无线电测向技术

合集下载

浅析无线电监测与测向技术

浅析无线电监测与测向技术

20207News Dissemination新闻传播无线电的管理工作难度较大,需要有效的技术支持,随着无线电管理工作的有效开展,进一步提高了无线电监测水平。

在进行监测过程,需要提高测向技术水平,因此,本文对无线电监测与测向技术进行了实践探索,希望通过有效阐述,能够为相关工作开展奠定良好基础。

一、无线电测向技术概述在有效的研究无线电监测技术过程中,要提高对于测向技术的研究能力,实施无线电测向技术时,可以利用天线系统确认来波信息和信息处理的方法,对此,可以把这个过程分成两类,包括标量测向系统和矢量信息系统。

前者的作用是获得并使用与来波型号有关系的标量信息数据,后者作用是获得并使用和来波型号有关的矢量信息数据。

而对于标量测向系统来讲,不仅历史悠久,而且还有很大的发展前景,它的测向天线和测向方向图也都非常实用。

测向机是利用测向的专业机构来区分固定站和移动站点,所以,应该用无线电测定来波方向并使用固定的辐射源,这样不仅能给电台单位做好定位,而且还能够进行分化交互测试,进而更好地确定辐射源位置。

除此之外,还可利用不同的测向分析,详细划分测向的体制。

系统组成及工作原理:测向天线,输入匹配单元、接收机、方位信息处理显示,这些都是无线电测向系统的组成部分,而一个测向站的主要组成部分又包括了测向系统,通信系统以及附属设备。

无线电测向测定的是来波的方向,主要目的是将辐射源确定下来,这就需要位置不同的测向站要进行组网测向。

另外,整个测向的过程中,为了能够让示向度达到准确,还需要充分满足优质测向台址环境,匹配的测向体制、精度高的测向机,经验丰富的操作人员等四个条件。

通过对系统的进一步分析,提高了测向技术认识,能够保证测向工作有效开展。

在进行工作实践研究过程中,需要相关工作人员提高技术的应用能力,从而有利于加强无线电监管水平。

二、无线电监测与测向系统的构建(一)测向系统的基本组成及功能在无线电监测与测向原理上,需要构建出最为实用的固定测向站,并把测向机天线搬到已经改装好的监测车辆上,以此达到机动交汇定位的目的。

