答案:B5. 线性变换的核是指:- A. 线性变换的值域- B. 线性变换的零空间- C. 线性变换的逆映射- D. 线性变换的映射集合答案:B二、填空题(每题2分,共10分)1. 线性空间V的基是一组向量,使得V中任意向量都可以唯一地表示为这组向量的________。

答案:线性组合2. 设A是m×n矩阵,B是n×p矩阵,则矩阵乘积AB的秩r(AB)满足:________。

答案:r(AB) ≤ min(r(A), r(B))3. 矩阵的特征值是指使得方程________的λ的值。

答案:det(A - λI) = 04. 线性变换的线性组合可以表示为________。

答案:T1 + λT25. 对于线性空间的子空间U和W,它们的和U+W是________。

答案:U和W中所有向量的集合三、简答题(每题5分,共15分)1. 解释什么是线性空间的基,并给出一个例子。

答案:线性空间的基是一组向量,它们线性无关且能生成整个线性空间。

(24)--13-14学年高等代数(II)试卷及参考答案

(24)--13-14学年高等代数(II)试卷及参考答案

得分 五、(10 分) 设 V 是数域 Ω 上的 n 维向量空间, σ 是 V 上线性变换. 证明: 存
在 V 上线性变换 τ , 使得 kerσ = τ (V ), kerτ = σ(V ).
第 5 页 (共 6 页)来自得分 六、(10 分) 设 A1, A2, . . . , Ak 均为 n 阶实对称矩阵, 并且对任意的 i, j 均有
¯ Ý­:˦ ÈÙ u, v ∈ V , Þ
(σ + τ )(u)v = u(σ − τ )(v),
(1)
(σ + 2τ )(u)v = uσ(v).
Ý ¦ ÈÙ Þ (2) − (1)
u, v ∈ V ,
τ (u)v = uτ (v).
À τ Ï ©¦». Á Ý (1) ¸ (3) ¦ ÈÙ u, v ∈ V , Þ
b
a + 3b
0
1
下对应的矩阵为
.
5. 设 V 是数域 Ω 上的有限维向量空间, 若 V 上线性变换 σ 的特征多项式
为 f (λ) = nk=1(λ − k)k, 则 dim ker(σ − k∗)k =
, 其中 k = 1, 2, . . . , n.
6. 设 V 是 2014 维欧氏空间, 若 V 上线性变换 σ 既是正交变换, 又是反对称
变换, 则 σ 的特征多项式为
.
7. 设 1, 2 都是 30 阶方阵 A 的特征根, 1 的代数重数为 29, 几何重数为 27,
则满足此条件且互不相似的 A 的总个数为
.
第 1 页 (共 6 页)
得分 二、(15 分) 设 A, B 均是 n 阶实对称矩阵. 证明: A, B 都是半正定矩阵, 当且

高等代数2-2(数学类)--期末考试答案--2019级

高等代数2-2(数学类)--期末考试答案--2019级

100 010
011
四、设A是n阶非零实对称矩阵,记Rn的两个子空间为U = {X ∈ Rn|AX = 0}, V = {AX|X ∈ Rn}证明:U 是V 在Rn的正交补空间.
证:取Rn中的一组标准正交基,取∀α ∈ U, ∀Aβ ∈ V (令α和Aβ都表示该向量在标准正交基下的坐标), 则有α Aβ = (Aα) β = 0,由此可知α ⊥ Aβ,所以U 是V 在Rn的正交补空间,证毕。
i=1
七、设A, B是n × n实对称矩阵,A正定.证明:AB相似于对角矩阵.又若B也正定,则AB的 特征值为正实数.
证:(1)因为A为正定的实对称矩阵,所以必定存在一个正交矩阵T1使得T1−1AT1 = E,记B1 = T1−1BT1。 由B是实对称矩阵,则B一定相似于对角阵,所以B1也相似于对角阵,并记该对角阵为B2。于是存在一 个T2有T2−1B1T2 = B2,而T2−1T2−1B1T2 = B2T2 = E,因此(T1T2)−1AB(T1T2) = (T1T2)−1A(T1T2)(T1T2)−1B(T1T2) = B2,可知AB与对角矩阵相似。 (2)而B正定,则B2的对角元都为正实数,所以B2的特征值都为实数。而AB相似于B2,所以特征值相 同,所以AB的特征值也都为正实数,得证。
J1
0
J
=
J2 ...
0
Jn
而Vi的维数与属于λi的特征向量的秩相同,所以要证明题目结论,即证A的若当标准型中Ji中若当块的 个数等于属于λi的特征向量的秩。 设Ji若当块个数为m,属于λi的特征向量的秩为n,而对∀(λE − Ji),设其秩为Ri.显然Ri=ri-m.考虑齐次方 程组JiX = 0,则解得X的基础解系为属于λi的特征向量的极大无关组,基础解系的秩为ri − Ri = m,而 特征向量秩为n,所以m=n,得证。

