超导简介
超 导 简 介

该面分布的传导电流的屏蔽作用导致完全抗磁性
1、2:均无热损耗----零电阻效应 等效
迈斯纳(Meissner)效应:
完全抗磁性是独立于零电阻特性的基本属性 零电阻特性是迈斯纳(Meissner)效应的必要
条件 磁悬浮实验演示:
难以给出定量结果 抗磁性:需测量样品的磁化率随温度的关系。
宏观量子效应
超导简介
• 使样品超导环放入磁场中,突然拆去磁场, 环内出现感生电流 电阻热耗使电流衰减
I(t) I(0)expt(/),
L/R:是电流衰减,正 时常 间金 常属 .数很小
可通过核磁共 量振 超方 导法 电测 流形 变成 化 ,推的 出磁 衰场 减 .
N0b.75Z0r.25超导环衰减1时 0万间 年 . 大于
3 磁通量子化 Josephson效应
• 超导体类磁通守恒 量值量子化
0=h/(2e) Wb
Josephson效应
隧道效应
绝缘薄层 d
d:103~104μm
1、两侧无电压,绝缘层有直流通过
超导体
超导体
2、两侧无直流电压,绝缘层有一 定频率的交流电通过 辐射电磁波
2eV
理论及探索
• BCS理论 • 高Tc 超导材料研究及其获得
解释1
超导---磁介质 H B M
0
B r0 H M m H r 1 m
B 0 M = Hm 1
完全抗磁质
完全抗磁性来源于分布于超导表面薄层的磁化电流
该磁化电流的附加磁场与外磁场在超导体内和刚好为零
解释2
超导---完全无磁性
M=0 r 1
超导表面出现某种面分布的传导电流
磁体三代
• 第一代:永久磁铁 铁、贾、镍。。 两极附近磁场几十高斯
超导性简介

超导性简介超导体,又称零电阻体。
利用零电阻现象制作的器件,叫超导器件。
在零电阻材料中,能够传递超过绝缘体所允许的电流,这种现象叫超导性。
超导现象起源于超导体内的电子和正离子的无规则运动,电子的热运动不受磁场影响,而正离子的运动只能在外磁场作用下进行,由于电子运动和正离子运动互相抵消,使得在没有电流通过时超导体仍然保持超导特性。
因此,当外加磁场去掉后,超导体又恢复到正常导电状态。
超导现象在温度很低的液氦或金属钠等物质中才可能出现。
超导体有完全抗磁性,其电阻为零,即导电性和完全抗磁性,且温度越高,其导电性能和抗磁性能越强。
在工业、农业、科学技术和日常生活中,人们对超导材料的利用始于第二次世界大战期间。
在那些年里,由于超导体的电阻变为零,超导元件具有了新的优势,如降低制冷费用,使超导元件成为实用的高效制冷设备。
然而,最早发现超导电性的材料却是陶瓷。
1939年,美国物理学家斯特罗迈耶发现,当温度升高时,普通陶瓷的电阻突然变为零。
1941年,荷兰科学家昂尼斯实现了超导,人们开始认识到,金属氧化物在较低温度下也会呈现超导电性。
1946年,在此基础上制成了人类历史上第一个超导体。
50年代末,磁性氧化物开始用于超导磁体。
1954年,人造超导体氦化物的单晶在美国实现了超导。
70年代以来,铌酸锂、钛酸钡等超导材料的制造工艺不断改进,其临界温度不断提高,现已达到室温以上,可用作超导计算机的线路板和晶体管。
超导现象的发现是20世纪最伟大的科学成就之一,它使人类的研究触角深入到物质的微观领域,开辟了材料研究的新纪元。
在未来科学的发展中,有许多重要的新型材料将有待人们去探索。
不仅如此,超导体还具有高效节能的特点。
随着社会的发展和人民生活水平的提高,交流电的能量损耗问题已经引起人们的关注。
这一方面固然是由于它价格便宜,另一方面更重要的原因在于交流电存在能量损失大的缺陷,这是因为,在传输过程中,电压升高,功率增大,但电流减小。
2.超导材料

磁悬浮现象就是超 导体具有完全抗磁性的 证明。人们做过这样一 个实验,在一个浅平的 锡盘中,放入一个体积 很小磁性很强的永久磁 铁,然后把温度降低, 使锡出现超导性。这时 可以看到,小磁铁竟然 离开锡盘表面,飘然升 起,与锡盘保持一定距 离后,便悬空不动了。