如何利用无线电测向技术进行方位测量和导航定位

如何利用无线电测向技术进行方位测量和导航定位

如何利用无线电测向技术进行方位测量和导航定位无线电测向技术在方位测量和导航定位领域发挥着重要的作用。

它是一种利用无线电信号的传播特性来确定物体位置和方向的技术手段。

本文将从无线电测向技术的原理、应用领域和未来发展方向等角度来论述如何利用无线电测向技术进行方位测量和导航定位。

首先,我们要了解无线电测向技术的原理。

这种技术利用无线电信号的传播特性,通过对信号到达接收器的时间、信号强度或相位等参数的测量来确定信号源的位置和方向。

无线电测向技术有许多不同的实现方式,如信号强度测量、相位差测量和多普勒频移测量等。

其中,信号强度测量是最常用的一种方法,通过比较信号在不同接收器上的接收强度来确定信号源的位置。

相位差测量则利用信号在不同接收器间的相位差来确定信号源的方向。

多普勒频移测量则是通过测量信号源引起的频率变化来确定信号源的运动方向和速度。

其次,无线电测向技术在方位测量和导航定位领域有着广泛的应用。

在方位测量方面,无线电测向技术可以用于定位无线电干扰源,如无线电通信设备、无线电干扰器等,帮助监测和防范无线电干扰。

在导航定位方面,无线电测向技术可以用于定位和导航系统的建设和维护,如航空导航、水下定位、车辆定位等。

此外,无线电测向技术还可以用于搜寻失踪人员、追踪目标物体等应用场景。

在实际应用中,无线电测向技术还面临着一些挑战和限制。

一是信号传播的时延效应和多路径效应会影响定位和导航的准确性。

二是目标物体的电磁特性和环境的影响也会对测向结果产生干扰。

三是目前的测向设备和算法还存在一定的局限性,需要不断提升和改进。

随着科技的进步和无线通信技术的发展,无线电测向技术在方位测量和导航定位领域的应用将会越来越广泛。

未来,随着物联网、5G通信等技术的普及,无线电测向技术将更加精准和可靠。

同时,无线电测向技术也可以与其他定位技术相结合,如GPS、惯性导航等,提高定位和导航的稳定性和精度。

总的来说,无线电测向技术是一种重要的方位测量和导航定位技术,具有广泛的应用前景。

无线电测向原理

无线电测向原理

无线电测向原理无线电测向是一种利用无线电波进行信号测向的技术,它可以用于确定信号的方向和位置。

无线电测向技术在军事、民用通信、天文学等领域都有着重要的应用。

本文将介绍无线电测向的原理及其在实际中的应用。

首先,我们来了解一下无线电测向的基本原理。

无线电测向的基本原理是利用天线接收信号,并通过对接收到的信号进行分析,确定信号的方向和位置。

在实际的应用中,通常会使用多个天线来接收信号,通过对比不同天线接收到的信号强度和相位差异,可以计算出信号的方向和位置。

无线电测向技术主要包括两种方法,一种是方位测向,另一种是距离测向。

方位测向是通过对接收到的信号进行方位角的测量,确定信号的方向;而距离测向则是通过对接收到的信号进行距离的测量,确定信号的位置。

这两种方法可以单独应用,也可以结合起来进行综合测向。

在实际的无线电测向系统中,通常会采用多种测向技术相结合的方式,以提高测向的准确度和可靠性。

例如,可以通过使用多个天线阵列来实现高精度的方位测向;同时结合多普勒效应来实现距离测向。

这样可以在不同的环境和条件下,实现更加灵活和精准的测向。

无线电测向技术在军事领域有着广泛的应用。

在军事侦察、雷达导航、通信干扰监测等方面,都需要使用无线电测向技术来获取目标的方向和位置信息。

同时,在民用通信领域,无线电测向技术也可以用于无线电定位、无线电导航等应用。

此外,无线电测向技术还可以应用于天文学领域,用于天体信号的测向和观测。

总的来说,无线电测向技术是一种重要的信号测向技术,它可以通过对接收到的无线电信号进行分析,确定信号的方向和位置。

在实际的应用中,无线电测向技术可以应用于军事、民用通信、天文学等多个领域,具有着重要的意义和价值。

随着无线电技术的不断发展,无线电测向技术也将会得到进一步的完善和应用。

无线电测向技术的发展历程

无线电测向技术的发展历程

无线电测向技术的发展历程关键信息项:1、无线电测向技术的起源时间2、早期无线电测向技术的应用领域3、关键技术突破的时间节点4、无线电测向技术在不同时期的精度提升5、重要的技术创新和改进6、对相关产业的影响7、现代无线电测向技术的应用范围8、未来发展趋势和展望11 无线电测向技术的起源无线电测向技术的历史可以追溯到 19 世纪末期。

