2019版中考数学复习 配方法教案 新人教版

合集下载

新人教版九年级数学上册:《配方法》教学案

新人教版九年级数学上册:《配方法》教学案

配方法课题§2.2.3 配方法(三)教学目标(一)教学知识点1.利用方程解决实际问题.2.训练用配方法解题的技能.(二)能力训练要求1.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,增强学生的数学应用意识和能力.2.能根据具体问题的实际意义检验结果的合理性.3.进一步训练利用配方法解题的技能.(三)情感与价值观要求通过学生创设解决问题的方案,来培养其数学的应用意识和能力,进而拓宽他们的思维空间,来激发其学习的主动积极性.教学重点利用方程解决实际问题教学难点对于开放性问题的解决,即如何设计方案教学方法分组讨论法教具准备投影片二张第一张:练习(记作投影片§2.2.3 A)第二张:实际问题(记作投影片§2.2.3 B)教学过程Ⅰ.巧设情景问题,引入新课[师]通过上两节课的研究,我们会用配方法来解数字系数的一元二次方程.下面我们通过练习来复习巩固一元二次方程的解法.(出示投影片§2.2.3 A)用配方法解下列一元二次方程:(1)x 2+6x+8=0;(2)x 2-8x+15=0;(3)x 2-3x-7=0;(4)3x 2-8x+4=0;(5)6x 2-11x-10=0;(6)2x 2+21x-11=0.[师]我们分组来做,第一、三、五组的同学做方程(1)、(3)、(5),第二、四、六组的同学做方程(2)、(4)、(6).[师]各组做完了没有?[生齐声]做完了.[师]好,我们来交叉改一下,看看哪位同学批改得仔细,哪位同学的方程解得全对.[生甲]我改的是××同学的,他做的是方程(1)、(3)、(5),方程(1)解对了,答案是x 1=-2,x 2=-4.解方程(3)时,在配方的时候,他配错了,即x 2-3x-7=0,x 2-3x =7,x 2-3x+32=7+32 应为(-23)2. [师]很好,这里一次项-3x 的系数-3是奇数,所以应在方程两边各加上(-3)的一半的平方,那方程(3)的正确答案是多少呢?[生乙]方程(3)的解为x 1=2373,23732-=+x . [师]好,继续.[生丙]方程(5)的二次项系数不为1,所以首先应把方程化为二次项系数是1的形式,然后再应用配方进行求解.××同学解的对,其解为x 1=25,x 2=-23. [生丁]××同学做的是方程(2)、(4)、(6).他解的完全正确,即方程(2)的解:x 1=5,x 2=3,方程(4)的解:x 1=2,x 2=23,方程(6)的解:x l =21,x 2=-11. [师]利用配方法求解方程时,一定要注意:①方程的二次项系数不为1时,首先应把它化为二次项系数是1的形式,这是利用配方法求解方程的前提.②配方法中方程的两边都加上一次项系数一半的平方的前提是方程的二次项系数为1. 另外,大家在利用配方法求解方程时,要有一定的技能.这就需要大家不仅要多练,而且还要动脑.尤其是在解决实际问题中.这节课我们就来解决一个实际问题.Ⅱ.讲授新课[师]看大屏幕.(出示投影片§ 2.2.3B)在一块长16 m ,宽12 m 的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半,你能给出设计方案吗?[师]大家仔细看题,弄清题意后,分组进行讨论,设计具体方案,并说说你的想法.[生甲]我们组的设计方案如右图所示,其中花园四周是小路,它们的宽度都相等.这样设计既美观又大方,通过列方程、解方程,可以得到小路的宽度为2 m 或12 m .[师]噢,同学们来想一想,甲组的设计符合要求吗?如果符合,请说明是如何列方程,又如何求解方程的;如果不符合,请说明理由.[生乙]甲组的设计符合要求.我们可以假设小路的宽度为x m ,则根据题意,可得方程 (16-2x)(12-2x)=21×16×12, 也就是x 2-14x-24=0.然后利用配方法来求解这个方程,即x 2-14x+24=0,x 2-14x =-24,x 2-14x+72=-24+72,(x-7)2=25,x-7=±5,即x-7=5,x-7=-5.∴x 1=12.x 2=2.因此,小路的宽度为2 m 或12 m .由以上所述知:甲组的设计方案符合要求.[生丙]不对,因为荒地的宽度是12 m ,所以小路的宽度绝对不能为12 m .因此甲组设计的方案不太准确,应更正为:花园四周的小路的宽度只能是2 m .[师]大家来作判断,谁说的合乎实际?[生齐声]丙同学说得有理.[师]好,一般地来说:在解一元一次方程时,只要题目、方程及解法正确,那么得出的根便是所列方程的根,一般也就是所解应用题的解,而一元二次方程有两个根,这些根虽然满足所列的一元二次方程,但未必符合实际问题.因此,解完一元二次方程之后,不要急于下结论,而要按题意来检验这些根是不是实际问题的解.