高等代数(二)期末考试

高等代数(二)期末考试

6.设 f x x 4 x3 4 x 2 4 x 1, g x x 2 x 1, 用辗转相除法求 f x , g x .
第4页
第5页
合计
学号

.
2.设 ε1 , ε2 , ε3 , ε4 , ε5 是欧氏空间 V 的一个正交基,则 α V | α, ε1 α, ε2 0 . 3.设向量组 α1 , α2 , α3 线性无关, β1 可由 α1 , α2 , α3 线性表示, β2 不能由 α1 , α2 , α3 线性表 示,则常数 k 4. σ α 变换,若 σ 满足 时,向量组 α1 , α2 , α3 , β1 kβ2 线性 是线性空间 V 上的变换,若 σ 满足 ,则 σ 不是线性变换. ,实数域上的不 , 有理数域上的不可约多项 . . ,则 σ 是线性
0 a 22 2.证明: 数域 F 上所有形如 上的二阶方阵构成空间 F 的一个子空间,并 a 0
求该子空间的一个基.
3. σ 是线性变换, 如果 σ 3 α 0, 但 σ 4 α 0 ,证明: α, σ α , σ 2 α , σ 3 α 线性无 关.
专业 系
5.复数域上的不可约多项式只能是 可约多项式只能是 式可以是
a11 a12 6.设线性变换 σ 在 ε1 , ε2 , ε3 下的矩阵是 A a21 a22 a31 a32
阵是 .
a13 a23 ,则 σ 在基 ε1 , kε2 , ε3 下的矩 a33
第1页
二、简答题
1.请举出两个线性空间的例子,并对它们进行比较讨论.
2.请谈谈现在所学的多项式与中学所学的多项式的关系.

(完整word版)高等代数(二)期末考试样卷

(完整word版)高等代数(二)期末考试样卷

《高等代数(二)》期末考试样卷一、选择题(本大题有一项是符合题目要求的)1. 若σ是F 上向量空间V 的一个线性变换,则下列说法∙∙误错的是( )A.)()()(,,βσασβασβα+=+∈∀VB.0)0(=σC.)()(,,ασασαk k F k V =∈∈∀D.0)0(≠σ2.若},,{21s ααα 和},,{21t βββ 是两个等价的线性无关的向量组,则( ) A.t s > B. t s < C. t s = D.以上说法都不对 3.向量空间2F [x]的维数是( )A. 0B. 1C. 2D. 3 4.一个线性变换关于两个基的矩阵是( )A.正定的B.相似的C.合同的D.对称的 5.如果两个向量βα与正交,则下列说法正确的是( ) A. ><βα, > 0 B. ><βα, < 0 C. ><βα, = 0 D. ><βα, ≠ 06.设σ是欧氏空间V 的正交变换, 任意α,β∈V, 下列正确的是( ) A.<α,β > = <σ(α),β> B.<α,β> = <α,σ(β)> C.<α,β> = <σ(α), σ(β)> D. <α,β> = -<σ(α),σ(β)>7.如果n 元齐次线性方程组AX =0的系数矩阵的秩为r,那么它的解空间的 维数为( )A 、n-rB 、nC 、rD 、n+r 8.设21,W W 是向量空间V 的两个子空间,则下列说法正确的是( ) ①21W W +是向量空间V 的子空间 ②21W W +不是向量空间V 的子空间③21W W 是向量空间V 的子空间 ④21W W 不是向量空间V 的子空间 ⑤21W W 是向量空间V 的子空间 ⑥21W W 不一定是向量空间V 的子空间 A. ①③⑤ B. ②④⑥ C. ①③⑥ D. ②④⑤ 9.设σ是数域F 上向量空间V 的线性变换,W 是V 的子空间,如果对于W 中的任意向量ξ,有W ∈)(ξσ,则称W 是σ的 ( )A.非平凡子空间B.核子空间C.不变子空间D.零子空间10.欧氏空间的度量矩阵一定是( )A.正交矩阵B.上三角矩阵C. 下三角矩阵D. 正定矩阵 二、填空题(共10小题,每小题3分,共30分。