当时,无线电通信刚刚崭露头角,科学家们开始探索如何确定无线电信号的来源方向。

早期的尝试主要基于简单的天线阵列和对信号强度的测量。

111 最初的实验与理论基础在这个阶段,研究者们进行了一系列基础实验,试图理解无线电波的传播特性以及如何利用这些特性来确定信号的方向。

一些基本的理论,如电磁波的极化和传播方向之间的关系,逐渐被建立起来。

112 第一次世界大战期间的应用第一次世界大战为无线电测向技术的发展提供了强大的推动力。

军事需求促使技术快速进步,用于侦察敌方的无线电通信,确定其位置和行动方向。

12 20 世纪上半叶的发展在 20 世纪的前几十年,无线电测向技术不断改进。

121 技术改进与精度提高随着电子技术的发展,更精确的测量仪器和更复杂的算法被引入,使得测向精度得到显著提高。

122 应用领域的拓展除了军事用途,无线电测向技术开始在航海、航空等领域得到应用,帮助船只和飞机确定导航信号的来源。

13 二战及战后的重大突破第二次世界大战期间,无线电测向技术再次经历了重大变革。

131 新技术的涌现例如,频率分集、相位测量等技术的应用,进一步提高了测向的准确性和可靠性。

132 战后的民用发展战争结束后,无线电测向技术逐渐向民用领域转移,在广播电视、无线电监测等方面发挥重要作用。

14 20 世纪后期的技术创新进入 20 世纪后期,计算机技术和数字信号处理技术的飞速发展给无线电测向技术带来了新的机遇。

141 数字化与自动化测向系统实现了数字化,测量和计算过程更加精确和快速,同时自动化程度大大提高。

无线电测向原理

无线电测向原理

无线电测向原理
无线电测向原理是一种通过测量无线电信号到达接收器的方向来确定信号发射源位置的技术。

该原理基于电磁波传播的特性,利用接收器接收到的信号的方向性信息来定位信号源。

无线电测向原理的关键在于利用多个接收器或天线阵列来接收同一个信号。

通过测量接收到信号的时间差和信号强度的变化,可以计算出信号的到达角度。

这种测向方式被称为时差测向和幅度比测向。

时差测向是基于接收到信号的时间差来测量信号到达的角度。

当信号到达不同的接收器或天线时,会产生微小的时间差。

通过计算这些时间差,可以确定信号的到达角度。

幅度比测向则是基于接收到信号的强度变化来测量信号到达的角度。

当信号到达不同的接收器或天线时,由于传播路径的不同,信号的强度会发生变化。

通过计算这些幅度变化,可以确定信号的到达角度。

无线电测向原理常用于无线电定位、无线电导航、无线电干扰源定位等领域。

它的应用范围广泛,可以用于定位无线通信设备、监测无线电信号、解决无线电干扰问题等。

总的来说,无线电测向原理通过测量接收到的信号的方向性信息来确定信号发射源的位置。

它是一种基于电磁波传播特性的技术,可以在无线通信、定位、干扰源定位等领域发挥重要作用。

无线电测向原理

无线电测向原理

无线电测向原理无线电测向是利用无线电波的传播特性,通过对信号的接收和处理,确定信号的方向的一种技术。

无线电测向原理是基于电磁波传播的基本原理和天线接收信号的特性,通过对接收到的信号进行分析,确定信号的来向。

下面将从无线电测向的基本原理、测向系统的组成和测向方法等方面进行介绍。

首先,无线电测向的基本原理是基于电磁波的传播特性。

当电磁波在空间中传播时,会受到地形、建筑物等物体的影响而产生衍射、反射等现象,这些现象会使信号在接收端产生多径效应,从而导致信号的强度和相位发生变化。

利用这些变化,可以通过信号处理技术确定信号的方向。

其次,测向系统通常由天线、接收机、信号处理器和显示器等组成。

天线是接收信号的装置,不同类型的天线适用于不同频率的信号接收。

接收机是用于接收信号的设备,它可以将接收到的信号转换成电信号,并将其传送给信号处理器。

信号处理器是用于对接收到的信号进行处理和分析的设备,它可以提取信号的特征参数,并通过计算确定信号的方向。

显示器则用于显示测向结果,通常以图形或数字的形式呈现。

最后,无线电测向的方法主要包括干扰测向、方位测向和跟踪测向等。