这一点,丙同学做得很好,大家要学习他从多方面考虑问题.接下来,我们来看其他组设计的方案.[生丁]我们组的设计方案如右图.我们是以矩形的四个顶点为圆心,以约5.5 m 长为半径画了四个相同的扇形,则矩形除四个相同的扇形以外的地方就可作为花园的场地.因为四个相同的扇形拼凑在一起正好是一个圆,即四个相同扇形的面积之和恰为一个圆的面积,假设其半径为x m ,根据题意,可得πx 2=21×12×16. 解得x=± 96≈±5.5.因为半径为正数,所以x =-5.5应舍去.因此,由以上所述可知,我们组设计的方案符合要求.[生戊]由丁同学组的启发,我又设计了一个方案,如右图.以矩形的对角线的交点为圆心,以5.5 m 长为半径在矩形中间画一个圆,这个圆也可作为花园的场地.[生己]老师,我也设计了一个方案,图形与戊同学的一样,他是把圆作为花园的场地,而我是把圆以外的荒地作为花园的场地,圆内以备盖房子.[师]同学们设计的方案都很好,并能触类旁通,真棒.其他组怎么样?[生庚]我们组设计的方案如右图.顺次连结矩形各边的中点,所得到的四边形即是作为花园的场地.因为矩形的四个顶点处的直角三角形都全等,每个直角三角形的面积是24 m 2(即21×6×8),所以四个直角三角形的面积之和为96 m 2,则剩下的面积也正好是96 m 2,即等于矩形面积的一半.因此这个设计方案也符合要求.[生辛]我们组设计的方案如下图.图中的阴影部分可作为建花园的场所.因为阴影部分的面积为96 m 2,正好是矩形面积的一半,所以这个设计也符合要求.[生丑]我们组设计的方案如右图.图中的阴影部分可作为建花园的场地.经计算,它符合要求.[生癸]我们组的设计方案如下图.图中的阴影部分是作为建花园的场地.[师]噢,同学们能帮癸组求出图中的x 吗?[生]能,根据题意,可得方程2×21 (16-x)(12-x) =21×16×12, 即x 2-28x+96=0,x 2-28x =-96,x 2-28x+142=-96+142,(x-14)2=100,x-14=±10.∴x 1=24,x 2=4.因为矩形的长为16 m ,所以x 1=24不符合题意.因此图中的x 只能为4 m.[师]同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案. 接下来,我们再来看一个设计方案.Ⅲ.课堂练习(一)课本P 55随堂练习 11.小颖的设计方案如图所示,你能帮助她求出图中的x 吗?解:根据题意,得 (16-x)(12-x)=21×16×12, 即x 2-28x+96=0.解这个方程,得x 1=4,x 2=24(舍去).所以x=4.(二)看课本P 53~P 54,然后小结.Ⅳ.课时小结本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性.另外,还应注意用配方法解题的技能.Ⅴ.课后作业(一)课本P 55习题2.5 1、2(二)1.预习内容:P 56~P 572.预习提纲如何推导一元二次方程的求根公式.Ⅵ.活动与探究汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,在一个限速40千米/时以内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场测得甲车的刹车距离为12米,乙车的刹车距离超过10米,但小于12米,查有关资料知,甲种车的刹车距离S 甲(米)与车速x(千米/时)之间有下列关系:S 甲=0.1x+0.01x 2;乙种车的刹车距离S 乙(米)与车速x(千米/时)的关系如下图所示.请你就两车的速度方面分析相碰的原因.[过程]通过对本题的研究、探讨,让学生体会数学与现实生活紧密相连. 由甲车的刹车距离和车速的关系式S 甲=0.1x+0.01x 2,又S 甲=12,从而可求得甲 车速度,对乙车而言,从图象上知刹车距离与车速是成正比例函数关系,因而可设为x 乙=kx ,又其过点(60,15),从而得到k 值,由10<s 乙<12,可得乙车车速,进而可确定事故的原因.[结果]解:对于甲车:∵甲车刹车距离为12米,根据题意,得12=0.1x+0.01x 2.解这个方程,得x 1=30或x 2=-40(舍去),即甲车的车速为30千米/时,不超过限速.对于乙车:由图象知,其关系是一个正比例函数,设此函数为x 乙=kx∵经过点(60,15),∴15=60k , ∴k =41,即此函数解析式为S 乙=41x 根据题意,得10<41x<12. ∴40<x<48.∴乙车超过限速40千米/时的规定.∴就速度方面分析,两车相碰的原因在于乙车超速行驶.板书设计§2.2.3 配方法(三) 一、实际问题的设计方案:设计方案一:设计方案二:设计方案三:设计方案四:二、课堂练习三、课时小结四、课后作业。

