计算机图形学的应用

合集下载

计算机图形学在影视制作中的应用

计算机图形学在影视制作中的应用

计算机图形学在影视制作中的应用在当今的影视行业中,计算机图形学(Computer Graphics)已经成为了不可或缺的一部分。

它为影视作品带来了令人惊叹的视觉效果,极大地丰富了观众的观影体验。

从奇幻的魔法世界到浩瀚的宇宙星空,从逼真的人物形象到惊心动魄的灾难场景,计算机图形学在影视制作的各个方面都发挥着至关重要的作用。

计算机图形学在影视角色创建中的应用可谓是一大亮点。

过去,影视中的角色大多依赖于化妆和道具来塑造形象,而现在,通过计算机图形学技术,我们能够创造出几乎任何想象中的角色。

比如在《阿凡达》这部影片中,纳美人的形象就是通过计算机图形学精心打造的。

从他们独特的蓝色皮肤、修长的身体结构,到细致入微的面部表情和动作,每一个细节都展现得淋漓尽致。

这不仅需要高超的建模技术,还需要对角色的动作和表情进行精确的捕捉和模拟。

动作捕捉技术可以将演员的真实动作转化为数字模型的动作,使得虚拟角色的动作更加自然流畅。

同时,表情捕捉技术能够捕捉演员面部的细微表情变化,并将其应用到虚拟角色上,让观众感受到更加真实的情感表达。

在场景构建方面,计算机图形学同样功不可没。

它能够为影视作品创造出各种各样的虚拟场景,无论是古老的城堡、繁华的都市,还是神秘的外星世界,都能栩栩如生地呈现在观众眼前。

在电影《魔戒》系列中,中土世界的壮丽景色令人印象深刻。

那些雄伟的山脉、广袤的森林和神秘的洞穴,都是通过计算机图形学构建出来的。

为了打造出逼真的场景,制作团队需要考虑光线、材质、纹理等诸多因素。

通过使用光线追踪技术,可以模拟光线在场景中的传播和反射,从而营造出真实的光影效果。

而材质和纹理的处理则能够让物体表面看起来更加真实,比如石头的粗糙质感、水面的波光粼粼等。

特效制作是计算机图形学在影视制作中的另一个重要应用领域。

它可以创造出各种令人震撼的视觉效果,如爆炸、火灾、洪水等灾难场景,以及魔法、超能力等奇幻元素。

在电影《2012》中,地球毁灭的场景让观众感受到了末日的恐怖。

计算机图形学在影视特效中的应用

计算机图形学在影视特效中的应用

计算机图形学在影视特效中的应用在当今的影视行业中,计算机图形学(Computer Graphics)已经成为了创造令人惊叹的视觉效果的关键技术。

从奇幻的魔法世界到惊心动魄的灾难场景,从栩栩如生的外星生物到未来感十足的科幻城市,计算机图形学为影视作品带来了无限的可能性,极大地丰富了观众的视觉体验。

计算机图形学在影视特效中的应用范围广泛,涵盖了角色创建、场景构建、特效模拟等多个方面。

首先,在角色创建方面,计算机图形学发挥着至关重要的作用。

通过 3D 建模技术,艺术家们能够精心塑造出各种独特的角色形象。

无论是具有超能力的超级英雄,还是神秘的神话生物,都可以在虚拟的数字空间中被赋予生命。

以《阿凡达》为例,影片中的纳美人角色就是通过高度精细的 3D 建模和纹理绘制技术创造出来的。

建模师们仔细地设计了角色的身体结构、面部特征和皮肤纹理,使其看起来逼真而富有个性。

不仅如此,角色的动作和表情也通过动作捕捉技术得以生动展现。

演员们穿上特制的服装,在拍摄现场进行表演,其动作和表情数据被捕捉并应用到虚拟角色上,使得角色的动作更加自然流畅,仿佛拥有真实的情感和意识。

其次,场景构建是计算机图形学在影视特效中的另一个重要应用领域。

在许多影视作品中,往往需要创造出虚构的世界或历史时期的场景。

这些场景可能在现实中难以找到,或者需要耗费巨大的成本进行搭建。

而借助计算机图形学,艺术家们可以在虚拟环境中构建出各种各样的场景,从古老的城堡到繁华的未来都市,从广袤的星际空间到神秘的海底世界。

在电影《指环王》中,中土世界的壮丽景色就是通过计算机图形学构建而成的。

连绵的山脉、茂密的森林、宏伟的城堡和古老的城镇,这些场景不仅让观众沉浸在奇幻的故事中,也展现了计算机图形学在场景构建方面的强大能力。

特效模拟是计算机图形学在影视特效中的又一关键应用。

它可以模拟出各种自然现象和物理效果,如火焰、水流、爆炸、烟雾等。

在灾难片《2012》中,惊心动魄的地震、海啸和火山爆发场景都是通过特效模拟技术呈现出来的。

计算机图形学基础知识重点整理

计算机图形学基础知识重点整理

计算机图形学基础知识重点整理一、图形学基础知识1、图形学的定义:图形学是一门研究图形的计算机科学,它研究如何使用计算机来生成、处理和显示图形。

2、图形学的应用:图形学的应用非常广泛,它可以用于计算机游戏、虚拟现实、图形用户界面、图形设计、图形处理、图形建模、图形分析等。

3、图形学的基本概念:图形学的基本概念包括图形、坐标系、变换、光照、纹理、投影、深度缓冲、抗锯齿等。

4、图形学的基本算法:图形学的基本算法包括几何变换、光照计算、纹理映射、投影变换、深度缓冲、抗锯齿等。

5、图形学的基本技术:图形学的基本技术包括OpenGL、DirectX、OpenCL、CUDA、OpenGL ES等。

二、图形学的基本原理1、坐标系:坐标系是图形学中最基本的概念,它是一种用来表示空间位置的系统,它由一系列的坐标轴组成,每个坐标轴都有一个坐标值,这些坐标值可以用来表示一个点在空间中的位置。