干扰测向是指利用干扰信号的特征参数确定干扰源的位置,通常用于无线电干扰的监测和定位。

方位测向是指确定信号来向的方向,通常用于通信情报收集和无线电定位。

跟踪测向是指对移动目标进行实时跟踪,通常用于雷达导航和目标追踪等应用。

综上所述,无线电测向是一种利用无线电波的传播特性,通过对信号的接收和处理,确定信号方向的技术。

它的原理是基于电磁波的传播特性,测向系统由天线、接收机、信号处理器和显示器等组成,测向方法主要包括干扰测向、方位测向和跟踪测向等。

无线电测向技术在通信情报、无线电干扰监测和雷达导航等领域有着重要的应用价值。

无线电测向与人工智能的结合

无线电测向与人工智能的结合

无线电测向与人工智能的结合无线电测向技术是指通过接收到的无线电信号的参数进行分析,确定信号的方向来源。

而人工智能则是一项以模拟、延伸和拓展人类智能的技术,并被广泛应用于各个领域。

本文将探讨无线电测向与人工智能的结合,这一结合将为无线电测向技术带来更大的发展潜力,同时也将为人工智能技术提供新的应用场景。

1、无线电测向技术的概述无线电测向技术是一门研究无线电波方向、位置及其相关参数的技术。

它利用多个接收信号的传感器,通过测量信号在不同接收点的到达时间、到达角度等参数,来计算信号的来源方向。

无线电测向技术广泛应用于通信、导航、定位等领域。

2、人工智能在无线电测向中的应用随着人工智能技术的发展,其在无线电测向领域的应用也日益增多。

通过使用人工智能技术,可以对测向系统进行智能化的优化和改进,提高测向的精度和效率。

具体包括以下几个方面:(1)信号处理:利用人工智能技术对接收到的信号进行智能化的预处理和滤波,去除噪音和干扰,提取有效的信号特征。

(2)参数计算:利用人工智能算法对接收到的信号参数进行智能化的计算和分析,包括到达时间、到达角度等参数的估计和优化。

(3)方向估计:通过使用人工智能算法,可以对信号的来源方向进行更精确的估计和预测,提高无线电测向的准确度。

(4)自适应调整:利用人工智能技术,可以对测向系统进行自适应调整,提高系统的适应性和鲁棒性,适应不同环境和复杂场景下的测向需求。

3、无线电测向与人工智能的结合带来的优势(1)提高测向准确度:人工智能算法可以通过对大量数据的学习和分析,优化信号参数计算和方向估计的算法,从而提高测向的准确度。

(2)提高测向效率:人工智能技术可以使测向系统实现自动化和智能化,从而提高测向的效率和自动化程度,减少人工干预和操作成本。

(3)扩展应用场景:无线电测向与人工智能的结合还可以拓展测向技术的应用场景。

例如,在无线通信领域,可以利用人工智能技术对通信信号进行测向,提供智能化的信号定位服务。

无线电测向对经济的影响

无线电测向对经济的影响

无线电测向对经济的影响无线电测向技术是一种利用无线电波的方向性传播特性,通过接收多个方向上的无线电信号进行测量和分析,以确定信号源的位置和方向的技术手段。

这项技术不仅在通信、导航和无线电监测等领域具有重要应用,还对经济产生着深远的影响。

首先,无线电测向技术在通信行业中的应用对经济发展起到了积极推动作用。

随着5G技术的不断推广和应用,对于基站的建设一直是一个关注的热点。

通过无线电测向技术,可以准确测量出不同方向上的信号强度,帮助运营商合理选择基站的位置和天线的安装方向,优化网络覆盖范围和质量,提高通信网络的性能。

这不仅能够满足人们对通信服务的需求,还可以有效降低通信设备的维护成本,提高通信网络的利用率,对于促进通信产业的发展和经济的增长具有重要意义。

其次,无线电测向技术在导航行业中的应用也对经济带来了积极影响。

如今,全球定位系统(GPS)已经成为人们出行的必备工具,而无线电测向技术在GPS的定位精度和可用性方面发挥了重要作用。

通过对卫星信号的测量和分析,可以确定接收器的位置,并提供准确的导航信息。

无线电测向技术的应用使得导航设备更加精确可靠,不仅可以在日常生活中帮助人们找到目的地,还在交通运输、物流配送等领域提供了更高效、更安全的导航服务,为经济的发展和城市的建设带来了便利。