北京大学高等代数高代II_2014期末2(1)

北京大学高等代数高代II_2014期末2(1)

北京大学高等代数高代II_2014期末2(1)北京大学数学学院期末试题2013-2014学年第二学期考试科目高等代数II 考试时间 2014年6月12日姓名学号一.(20分)设α 1 , α 2 , α 3是矩阵A =100210101的列向量, 设P 是沿< α 1 > 向< α 2 , α 3 > 所作的投影变换, Q 是欧氏空间R 3向< α 2 , α 3 > 所作的正交投影变换. 求 P , Q 在R 3标准基下的矩阵. 二(18分)已知R 3上的双线性函数f ( α , β ) 在基底α 1 , α 2 , α 3 下的度量矩阵为310121011.1) 证明: f ( α , β ) 是R 3上的一个内积;2) 求内积 f 下的一组标准正交基β1 , β2 , β3 , 使得β1 = α 1 ;3) 求内积 f 下的正交变换A , 使得W = < α 1 > 是A 不变子空间,且A 在商空间 R 3 / W 上的诱导变换α + W A α + W 将α 2 + W 变到k α 3 + W , k > 0 . (写出A 在β1 , β2 , β3下的矩阵).三(12分)设A 是酉空间V 上的线性变换, 满足条件( A α , β ) = ( α , A β ), ? α , β ∈ V (A 称为Hermite 变换).1) 证明: A 在复数域上的特征值都是实数;2) 证明: 若W 是A-子空间, 则W ⊥也是A-子空间.四(20分)设 A 是Q-线性空间V 上的线性变换, 且A 在基底α 1 , α 2 , α 3 , α 4 下的矩阵为 A = .1) 求A 的特征多项式与最小多项式 ;2) 求V 的根子空间分解, 写出各个根子空间W i 的基底以及限制变换 A | W i 在此基底下的矩阵;3) 证明: 若线性变换B 与A 可交换, 则每个W i 也都是B -子空间.五(20分)设 A 是实线性空间V 上的线性变换, 且A 在基底α 1 , α 2 , α 3 , α 4 , α 5 下的矩阵为 A = .1) 求A 的最小多项式;2) 求A 的特征子空间(写出基底);3) 求V 的一组基, 使得A 在此基下的矩阵为Jordan 标准型.六 ( 10分) 判断对错. 正确的命题请给出证明, 错误的请举出反例.1) 设 A 是n 阶正交矩阵, α , β ∈ R n . 若α + i β是A 的复特征向量, 且α + i β的特征值不等于± 1, 则一定有( α , β ) = 0 ;2) 如果A , B 是正定矩阵, 则A B + BA 一定也是正定矩阵. -100031122020103110000010001010001010101 01。

高等代数期末考试试卷及答案

高等代数期末考试试卷及答案

高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分)1、线性空间[]Px 的两个子空间的交()()11L x L x -+=2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是4、设3阶方阵A 的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵E A λ-的标准形是5、线性方程组AX B =的最小二乘解所满足的线性方程组是:二、 单项选择题(每小题3分,共15分)1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构:(A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。