2、变换:变换是图形学中最重要的概念,它指的是将一个图形从一个坐标系变换到另一个坐标系的过程。

变换可以分为几何变换和光照变换,几何变换包括平移、旋转、缩放等,光照变换包括颜色变换、照明变换等。

3、光照:光照是图形学中最重要的概念,它指的是将光照投射到物体表面,从而产生颜色和纹理的过程。

光照可以分为环境光照、漫反射光照和镜面反射光照。

4、纹理:纹理是图形学中最重要的概念,它指的是将一张图片映射到物体表面,从而产生纹理的过程。

纹理可以分为纹理映射、纹理坐标变换、纹理过滤等。

5、投影:投影是图形学中最重要的概念,它指的是将一个三维图形投射到二维屏幕上的过程。

投影可以分为正交投影和透视投影,正交投影是将三维图形投射到二维屏幕上的过程,而透视投影是将三维图形投射到二维屏幕上,从而产生透视效果的过程。

计算机图形学技术在影视制作中的应用研究

计算机图形学技术在影视制作中的应用研究

计算机图形学技术在影视制作中的应用研究一、引言计算机图形学技术是现代影视制作的重要组成部分。

在电影、电视剧等影视作品中,往往需要大量的特效制作和后期处理。

计算机图形学技术通过数字化的手段,可以模拟真实场景,制作出更加逼真的视觉效果,提高影视作品质量。

本文将从计算机图形学技术在影视制作中的应用、未来的发展趋势等方面进行探讨。

二、计算机图形学技术在影视制作中的应用1. 特效制作计算机图形学技术可以制作出各种各样的特效,如爆炸、飞翔、龙卷风等。

这些特效制作可以大大增加影视作品的观赏性和吸引力,提高影片的档次。

例如在好莱坞科幻影片《星球大战》中,计算机图形学技术的应用可以说是完美的,每一帧都是精心制作、优秀呈现,给观众留下深刻的印象。

2. 后期处理除了特效制作,影视作品的后期处理也是计算机图形学技术应用的重要领域。

比如,电影中需要制作出现代都市的霓虹灯,可以通过计算机图形学技术制作,并将其添加到电影的片段中,达到更加逼真的效果。

另外,在动画电影中,各种场景的细节和表现形式需要通过计算机图形学技术的渲染处理,才能更好地呈现出来。

三、计算机图形学技术在影视制作中的难点尽管计算机图形学技术在影视制作中应用广泛,但其制作过程也面临着很多难点。

首先,制作特效和后期处理需要大量的时间和人力资源。

而这些资源的缺乏可能会影响影视作品的最终效果和质量。

其次,计算机图形学技术需要对真实场景进行建模和渲染,并模拟各种细节,这需要高超的技术水平和丰富的经验。

四、计算机图形学技术的未来发展趋势计算机图形学技术的应用在未来仍将持续发展。

随着技术的进步和计算机性能的提升,特效制作和后期处理的效率将逐渐改善,同时对于画面细节的模拟和呈现将越来越精细。

此外,未来计算机图形学技术还可以应用在现实场景的呈现上,为VR虚拟现实、AR增强现实等领域提供支持。

五、结论计算机图形学技术在影视制作中的应用无可比拟的优势。