此外,无线电测向技术在无线电监测领域的应用对维护经济的安全和稳定也起着重要的作用。

通过对无线电信号的测向分析,可以快速定位无线电干扰源和非法通信设备,维护无线电通信的秩序和频谱资源的合理利用。

在国家安全和公共利益方面,无线电测向技术的应用可以有效防范恶意干扰行为和非法窃听活动,保障信息安全和国家稳定。

此外,对于电信欺诈、侵权盗版等经济犯罪行为的打击,无线电测向技术也具备一定的辅助作用,为经济环境的健康发展提供了保障。

综上所述,无线电测向技术作为一种重要的定位和导航技术手段,对经济产生了广泛而深远的影响。

在通信、导航和无线电监测等领域的应用中,无线电测向技术能够提高设备的性能和效率,促进产业发展和经济增长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章无线电测向技术(参考件)一、无线电波与其传输特性1.1 关于无线电波的一些基本概念1.1.1 无线电波是电磁波的一种从物理含义上讲,电磁波包含无线电波、光辐射和光子辐射。

电磁波中波长小于0.1mm,或者说频率低于3000GHz的波,叫无线电波。

把电磁波和无线电波视为同等概念,严格说是不确切的。

但从当今应用目的看,习惯叫法也是可以的。

1.1.2 无线电波的分段和名称根据国际电信联盟无线电规则第二条(Article 2,20δ,Geneva,1982)频带命名如表示:表1.(2)频带命名关于无线电波的频带划分与命名,需补充几点:①国际电联频带划分时规定,每个频率范围含上限而不含下限;②实际工作中常有这样一些情况:仅使用频带的一部分,比如战术通信台工作频段为30~88MHz,这时仍称VHF电台;边沿垮接相邻频带,如2~30MHz的接收机,因其主要工作频率处于高频,这时仍称高频(HF)接收机;当工作频率范围跨接两个频带,又都为主要工作频段时,如25~1000MHz的测向机,这时,则惯称甚高频/特高频(VHF/UHF)测向机等。

③国内一些部门习惯用短波、超短波、微波等称谓。

显然短波与高频等效。

超短波包括甚高频(VHF)和特高频(UHF),但界限含混,微波一般指频率高于300MHz的众多频带。

1.1.3 无线电波的一般传输特性在2.1节介绍有关述语的函义中,已讲到无线电波的一些特性,为使读者便于理解后面的内容,现就电磁波传输的一般特性归纳如下:●电磁场中电场和磁场具有确定的方向和数值,即S(t) = E(t) . H(t)E=-ZH●传输中的电场和磁场都具有极化特性;●电磁波在自由空间传输时,其传输平面是一确定的大圆面,其传输方向不变,且相速度和群速度相同;●电磁波在界质中传输时,将受到界质的影响。

在各向同性的色散界质中传输时,使相速与群速不等;在各向异性的色散界质传输时,还会使极化和方向发生变化;●电磁波传输时会产生衰减。

产生衰减的原因有两种:一是球面(或柱面)波扩散损耗,其场强与离开辐射源的距离成反比;二是介质引起的损耗,包括介质吸收、散射、衍射等,这使场强比在自由空间时小;●中不同介质的界面上产生反射、折射,并都符合几何光学的定律;频率较低的无线电波还具有衍射特性;●频率相同的无线电波具有相干性,相干场场强呈驻波分布,等相位面也产生畸曲。

1.1.4 无线电波的极化特性极化是为描述不同类型辐射源产生的电磁波或者通过不同途径传输的电磁场的时一空特性而引入的概念。

前面已讲过,电场矢量和磁场矢量满足乌莫夫---坡印廷矢量法则,二者相互垂直,并都与电磁波传输方向(即坡印廷矢量方向)相垂直,故人们用电矢量的端点在波振面上的轨迹图表叙电磁波的极化形式:●垂直极化波,即电矢量完全处于传输面内的电磁波,显然这时磁矢量完全垂直传输平面;●水平极化波,即电矢量完全垂直传输平面的电磁波,显然这时的磁场矢量完全处于传输面内;●线极化波,即电场矢量偏开传输面一个角度r(称极化角)的电磁波。

显然线极化波可分解为垂直极化分量和水平极化分量。

垂直极化波或水平极化波是线极化波的一种特性形式(水平极化分量为零或垂直极化分量为零);●圆极化波,即垂直极化分量和水平极化分量幅度相等,而相位差为900的电磁波。