2019版中考数学复习 配方法教案 新人教版

2019版中考数学复习 配方法教案 新人教版
h
2019 版中考数学复习 配方法教案 新人教版
教学时间
教学媒体 教 知识
技能 学
过程 目 方法
情感 标 态度
教学重点
教学难点
课题
配方法
新 课型 授
多媒体
1.进一步理解配方法和配方的目的.
2.掌握运用配方法解一元二次方程的步骤.
3.会利用配方法熟练灵活地解二次项系数不是 1 的一元二次方程.
通过对比用配方法解二次项系数是 1 的一元二次方程,解二次项系数不是 1 的 一元二次方程,经历从简单到复杂的过程,对配方法全面认识.
D.-2
6. a , b , c 是 ABC的三条边 ○1 当 a2 2ab c2 2bc 时,试判断 ABC的形状. ○2 证明 a2 b2 c2 2ac 0 四、小结归纳
用配方法解一元二次方程的步骤:
1.把原方程化为 ax2 bx c 0a 0 的形式,
2.把常数项移到方程右边;
教学程序及教学内容
师生行为
设计意图
一、复习引入
导语:我们在上节课,已经学习了用直接开平方法解形如 x2=p 点题,板书课题. 回顾上节课内
(p≥0)或(mx+n)2=p(p≥0)的一元二次方程,以及用配方
容以得以衔接
法解二次项系数是 1,一次项系数是偶数的一元二次方程,这
节课继续学习配方法解一元二次方程.
分析:
复习完全平方
式的,为下面用
配方法解方程
作铺垫
让学生独立完成
○1 ,复习巩固上节
课内容. 通过对比方程○1 ○2 温故知新,对比 结构,尝试解方程 探究,发现二次 ○2 ,探讨二次项系 项系数不是 1 数不是 1 的一元二 的一元二次方 次方程的解法,教 程的解法,培养 师组织学生讨论, 学生发现问题 师生交流看法,肯 的能力

人教版九年级数学上册:21.2.1 配方法 教学设计

人教版九年级数学上册:21.2.1 配方法  教学设计

人教版九年级数学上册:21.2.1 配方法教学设计一. 教材分析人教版九年级数学上册21.2.1配方法是数轴和实数章节的一部分,主要介绍了配方法的基本原理和应用。