通过数字化的手段,可以呈现更加逼真的场景和细节,为影视作品赋予更高的艺术价值。

计算机图形学与游戏开发

计算机图形学与游戏开发

计算机图形学与游戏开发计算机图形学与游戏开发是目前计算机领域非常热门且发展迅速的领域。

随着科技的不断进步和人们对娱乐需求的提升,图形学和游戏开发在各个领域都起到了重要的作用。

本文将介绍计算机图形学与游戏开发的基本概念、应用领域以及一些相关的技术和工具。

一、计算机图形学的基本概念计算机图形学是研究如何利用计算机生成、处理和显示图像的学科。

它涉及到图像的存储、传输、处理和显示等方面的技术。

计算机图形学的应用非常广泛,包括计算机辅助设计(CAD)、虚拟现实(VR)、动画制作、游戏开发等。

二、计算机图形学的应用领域1. 计算机辅助设计(CAD):计算机图形学在CAD领域的应用非常广泛。

通过计算机图形学的技术,可以实现三维模型的建模、渲染和动画等功能,大大提高了设计效率和工作质量。

2. 虚拟现实(VR):虚拟现实是一种模拟现实环境的技术。

它通过计算机图形学的技术,将用户带入一个虚拟的世界,使其感受到与真实世界相似的视觉和听觉体验。

虚拟现实在游戏、培训、医疗等领域有着广泛的应用。

3. 动画制作:计算机图形学在动画制作领域的应用也非常重要。

通过计算机图形学的技术,可以实现动画角色的建模、渲染和动作设计等功能,减少了传统手绘动画的制作成本和时间。

4. 游戏开发:计算机图形学在游戏开发领域起到了至关重要的作用。

游戏开发需要实时渲染、碰撞检测、物理模拟等技术,而这些技术正是计算机图形学的研究内容。

通过计算机图形学的技术,可以实现逼真的游戏画面和流畅的游戏体验。

三、计算机图形学和游戏开发的相关技术和工具1. 图形处理器(GPU):GPU是计算机图形学的核心组件之一。

它是一种专门用于处理图形和图像的处理器,具有强大的并行计算能力和图形渲染能力。

GPU的发展极大地推动了计算机图形学和游戏开发的进步。

2. 渲染技术:渲染是计算机图形学中非常重要的一个环节。

它根据物体的表面属性和光照条件,计算出最终的图像,并将其显示在屏幕上。

计算机图形学的发展和应用

计算机图形学的发展和应用

计算机图形学的发展和应用计算机图形学是计算机科学中一门重要的学科,它是利用计算机来创造、处理、存储和呈现图像的技术。

随着计算机技术的发展,计算机图形学逐渐成为计算机科学中一个重要而独立的领域,其应用范围也日益广泛。

一、计算机图形学的发展历程计算机图形学起源于20世纪60年代,当时主要应用于计算机仿真和视觉效果方面。

1963年,伊万·苏泽兰(Ivan Sutherland)发明了第一台基于交互式图形的计算机-画图程序Sketchpad,它是第一款实现计算机交互的图形软件,可以通过电路板和光笔来实现图形图像的绘制和编辑。