这时电矢量端点在波振面内的轨迹为圆。

顺着电磁波传输的方向看去,如电场矢量是反时针的旋转,又称左旋圆极化;着顺时针旋转,则称右旋圆极化;●椭圆极化,即电场矢量端点在波振面上投影轨迹为椭圆的电磁波。

有三种情况产生椭圆极化:垂直极化分量和水平极化分量幅度相等,但相位差是0. π/2和π以外的值;两极化分量相位差为π/2,但幅度不相等;两极化分量幅度不相等,相位差为0和π以外的值。

椭圆极化波也同圆极化波一样区分为左旋和右旋。

显然,椭圆极化是电磁波极化概念的最通用的表叙形式,其它极化形式可作为椭圆极化的特殊情况,如线极化是两分量相位差为0或π的特例;圆极化是两极化分量幅度相等,相位差为π/2的特例;垂直极化或水平极化是一个极化分量为零的特例。

值得注意的是对垂直(或水平)极化的地波来讲,电场矢量总是垂直(或平行)地面,对倾斜入射到地面的天波来说,垂直极化波的电矢量不再与地面垂直,而水平极化波的电矢量却总与地面平行,这些区别在今后研究高角波信号接收或测向问题时常用到。

1.2 HF(高频)无线电波的传输特性频率范围为3~30MHz的无线电波,根据ITU定义,叫高频波(HF),有时也叫短波。

高频波在远程通信中占重要地位。

高频波主要传输特点有:(1)HF波从地面上一点到另一点的传输有两种途径,即地波和天波;(2)地面波传输中,受土壤或海水的影响,将产生衰减。

频率越高,衰减越大。

水平极化波的衰减比垂直极化波要大得多,因而地面波主要为垂直极化。

对发射功率1KW的垂直极化波,在陆面上一般传输几十公里,在海面是传输为几百公里;(3)HF远程传输是通过电离层反射完成的。

电离层分D、E、F1和F2层,对应的平均高度分别是70、110、200和330KM,其中F2层是较稳定的,远程通信主要靠F2层的反射,可反射的电波频率一般不大于20MHz,一跳传输的距离与反射角有关,若反射波仰为角β,频率为f=f0/sinβ(式中f0是电子密度为N的电离层对垂直入射波可反射的最高频率),一次反射的距离为d=2hCotβ(式中h为虚高,比电离层实际高度稍大);HF无线电波两种传输方式的存在,就使HF波形成了以下特点:●在离发射源较近的地面上可认为只有地波存在,这时电波极化可认为是单纯的垂直极化;●在较远的天波区,不管发射天线是垂直极化还是水平极化,受电离层影响,反射波都是椭圆极化;●在没有特殊选频情况下,电波会在不同层或不同点反射,形成多径波;●HF波在传输方向上,一般形成地波区、静寞区和天波区。

静寞区是在地波区与天波区之间,大约在离开发射台30~100KM的地段,地波已衰减掉,又没有电离层反射波到达,常收不到信号。

在较近的天波区(离发射源100~400KM之间),反射波的仰角很大,也常称为高角波区。

1.3 VHF/UHF(甚高频/特高频)无线电波的传输特性30~300MHz通称甚高频(VHF),300~3000MHz通称特高频(UHF),3G~30GHz通称超高频(SHF),30~300GHz通称极高频(EHF)。

VHF/UHF无线电波较HF无线电波的波长越来越小,受传输介质影响相应加大,视距传输就成为其主要方式和特点。

(1)地波分地表面波和地面空间波。

由于超过30MHz以后,地面(土壤或海水)造成的衰减随频率增加迅速加大,特别超过300MHz,地表面波在较短的距离上就已衰减掉,因而只有高出地面的直射波存在,这就是地面空间波。