产生这一现象的原因,是由于超导体的 完全抗磁性,使小磁铁的磁力线无法穿透超 导体,磁场发生畸变,便产生了一个向上的 浮力。进一步的研究表明:处于超导态的物 体,外加磁场之所以无法穿透它的内部,是 因为在超导体的表面感生一个无损耗的抗磁 超导电流,这一电流产生的磁场,恰巧抵消 了超导体内部的磁场。
3.2迈斯纳效应(完全抗磁性)
迈斯纳 (Meissner) 于 1933 年通过实验证明, 当金属在外磁场中冷却而从非超导态转变 为超导态时,体内原有的磁力线立即被推 出体外,磁感应强度恒等丁零,这种现象称 为迈斯纳效应。迈斯纳效应又叫完全抗磁 性。而且若对超导体施以强外磁场 (小于等 于Hc) ,体内亦将没有磁力线透过。也就是 说,超导体不仅是一个理想的导电体,而 且也是一个理想的抗磁体。现常用迈斯纳 效应这个重要性质来判别物质是否具有超 导性。
为了防止合金在高温下被氧化和排除气 体,以获得良好的加工性能和较纯净的合金, 需要在真空或惰性保护气氛中熔炼。先在电 子轰击炉中熔炼成初锭,作为真空电弧熔炼 的自耗电极。再经真空自耗熔炼成 Nb-Ti 合 金锭。有时为了得到均匀的 Nb-Ti 合金锭, 需经多次重熔。但是,从超导性来看,杂质 的存在有利于Jc的提高(作为强磁场超导合 金材料要求其Jc高)。一定含量的杂质,常 常是改善超导性能所必要的。所以未必重熔 次数愈多、纯度愈高愈好。
大家都知道,若将金属线圈放在磁场中,则线圈内将产生感应 电流,对于正常金属线圈来说,当磁场去掉后,线圈内电流很 快衰减为零,而对于超导线圈,情况却完全不同,图 1 是著名 的持续电流实验。将一超导线圈放在磁场中并冷却到临界温度 以下,突然撤去磁场,则在超导线圈中产生感生电流。
超导 磁化率

超导磁化率
【原创版】
目录
1.超导简介
2.磁化率的定义和计算
3.超导材料与磁化率的关系
4.超导在实际应用中的重要性
正文
一、超导简介
超导,指的是某些材料在低温下电阻为零的物理现象。
这种特性使得超导材料在通电时不会产生热量,因此具有很高的能量利用效率。
自 20 世纪初发现以来,超导技术在科学研究和实际应用中一直备受关注。
二、磁化率的定义和计算
磁化率是一个描述材料在外加磁场作用下磁化程度的物理量,通常用字母χ表示。
它的计算公式为:χ = (M - 0) / H,其中 M 表示材料的磁化强度,H 表示外加磁场的强度。
磁化率是一个无量纲的参数,可以用来衡量材料的磁性能。
三、超导材料与磁化率的关系
超导材料在低温下具有磁化率极低的特点,这是由于超导材料中的电子在低温下形成电子对,这些电子对之间的相互作用使得材料的磁性大大降低。
然而,在超导材料被磁化后,其磁化率会急剧增加,这种现象称为超导临界磁化率。
研究超导材料的磁化率有助于深入了解超导现象及其内在机制。
四、超导在实际应用中的重要性
超导技术在许多领域具有广泛的应用前景,如能源、交通、信息等。
其中,超导磁体由于具有极高的磁场强度和极低的磁化率,被广泛应用于磁力悬浮列车、磁约束聚变等大型工程项目。
此外,超导材料还用于制作高性能传感器、高能粒子加速器等高精尖设备。
超导材料简介

科学家2002年发现以钚为基础的新的超导体族
美国能源部洛斯阿拉莫斯科学实验室、佛罗里达大学和德国铀后元 素研究所,以约翰· 尔拉奥博士为首的科学家小组首次发现钚的超导 效应,证实钚、钴和镓的合金在温度为18.5K时会变成超导体。
第24页
合金超导体
• 组成元素都具有超导性
合金
Tc (K)
Nb3Sn
第17页
H
Hc
正常态 超导态
0
Tc
T
第二类超导体
H Hc2
B 0, r = 0
N
Mixed T Tc
第18页
Hc1
B = 0,
S r
= 0 Meissner
第二类超导体的相图
混合态
Flux penetrates above the lower critical field Hc1 Superconductivity survives up to the upper critical field Hc2 Type II T<Tc 0<H<Hc1 T<Tc Hc1<H<Hc2
第30页
(5)汞超导家族