1969年,伊万·苏泽兰又发明了第一款基于矢量绘图的计算机图形系统,称为Sketchpad-2,它可以实现对图像的放大和缩小,旋转和平移等操作。

1970年代,计算机图形学开始应用于计算机辅助设计(CAD)和计算机辅助制造(CAM)方面,此外还应用于天文学、医学、地理信息系统(GIS)等领域。

1980年代,计算机图形学的发展速度加快,图形工具的性能大幅度提高,计算机游戏、3D动画和特效效果得以迅速发展。

1990年代,计算机图形学的发展又迈出了一个新的阶段,它开始承担起了虚拟现实(VR)和增强现实(AR)等领域的任务。

如今,随着计算机硬件和软件的不断更新和发展,计算机图形学也在不断优化和拓展,为人类社会的发展做出着重要的贡献。

二、计算机图形学的应用领域1. 游戏开发计算机图形学在游戏开发中扮演着重要的角色。

它帮助游戏开发者创造出更加真实、惟妙惟肖的游戏场景和角色形象,让游戏玩家更加沉浸于游戏世界中。

随着3D图形技术的进步,现代游戏中所展现的场景和人物已经达到了以往难以想象的高度。

2. 医学计算机图形学在医学中的应用十分广泛,例如是利用计算机图形学技术来建立人体模型,并对人体模型进行操作和分析,这样医生在为病人制定治疗方案时,可以更加准确地进行定位和操作,避免手术操作的风险。

计算机图形学的应用实例

计算机图形学的应用实例

计算机图形学的应用实例计算机图形学是一门关于计算机图像处理和图像生成的学科,近年来随着计算机和图形处理器的迅速发展,应用范围也越来越广泛。

本文将介绍一些计算机图形学的实际应用实例。

一、游戏开发游戏是计算机图形学技术最为广泛的应用之一。

游戏中的画面需要高度逼真的渲染效果,而这就需要精良的计算机图形学处理技术来实现。

计算机图形学可用于创建游戏的角色模型、环境场景、特效处理和虚拟摄像等。

例如,知名游戏《星球大战:绝地陨落》(Star Wars Jedi: Fallen Order)使用了极其先进的光线追踪渲染引擎来制作出拟真的游戏场景,有效提升了游戏体验的沉浸感和真实感。

二、影视特效影视特效的制作依赖于计算机图形学技术来实现。

计算机图形学能够产生很多模拟的特效,包括自然现象、物理模型,在电影和电视的景物紧要之处给予特效加持。

比如许多好莱坞大片都采用了计算机图形学技术,如《变形金刚》系列电影,许多场景都是由计算机图形学生成的,包括机器人的变形和其他特效。

三、建筑设计与规划计算机图形学技术在建筑设计和规划过程中有广泛的应用。

由于关于建筑设计的细节数量繁多,因此计算机图形学机制可以从设计和建立建筑的唯一性方面协助。

目前与计算机图形学相关的软件如Revit、SketchUp、AutoCAD、3ds Max等,它们的涉及范围涵盖了主要的建筑设计和融合操作。

这些软件可以用于Raster图像编辑、平面、尺寸、施工材料、图纸、动画、效果图等方面的细节处理。

四、医学成像医学成像包括CT扫描、核磁共振成像和超声波成像等技术,通常需要依靠计算机图形学技术来进行分析和渲染。

例如在医学影像方面,图形学技术能够更为精确地辨别出医疗影像中的异常情况,从而为医生的诊断提供更有效的辅助。

五、虚拟现实虚拟现实技术是近年来计算机图形学技术在不同行业中的重要应用之一。

通过虚拟现实技术实现了从场景导入、虚拟游戏环境到整个虚拟世界的无缝过渡,用户可以感受到更多沉浸感和更加真实的渲染效果。

计算机图形学技术的应用与前景展望

计算机图形学技术的应用与前景展望

计算机图形学技术的应用与前景展望计算机图形学技术是一种应用数学、物理学、计算机科学等多学科知识的领域,通过计算机生成图像,将数字信息转化为可视化的形式,实现对虚拟世界的模拟和创造。

近年来,随着计算机处理能力的不断提高,图形学技术得到了广泛的应用和发展。

一、计算机图形学技术在游戏开发中的应用在游戏开发领域,计算机图形学技术的应用十分广泛,例如可以模拟真实光照、材质、纹理和物理运动等,使游戏画面更加逼真,增强了游戏体验。