2、( )设 是非零线性空间 V 的线性变换,则下列命题正确的是:(A ) 的核是零子空间的充要条件是 是满射; (B ) 的核是V 的充要条件是 是满射; (C ) 的值域是零子空间的充要条件是 是满射; (D ) 的值域是V 的充要条件是 是满射。

3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0;A AB A λλ≠是一个非零常数;()()C A λ是满秩的;()()D A λ是方阵。

4、( )设实二次型f X AX '=(A 为对称阵)经正交变换后化为:2221122...n n y y y λλλ+++, 则其中的12,,...n λλλ是:()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。

2014下高等代数B

2014下高等代数B

2014年秋季学期《高等代数 》课程期末考试试卷(B 卷)注意:1、本试卷共 3 页; 2、考试时间120分钟一、单项选择题(共5小题,每小题3分,共15分)1、下列命题为真的是( ).A. 最大公因式是唯一的;B. 有理数域是最小的数域;C. 若2()()p x f x , 则()p x 是()f x 二重因式;D.若()f x 有重根, 则()f x有重因式, 反之亦然。

2、排列318742695的逆序数是 ( )(A)8 ; (B)14 ; (C)10 ; (D) 都不对3、设 1=k h d g fe c ba ,则=---khd g fe cb a 621226 ( ).A.0B. -12C.-24D.64. 设向量组s ααα,,,21Λ的秩为r ,则下列命题为假的是( ).A. 如果r ααα,,,21Λ线性无关,则它必是s ααα,,,21Λ的一个极大线性无关组;B. 如果每个向量)1(s i i ≤≤α都可以由向量组s ααα,,,21Λ的一个部份组it i i ααα,,,21Λ线性表出,则r t =C. 如果向量组t βββ,,,21Λ的秩为r ,则t βββ,,,21Λ一定与s ααα,,,21Λ等价D. 如果向量组t βββ,,,21Λ与s ααα,,,21Λ等价,则t βββ,,,21Λ的任何r 个线性无关的向量都是它的极大线性无关组5、A, B 为n 阶方阵,下列结论正确的是( )1. 若1=AB , 则B 可逆;2.,AB AC B C ==若则;3. 0,00AB A B ===若则或;4. 若1=AB , 则无法判断A 可逆。

二、填空题(共5小题,每小题3分,共15分)1. 已知⎪⎪⎪⎭⎫⎝⎛----=111211120A ,则=1-A ; 2. 一个向量组的一部分线性相关,则整个向量必 ,如果一向量线性无关,则它的任意一个部分组必 。

3、B AXA =,A 可逆,则=X4、设线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++sn sn s s n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛ22112222212*********,,(1)的系数矩阵与增广矩阵分别为A 和A ,则(1)有解的充要条件是 ,(1)有无穷多个解的充要条件是 .5、13-x 在有理数域, 复数域上的标准分解式为 , .B AXA =三、计算题(每小题8分,共24分)1.求()g x 除()f x 的商()q x 与余式()r x , 其中53()258f x x x x =--,()3g x x =+;三峡大学 试卷纸 教学班号 序号 学号 姓名命题教师 审题教师…………….………….……试 题 不 要 超 过 密 封 线………….………………………………2.计算行列式2464273271014543443342721621-3. 用非退化线性替换化下列二次型为标准型, 并利用矩阵验算所得结果:121323422x x x x x x -++;四、(本题14分)讨论λ取什么值时, 下列方程组有解, 并求解:12312321231,,;x x x x x x x x x λλλλλ⎧++=⎪++=⎨⎪++=⎩五、(本题10分)如果,==AB BA AC CA , 证明:()(),()().+=+=A B C B C A A BC BC A六、(本题12分)证明: 如果向量组12,,,r αααL 线性无关,而12,,,,r αααβL 线性相关,则向量β可由12,,,r αααL 线性表出.七、(本题10分)若21,33=∈⨯A RA , 求*10)31(1A A --。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档