汞超导家族的化学通式为HgBa2Can-1CunO2n+2+x,n=1,2,3…。因 这个家族的晶格中一般地有多余的氧原子存在,所以在氧的下标上 有"+x"。这个家族的主要成员有HgBa2CuO4,HgBa2CaCu2O6+x和 HgBa2Ca2Cu3O8+x,即1201相、1212相和1223相,这三个相的转 变温度分别为85K,120K和133K。其中1223相中的133K是迄今为 止所发现的在常压下最高的超导临界转变温度。
超导技术及其应用

超导技术及其应用超导技术是一种利用超导材料的独特电学特性来制造电子设备的技术,在多个领域得到广泛应用。
本文将探讨超导技术的原理、发展历程以及在能源、医学、计算机等领域的应用。
一、超导技术简介超导材料是一种在低于临界温度下(临界温度是一个物质进入超导状态的临界点。
)电阻变为零的材料。
这意味着,超导状态下的电能可以在不产生能量损耗的情况下在材料内部传输。
超导材料的这些独特电学特性使得它们在电路、磁学、能源和医学等领域中具有广泛的应用前景。
二、超导技术的历史和发展超导技术最初出现于1911年,当时Dutch Physicist Heike Kamerlingh Onnes首次发现,当他把汞降温至4.2K(几乎是绝对零度的温度)时,其电阻率为零,即呈超导状态。
从那时起,超导材料的研究一直在不断进步。
1941年,美国物理学家William Shockley首次提出了超导技术的概念,指出了超导技术在电路和自我感应方面的应用前景。
1957年,超导材料Nb3Sn被发现,在它的超导状态下,临界温度为18K。
3亿磁感应强度在18K-20K的Nb3Sn,比铜线的电阻小多了,这意味着使用这种材料作为电线可以节省大量的电力。
1962年,IBM物理学家Robert Schrieffer、Leon Cooper和John Bardeen首次提出了超导理论,并因此获得了1965年的诺贝尔物理学奖。
到了20世纪80年代,开发出了高温超导材料,其中最具代表性的是La-Ba-Cu-O材料。
这种材料的临界温度高达140K,这使得超导技术可以被更加广泛地应用于实际应用中。
三、超导技术的应用能源领域超导技术在电力输送和电网稳定性方面有着广泛的应用。
由于超导材料在超导状态下可以实现电流不损耗传输,它们被广泛用于输电线路和电缆制造。
超导电缆可以节约大量的能源,减少能源损耗,保证电网的稳定运行。
医学领域MRI成像技术通常使用超导体来产生磁场,该技术可以在体内生成非常强的磁场,使得弱磁性细胞和组织成像变得更加清晰,这是大多数其他技术无法实现的。
超导简介

1908年,荷兰物理学家卡末林·昂内斯 ( Hei4.2 K 左右。
之前,人们已经知道,随着温度的降低,金 属的电阻也会越来越小。那么,随着温度降到热 力学温度零度附近时金属的电阻会怎样变化呢?
选择了当时最容易提纯的水银作为实验材料,在 液氦的温度下进行了认真的研究。实验的结果使
Байду номын сангаас1911年,卡末林 ·昂内斯和他的学生一起,
Hc
当通到线圈的电流产生的磁场超过一定强度 时,超导体 会突然 就变成 正常导体 ,出现了电 阻。这种大到一定强度就破坏超导态的磁场值,
叫做 临界磁场,
用
Hc 表示。
实验表明对一定的超导体临界磁场是温度的
函数。
到最大值。高于临 界值是一般导体, 低于此数值时成为 超导体。
T = Tc 时,Hc = 0 T → 0 时, Hc 达
以及磁悬浮列车等。
四 传统超导体的微观机制
1. 二流体模型 荷兰物理学家戈特和卡西米尔两个人在热力 学理论的基础上提出了一个模型。在超导体中存 在有两种电子,它们彼此独立地流动。一种是正 常的电子,另一种是超导电子。这两种电子就象 两种流体一样在超导体中流动。在正常态时,只 有正常电子,所以它的行为就和正常导体一样, 存在电阻。当 降到 c 以下时,进入超导态, 这时超导体就出现了超导电子,它们可以不受任 何阻碍地在超导体中流动, 越多。当
超导简介
1. 超导是怎样发现的?