游戏开发企业还可以利用图形学技术,创造出更加庞大的游戏世界和更加复杂的游戏场景。

同时,在虚拟现实、增强现实等领域中,图形学技术也有广泛的应用,例如在立体显示、头盔显示、手势控制等方面提供技术支持。

二、计算机图形学技术在工业设计中的应用工业设计领域也成为了计算机图形学技术的重要应用领域之一。

在这一领域中,图形学技术可以帮助设计师更加方便地进行设计、绘制、渲染和模拟等工作,使得设计效率和准确度得到了显著提高。

车辆、机器设备和家具等工业设计中的产品通过计算机图形学技术,可以实现三维建模、光线追踪、动画制作、交互设计等功能,从而使得产品的外观更加美观,功能更加精确和完善,提高了企业的竞争力。

三、计算机图形学技术在数字娱乐领域中的应用随着网络文化的兴起,数字娱乐也成为了一个重要的领域。

计算机图形学技术作为数字娱乐领域的重要技术,可以应用于数字影视、数字音乐、数字艺术等各种创意作品的制作与处理中。

在数字影视制作中,计算机图形学技术可以应用于特效制作和后期处理,使得电影、电视等作品的视觉效果更加逼真和生动;在数字艺术中,计算机图形学技术可以创作出更加复杂、立体、细腻和生动的艺术作品,比如建筑设计、抽象艺术、雕塑等。

四、计算机图形学技术的发展趋势展望随着现代计算机计算能力、存储能力和传输速度等性能的提高,计算机图形学技术将继续发展和完善,预计未来的趋势主要包括以下几方面:(1)更加真实的虚拟现实技术的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机图形学的应用摘要计算机图形学(Computer Graphics,简称CG)是一种使用数学算法将二维或三维图形转化为计算机显示器的栅格形式的科学。

简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。

图形是客观物质世界在人大脑中的反映、图形蕴含信息密度大、易于理解接受,是当今信息社会中人们用于传递信息的重要手段。

计算机技术和图形的结合使得图形在深度、广度和形式上都发生了深刻的变化,其应用也波及社会的各个领域,例如在商业广告、工业控制、科学计算可视化、仿真模拟、家庭娱乐以及影视业都得到了成功的应用,显示了计算机图形学的强大生命力。

计算机图形学是计算机与应用专业的专业主干课,它的重要性体现在人们越来越强烈地需要和谐的人机交互环境:图形用户界面已经成为一个软件的重要组成部分,以图形的方式来表示抽象的概念或数据(可视化)已经成为信息领域的一个重要发展趋势。

关键词:智能CAD,计算机动画艺术,科学计算可视化,虚拟现实一引言图形通常由点、线、面、体等几何元素和灰度、色彩、线型、线宽等非几何属性组成。

从处理技术上来看,图形主要分为两类,一类是基于线条信息表示的,如工程图、等高线地图、曲面的线框图等,另一类是明暗图,也就是通常所说的真实感图形。

计算机图形学一个主要的目的就是要利用计算机产生令人赏心悦目的真实感图形。

为此,必须建立图形所描述的场景的几何表示,再用某种光照模型,计算在假想的光源、纹理、材质属性下的光照明效果。

所以计算机图形学与另一门学科计算机辅助几何设计有着密切的关系。

事实上,图形学也把可以表示几何场景的曲线曲面造型技术和实体造型技术作为其主要的研究内容。

同时,真实感图形计算的结果是以数字图像的方式提供的,计算机图形学也就和图像处理有着密切的关系。

图形与图像两个概念间的区别越来越模糊,但还是有区别的:图像纯指计算机内以位图形式存在的灰度信息,而图形含有几何属性,或者说更强调场景的几何表示,是由场景的几何模型和景物的物理属性共同组成的。

计算机图形学的研究内容非常广泛,如图形硬件、图形标准、图形交互技术、光栅图形生成算法、曲线曲面造型、实体造型、真实感图形计算与显示算法、非真实感绘制,以及科学计算可视化、计算机动画、自然景物仿真、虚拟现实等。

二计算机图形学简介极其发展史计算机图形学属于可视化计算机领域,是研究如何用计算机生成可视图形和如何用计算机模拟现实世界的科学。

计算机图形学源于学术兴趣,起初依靠政府的资助发展,但随着图形学软件在广播电视和电影领域的广泛应用,越来越多的商业团体投资该领域,最后商业投资成为图形学发展的主要因素。