(2)在视距范围内传输,地面上传输的最大距离为d0=4.12(h T+h R)km,式中h T和h R分别为发射与接收天线高度,单位为米。

比如:h T =h R=10m,d0=26km,h T=100m,h R=10m,d0=54km;(3)地面空间波的传输距离与极化方式是垂直极化还是水平极化,已没有明显关系;(4)根据地面菲湟区的理论,地面反射波对地面空间波传输带来影响,场强E为:式中E1=173√P T(kw)GT/d(km) (mv/m)代表自由空间传输模式时d处场强。

相对天线高足够远的距离上,即2πhThR<<1时,场强E正比例 h T h R。

这就是所谓的天线高度增益,且频率越高,天线高度增益越明显。

比如离开地面20m高较4m处的场强,30MHz时增加1dB,60MHz时增加5dB,150 MHz 时增加8dB,300MHz时增加10dB,600MHz时增加11dB。

二、无线电测向基础2 无线电测向原理与分类2.1 无线电测向的依据与限制2.1.1 无线电测向的理论依据无线电测向的理论依据主要有两点:(1)从测试点看,无线电波的到达方向处于测试点和发射点构成的大圆内。

这是自由空间或均匀界质中无线电波传播的基本特性;(2)无线电波为横波,其测试点场的分布(包括强度、相位、时延)与给定的电波传播方向有确定的关系。

2.1.2 无线电测向的受限因素无线电测向的使用精度不是任意设计的,它将受到以下一些因素的限制:(1)传输介质不均匀性的影响。

无线电波传播的直线特性都是以均匀介质为条件的,实际上当地波在通过不同类型地表交界处时有“海岸效应”,不均匀电离层反射时侧向偏移以及地形地物的阻挡等,均会引起传播方向的改变。

这些因素带来的误差除电离层侧移可通过长时间平均减少外,大都是无法消除的。

这种误差人们惯称传播误差;(2)多径波相干的影响。

无论是无线电波在传播过程中造成的多径还是测试点附近存在二次辐射体,都使电场变成相干场,这时场的空间分布已偏离作为无线电测向依据的平面波场分布,造成测向误差。

这种误差惯称相干误差或多径误差;(3)噪声干扰影响测量精度。

实际测向作业中多数情况是对低场强信号测向,这时无论是同波干扰,还是背景噪声以及交互调噪声,都将扰动测试精度;(4)测向设备固有精度影响,常叫仪器误差或系统误差。

纵观无线电测向技术的发展史,就是研究如何有效利用无线电波波场的电参数实现测向,并减少或克服各限制因素的影响,因而出现了多种无线电测向方法和体制。

2.2 无线电测向方法与分类实现无线电测向的方法很多,分类的思路也不尽同,但从下面将要介绍的多种具体测向方案(以后称测向体制)将要看到,各种测向体制都是基于测向依据对电场分布进行测量,从而计算出电波到达方向。

电场空间分布状态的测量方法有四种情况,或称四类基本测向方法,即:(1)通过定向天线(阵)的输出幅度测量进行测向,统称幅度测向法。

定向天线或无方向天线组成的定向天线阵,具有确定的方向性图,其输出值与电波传播方向有确定的对应关系,因而可通过定向天线(阵)输出幅度的比较来确定无线电波到达方向。

实际上定向天线(阵)的输出是作用于天线各细小单元上的感应电动势的合成电压,定向天线的输出幅度是空间电场分布状态的函数。

利用幅度法进行测向的体制很多,旋转环测向是最简单也是最早发明的测向体制,乌兰韦伯尔大孔径测向体制是较复杂的一种旋转天线体制,单脉比幅是对雷达信号测向的常用体制等;(2)通过间隔天线间的相位测量比较进行测向,统称相位测向法。

这是直接通过天线对空间电场相位分布进行取样、测量,并根据样点的相位关系完成测向。

相位干涉仪和多卜勒测向机都是常用体制。

相位干涉仪体制是通过天线(场传感器)对空间电场的相位进行取样,然后根据相位分布规律和测试的各相位差值求解出电波到达方向,而多卜勒测向体制是循环把相邻天线相位差值按确定关系转换为频移,通过频移测量而求解出电波到达方向;(3)通过间隔天线电压矢量测量进行测向,统称矢量测向法。

相关文档
最新文档