2. 超导体有哪几个临界参量?
3. 什么是迈斯纳效应?
4. 传统超导体必须同时具有什么特性?
5.
BCS理论是什么?
6. 何为第一类超导体? 何为第二类超导体? 7. 什么是高温超导? 8. 什么是约瑟夫森效应? 9. 超导有何应用?
超导简介

2. 超导体的临界磁场 Hc 当通到线圈的电流产生的磁场超过一定强度 时,超导体 会突然 就变成 正常导体 ,出现了电 阻。这种大到一定强度就破坏超导态的磁场值, 叫做 临界磁场, 用 Hc 表示。
问题1.是不是一旦超过临界磁 场,超导态就真的消失了?
第一類超導體(Type I)
Type I 超導體: 外加磁場一旦超過超導臨界磁場值,超導狀態便消失,讓所有 外加磁場穿過。
磁悬浮列车 具有低噪音、无污 染、安全舒适和高速高 效的特点。
由铋、锶、钙、铜和氧构成的高温超导材料 已制成超导导线,比常规铜线运载电流大100倍。 1998 年7月,北京有色金属研究总院与兄弟单位 共同研制成我国第一根 1 米长的铋系高温超导直 流输电模型电缆,运载电流达到 1200 安 ,使我 国顺利成为世界上少数几个掌握这一技术的国家。
2000 年 11月 26日北京有色金属研究总院宣
超导体的三个临界参量 1. 超导体的临界温度 Tc
在Байду номын сангаас定值的温度下,电阻突然变到零,或 者 说电阻完全消失 ,这种 状态 称为 超导态 ( superconducting state ), 而具有这种特性的物质就称为 超导体 ( superconductor ) 。
超导体在刚刚进入超导态的温度叫作 超导临 界温度 ( superconducting critical temperature ), 用 Tc 表示。
布,设在该院的超导材料研究中心研究成功 我国 第一根百米长的铋系高温超导带材 ,表明我国超 导材料研究从实验室迈向应用阶段 ,达到国际先 进水平。
此次研制成功的高温超导带材长 116 米,宽
3.6 毫米,厚为 0.28 毫米 ,以螺旋管方式缠绕, 用四引线法全长度测量,77 K 液态温度自场下临 临界电流达 12.7 安培。 高温超导带材达到 100 米以上就可进入生产
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这时超导体就出现了超导电子,它们可以不受任
何阻碍地在超导体中流动, T 越低,超导电子就 越多。当 T 无限地接近热力学温度零度时,超导
体中就只有超导电子存在了。这样一个模型,称 为 “ 二流体模型 ” 。
2. 同位素效应
1950年,一位叫弗勒利希的英国物理学家提
当通到线圈的电流产生的磁场超过一定强度 时,超导体 会突然 就变成 正常导体 ,出现了电 阻。这种大到一定强度就破坏超导态的磁场值,
叫做 临界磁场, 用 Hc 表示。
实验表明对一定的超导体临界磁场是温度的
函数。
T = Tc 时,Hc = 0 T → 0 时, Hc 达
到最大值。高于临 界值是一般导体, 低于此数值时成为 超导体。
数为 2e ,所以 φ0 = hc/2e 。
非理想第二类超导体
但如果磁 通线在超导体 内分布不均匀 时,体内各处 的涡旋电流不 能完全抵消, 就会出现体内 的电流。
人们设想在材料的加工过程中,有意的在超
导体内形成一些缺陷,这些缺陷将阻碍磁通线的 运动,把它们固定下来。这样就提高了超导体承 载宏观电流的能力,从而提高了临界电流值。这
1911年,卡末林 ·昂内斯和他的学生一起,
选择了当时最容易提纯的水银作为实验材料,在 液氦的温度下进行了认真的研究。实验的结果使
他们大吃一惊。当温度降到 4.2 K 左右时,水银
的电阻竟然突然地消 失了!