2.1计算机图形学发展简史1950 年,第一台图形显示器作为美国麻省理工学院 (MIT)旋风号—(Whirlwind)计算机的附件诞生了。

该显示器用一个类似示波的阴极射线管(CRT)来显示一些简单的图形。

在整个50年代,只有子管计算机,用机器语言编程,主要应用于科学计算为这些计算机置的图形设备仅具有输出功能。

计算机图形学处于准备和酝酿时期并称之为:“被动式”图形学。

1963 年,伊凡·苏泽兰在麻省理工学院发表了名为《画板》的博士论文,它标志着计算机图形学的正式诞生。

此前的计算机主要是符号处理系统,自从有了计算机图形学,计算机可以部分地表现人的右脑功能了,计算机图形学的建立意义重大。

从1973年开始,相继出现了英国剑桥大学CAD小组的Build系统、美国罗彻斯特大学的PADLI系统等实体造型系统。

1980年Whitted提出了一个光透视模型——— Whitted 模型,并第一次给出光线跟踪算法的范例,实现Whitted模型;1984年,美国Cornell大学和日本广岛大学的学者分别将热辐射工程中的辐射度的方法引入到计算机图形学中,用辐射度方法成功地模拟了理想漫反射表面间的多重漫反射效果;光线跟踪算法和辐射度算法的提出,标志着真实感图形的显示算法已逐渐成熟。

从20世纪80年代中期以来,超大规模集成电路的发展,为图形学的飞速发展奠定了物质基础。

计算机的运算能力的提高,图形处理速度的加快,使得图形学的各个研究方向得到充分发展,图形学已广泛应用于动画、科学计算可视化、CAD/CAM、影视娱乐等各个领域。

ACM SIGGRAPH会议是计算机图形学最权威的国际会议,每年在美国召开,参加会议的人在50000人左右。

SIGGRAPH会议很大程度上促进了图形学的发展,世界上不会有第二个领域会每年召开如此规模巨大的专业会议。

SIGGRAPH是大约60年代中期,由Brown大学的教授AndriesvanDam和IBM公司的Sam Matsa发起的。

1974年,在Corlorado大学召开了第一届SIGGRAPH年会,并取得了巨大的成功,当时有大约600位来自世界各地的专家参加了会议。

到了1997年,参加会议的人数已经增加到48700。

因为每年只录取大约50篇论文,在Computer Graphics杂志上发表,因此论文的学术水平较高,基本上代表了图形学已经的主流方向。

三计算机图形学的应用3.1智能CADCAD 的发展也显现出智能化的趋势,就目前流行的大多数CAD 软件来看,主要功能是支持产品的后续阶段一一工程图的绘制和输出,产品设计功能相对薄弱,利用AutoCAD 最常用的功能还是交互式绘图,如果要想进行产品设计,最基本的是要其中的AutoLisp语言编写程序,有时还要用其他高级语言协助编写,很不方便。

而新一代的智能CAD 系统可以实现从概念设计到结构设计的全过程。

例如,德国西门子公司开发的Sigraph Design软件可以实现如下功能:智能CAD的另一个领域是工程图纸的自动输入与智能识别,随着CAD技术的迅速推广应用,各个工厂、设计院都需将成千上万张长期积累下来的设计图纸快速而准确输入计算机,作为新产品开发的技术资料。

多年来,CAD 中普遍采用的图形输入方法是图形数字化仪交互输入和鼠标加键盘的交互输入方法.很难适应工程界大量图纸输入的迫切需要。

因此,基于光电扫描仪的图纸自动输入方法已成为国内外CAD工作者的努力探索的新课题。

但由于工程图的智能识别涉及到计算机的硬件、计算机图形学、模式识别及人工智能等高新技术内容,使得研究工作的难点较大。

工程图的自动输入与智能识别是两个密不可分的过程,用扫描仪将手绘图纸输入到计算机后,形成的是点阵图象.CAD 中只能对矢量图形进行编辑,这就要求将点阵图象转化成矢量图形.而这些工作都让计算机自动完成.这就带来了许多的问题.国家自然科学基金会和863计划基金都在支持这方面的研究,国内外已有一些这方面的软件付诸实用,如美国的RVmaster,德国的VPmax,以及清华大学,东北大学的产品等。