经过反复检查后, 卡末林·昂内斯终于证 实了这是真实的情况。
昂内斯因对物质 低温性质的研究和液 氦的制备而获得1913 年度的诺贝尔物理学 奖。
出,产生超导的相互作用是电子 和点阵之间的相 互作用。弗勒利希的理论也提出了一个预言,超
导体的 Tc 将反比于构成该超导体的同位素质量的
平方根。
Tc ∝ M 1 2
同位素质量越大, Tc 就越低。这一效应叫做同位 素效应。如水银 M 从 199.5 变化到 203.4 原子质 量单位时, Tc 从 4.185 K 变到 4.146 K 。
影响了晶体点阵的振动,从而使晶体内局部区域 发生畸变,晶体内部的畸变可以像波动一样从一 处传至另一处。从量子观点看,光子是光波传播
过程中的能量子;仿此,晶体中由点阵的振动产 生畸变而传播的点阵波的能量子,称为 “ 声子 ”, 声子可被晶体中的自由电子所吸收,于是两个自 由电子通过交换声子而耦合起来。这就像一个电 子发射的声子,被另一个电子所吸收。于是两电 子之间彼此吸引,成为束缚在一起的电子对,这 就是常称的 “ 库珀对 ” 。研究表明 ,组成库珀 对
四 传统超导体的微观机制
1. 二流体模型
荷兰物理学家戈特和卡西米尔两个人在热力 学理论的基础上提出了一个模型。在超导体中存 在有两种电子,它们彼此独立地流动。一种是正 常的电子,另一种是超导电子。这两种电子就象 两种流体一样在超导体中流动。在正常态时,只 有正常电子,所以它的行为就和正常导体一样,
的两个电子之间的距离约为 10-6 m ,而晶体的晶 格常数约为 10-10m,即在晶体中库珀对要伸展到
数千个原子的范围内。进一步的研究还表明,库 珀对中的两个电子的自旋和动量均等值相反,所 以每一库珀对的动量之和为零。 库珀对的结合
5. 伦敦方程
德国物理学家 F·伦敦和 H·伦敦兄弟俩经过 一年的努力,在 1935 年发表文章提出了适用于
高的值。而且当外磁场 增加到一定的程度后, 超导体内也开始有磁场 渗入,而超导态却依然 存在,直到外磁场达到 更高的临界值时,超导 体才进入正常态。这种 类型的超导体有两个临
界磁场: Hc1 和 Hc2 。
1. 第一类超导体
只有一个临界磁场 Hc 和正常态、超导态两种
状态的超导体叫 第一类超导体。
Hc 不仅与 超
导体本身性质有关,
还与温度 T 有关, Hc ( T ) = Hc ( 0 ) [ 1 - ( T /Tc ) 2 ]
Hc ( 0 ) 为 T → 0 时的临界磁场。
3. 超导体的临界电流 Ic
实验表明,如果在不加磁场的情况下,当通 过超导体的电流大到一定程度时,也将会破坏超
导态,这个电流值叫做 临界电流, 用 Ic 表示。 Ic 的大小随温度 T 的高低而变化,在 Tc 下,
根据超导体完全抗磁性的性质 ,人们曾设计 了一个有趣的实验 ,如果把一块磁铁放在一个超
导体做成的盘子中 ,由于磁铁的磁力线无法穿透 超导体 ,两者之间将产生一个斥力,磁铁就会悬 浮起来。
这种情况 就象是在超导 盘下方,有一 块相同的镜象 磁铁存在一样。
根据这种 原理,可以利 用超导体做成 无摩擦轴承、 高精度的导航 用超导陀螺仪 以及磁悬浮列车等。
同位素。
几乎就在同时,美国有 两个实验物理学家组
成的小组分别在实验室中发现,超导体的 Tc 确实
反比于超导体的同位素质量的平方根。
电子和点阵的相互作用一定是产生超导的原因 所在。
3. 库珀对
1956年的时候,有一位叫 利昂·库珀 ( Leon
超导电子的两个新的方程 。这 两个方程 被人们 称为 “ 伦敦方程 ” 。
第一伦敦方程
js nsq2 E t m
ns : 库珀对的数密度
m = 2me 库珀对的质量 js 持续电流密度
q = -2e 库珀对携带的电量
第一伦敦方程是确定电流密度与电场强度的
方程。取代正常金属欧姆定律 jn =σE 。
B=0。
实验 表明,不
论在进入超导态之前金属体内有没有磁感应线 ,
当它进入超导态后,只要外磁场 B0 < Bc,超导
内 B 总是等 于零,即 B = 0 。由此
可求得金属 在超导态的 相对磁导率
μr = -1 ( μr < 0 ,
抗磁质,物
质具有抗磁性 ) ,超导体具有 完 全 抗 磁 性 ( perfect diamagnetism )。也称为 迈斯纳效应 ( Meissner effect ) 。
1. 能隙
在超导体的电子能谱中, 有一小块空白的区域,不允许 电子具有这块区域中的能量。 这个不能有电子存在的能量间 隔就叫 超导能隙。
2. 隧道效应 量子力学中,在原子电子 的微观世界中,一个能量不高 的电子可以通过 “ 开凿 ” 一条 看不见的隧道,而越过能量很
主讲: 罗贤清
1. 超导是怎样发现的? 2. 超导体有哪几个临界参量? 3. 什么是迈斯纳效应? 4. 传统超导体必须同时具有什么特性?