但效果都不很理想.还未能达到人们企盼的效果。

3.1.1制造业中的应用CAD技术已在制造业中广泛应用,其中以机床、汽车、飞机、船舶、航天器等制造业应用最为广泛、深入。

众所周知,一个产品的设计过程要经过概念设计、详细设计、结构分析和优化、仿真模拟等几个主要阶段。

同时,现代设计技术将并行工程的概念引入到整个设计过程中,在设计阶段就对产品整个生命周期进行综合考虑。

当前先进的CAD应用系统已经将设计、绘图、分析、仿真、加工等一系列功能集成于一个系统内。

现在较常用的软件有UG II、I-DEAS、CATIA、PRO/E、Euclid等CAD应用系统,这些系统主要运行在图形工作站平台上。

在PC平台上运行的CAD应用软件主要有Cimatron、Solidwork、MDT、SolidEdge等。

由于各种因素,目前在二维CAD系统中Autodesk公司的AutoCAD占据了相当的市场。

3.1.2工程设计中的应用CAD技术在工程领域中的应用有以下几个方面:(1)建筑设计,包括方案设计、三维造型、建筑渲染图设计、平面布景、建筑构造设计、小区规划、日照分析、室内装潢等各类CAD应用软件。

(2)结构设计,包括有限元分析、结构平面设计、框/排架结构计算和分析、高层结构分析、地基及基础设计、钢结构设计与加工等。

(3)设备设计,包括水、电、暖各种设备及管道设计。

(4)城市规划、城市交通设计,如城市道路、高架、轻轨、地铁等市政工程设计。

(5)市政管线设计,如自来水、污水排放、煤气、电力、暖气、通信(包括电话、有线电视、数据通信等)各类市政管道线路设计。

(6)交通工程设计,如公路、桥梁、铁路、航空、机场、港口、码头等。

(7)水利工程设计,如大坝、水渠、河海工程等。

(8)其他工程设计和管理,如房地产开发及物业管理、工程概预算、施工过程控制与管理、旅游景点设计与布置、智能大厦设计等。

3.1.3电气和电子电路方面的应用CAD技术最早曾用于电路原理图和布线图的设计工作。

目前,CAD技术已扩展到印刷电路板的设计(布线及元器件布局),并在集成电路、大规模集成电路和超大规模集成电路的设计制造中大显身手,并由此大大推动了微电子技术和计算及技术的发展。

3.1.4其他应用CAD技术除了在上述领域中的应用外,在轻工、纺织、家电、服装、制鞋、医疗和医药乃至体育方面都会用到CAD技术。

3.2计算机动画艺术计算机动画技术的发展是和许多其它学科的发展密切相关的。

计算机图形学、计算机绘画、计算机音乐、计算机辅助设计、电影技术、电视技术、计算机软件和硬件技术等众多学科的最新成果都对计算机动画技术的研究和发展起着十分重要的推动作用50年代到60年代之间,大部分的计算机绘画艺术作品都是在打印机和绘图仪上产生的。

一直到60年代后期,才出现利用计算机显示点阵的特性,通过精心地设计图案来进行计算机艺术创造的活动。

70年代开始.计算机艺术走向繁荣和成熟1973 年,在东京索尼公司举办了“首届国际计算机艺术展览会”80年代至今,计算机艺术的发展速度远远超出了人们的想象在代表计算机图形研究最高水平的历届SIGGRAPH年会上,精彩的计算机艺术作品层出不穷。

另外,在此期间的奥斯卡奖的获奖名单中,采用计算机特技制作电影频频上榜,大有舍我其谁的感觉。

在中国,首届计算机艺术研讨会和作品展示活动于1995年在北京举行它总结了近年来计算机艺术在中国的发展,对未来的工作起到了重要的推动作用3.2.1计算机动画的分类计算机动画是计算机图形学和艺术相结合的产物,它是伴随着计算机硬件和图形算法高速发展起来的一门高新技术。

动画是运动中的艺术,运动是动画的要素。

计算机动画以其制作方法和表现特征通常可以分为二维动画和三维动画两种形式。

(1)二维动画传统的卡通动画的实现是连续播放多帧画面,每幅画面表述的是运动物体的若干个瞬间,利用观看者的瞬间视觉残留而得到运动的视觉感受。

相关文档
最新文档