5. BCS理论是什么?
6. 何为第一类超导体? 何为第二类超导体? 7. 什么是高温超导? 8. 什么是约瑟夫森效应? 9. 超导有何应用?
一 超导现象的发现
第二伦敦方程
js =
nsq2 m
B
伦敦方程和麦克斯韦方程组结合起来,就说 明了超导体的各种电磁性质,也解释了不久前发 现的迈斯纳效应。
伦敦方程是唯象理论 ( 唯象理论:预先作一 些工作假定,在这些假定的基础上再结合其他基
本理论来说明某些物理现象。)
伦敦方程表明:静电时超导体内电场为零,
E=0
North Cooper , 1930-) 的美国物理学家又提出一 个重要的观点:当满足一定条件,在电子和电子 之间存在有吸引力时,这两个电子就会形成一个 “ 电子对 ” ,它们被束缚在一起 。这样的 “ 电子 对 ” 称为 “ 库珀对 ” 。
电子对图象的提出,终于使人们初步看到了 超导体内部的微观机制的真相。
金属导体的电阻
金属中的原子离解为带负电的自由电子和带 正电的离子,离子排列成周期性的点阵。在金属
的 T > Tc 的情况下,自由电子在金属导体中运
动时,它与金属晶格点阵上的离子发生碰撞而散 射,这就是金属导体具有电阻的原因。
当金属的 T < Tc 时 ,导体具有超导电性。
BCS理论
认为,自 由电子在 点阵中运 动时,由 于异号电 荷间的吸 引力作用,
理想第二类超 导体。
(2) 非理想第二类超导体
磁通量子(fluxon) F.伦敦在1950年时就预言说,超导体中磁通 量的变化是不连续的 , 有一个最小的单位φ0 = hc/e 。
在 20 世纪 60 年代初,人们从实验上也观察 到了磁通量的量子化,它与 F.伦敦的预言只差两
倍。超导体中是电子对起作用,而电子对的电荷
样的超导体就是 非理想第二类超导体 。
利用这样的方法 ,人们终于在 1961 年使用
非理想第二类超导体 铌三锡 ( Nb3Sn ) 首次 制
成了第一个强磁场 超 导 磁 体 ( superconducting magnet ) 。随着第二类超导体认识的深入,超导 应用的序幕终于拉开了。
六 约瑟夫森效应
用 Tc 表示。
一些元素的超导临界温度
一些超导材料的 临界温度
超导临界温 度提高的情况
超导体的电阻值比它在 0℃ 的电阻值至少要 小 10-10 倍。
电阻率也远小于 10-23Ω·cm 。而 0℃ 时, 良导体铜的电阻率为 1.6×10-6 Ω·cm ,超导体
的电阻实际上可看作零。
2. 超导体的临界磁场 Hc
即完全抗电体。
第二伦敦方程表明:超导电流是有旋的,可 以在一环形回路中形成持续的超导环流。
伦敦方程可以证明 js 和 B 都只存在于超导体
表面厚度约为 的一层内,亦即有迈斯纳效应。
m 0nsq2
称为 伦敦穿透深度,实验测出 约 50 nm 。
五 第二类超导体
早在20世纪30年代时,物理学家就已经发现, 在某些合金材料的超导体中,临界磁场可以有很
2. 第二类超导体
具有两个临界
磁场 Hc1、Hc2 ,
并且可以经历超导 态、混合态和正常 态这三种状态的超 导体,叫第二类超 导体。