通过配方法,学生可以更好地理解实数的性质,特别是平方根的概念。

本节课的内容为后续学习二次函数和方程打下基础。

二. 学情分析九年级的学生已经掌握了实数的基本概念,具备一定的逻辑思维能力。

但部分学生对实数的性质和配方法的理解可能还不够深入。

因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。

三. 教学目标1.让学生理解配方法的原理,掌握配方法的基本步骤。

2.培养学生运用配方法解决实际问题的能力。

3.加深学生对实数性质的认识,为后续学习打下基础。

四. 教学重难点1.配方法的原理和步骤。

2.运用配方法解决实际问题。

五. 教学方法1.讲授法:讲解配方法的原理和步骤,引导学生理解实数的性质。

2.案例分析法:通过具体案例,让学生学会运用配方法解决问题。

3.讨论法:鼓励学生参与课堂讨论,提高学生的逻辑思维能力。

六. 教学准备1.教学课件:制作配方法的动画演示,帮助学生形象地理解原理。

2.案例素材:准备一些实际问题,用于课堂练习和巩固。

3.练习题:设计一些有关配方法的练习题,检验学生对知识点的掌握。

七. 教学过程1.导入(5分钟)利用课件展示实数的性质,引导学生回顾已学知识。

然后提出本节课的主题——配方法,激发学生的学习兴趣。

2.呈现(10分钟)讲解配方法的原理和步骤,让学生跟随教师的讲解,逐步理解实数的性质。

通过动画演示,让学生直观地感受配方法的过程。

3.操练(10分钟)呈现一些实际问题,让学生运用配方法进行解决。

引导学生分组讨论,共同完成任务。

教师巡回辅导,解答学生的疑问。

4.巩固(10分钟)让学生自主完成练习题,检验对配方法的理解。

教师选取部分学生的作业进行点评,总结错误原因,强化知识点。

5.拓展(10分钟)引导学生思考:配方法在实际生活中的应用。

人教版九年级数学上册《配方法》教案

人教版九年级数学上册《配方法》教案

《配方法》教案
教学目标:
1.会用配方法解简单的数字系数的一元二次方程.
2.了解用配方法解一元二次方程的基本步骤.
3.通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力.
教学重点:
运用配方法解简单的数字系数的一元二次方程.
教学难点:
配方过程中,解一元二次方程的要点的理解.
教学过程:
解下列一元二次方程
5)1(2=x 5)2)(2(2=+x
5)6)(3(2=+x 53612)4(2=++x x
解方程015122=-+x x
解:15122=+x x ,(常数项移到右边)
222)2
12(15)212(12+=++x x (这里的二次项系数必须为1) 51)6(2=+x (整理)
51)6(±=+x (运用两边开平方)
因此方程015122=-+x x 有两个根
6511-=x 6512--=x (不合题意应舍去)
例:
2221810
221333640
.
x x x x
x x -+=+=-+=()()()学生讨论完成
课堂小结:
本节课重点学习了配方法解一元二次方程.当方程形如)0()(2≥=+n n m x 时,可直接用开平方法求解比较简单,但两边同时开平方时,要注意取正负号,不要与求算术平方根混淆.用配方法解一元二次方程首先要注意将方程化成一般形式,如果二次项系数不为1,
要先化二次项系数为1再开始配方,配方时应注意两边同时同上一次项系数一半的平方;最后整理出)0()(2≥=+n n m x 的形式,而后应用开平方求解.。

人教版数学九年级上册《配方法》教学设计1

人教版数学九年级上册《配方法》教学设计1

人教版数学九年级上册《配方法》教学设计1一. 教材分析人教版数学九年级上册《配方法》是本学期的重点内容,主要让学生掌握配方法的基本概念、方法和应用。

通过配方法的学习,使学生能解决一些实际问题,提高他们的数学解决问题的能力。

本节课的教学内容主要包括配方法的基本概念、配方法的步骤和配方法在解决实际问题中的应用。

二. 学情分析九年级的学生已经具备了一定的代数基础,对一些基本的代数运算和数学概念有一定的了解。

但学生在学习过程中,对于较为复杂的数学问题,仍存在一定的困难。

因此,在教学过程中,需要教师引导学生逐步理解配方法的概念和步骤,并通过大量的例子让学生掌握配方法在解决实际问题中的应用。

三. 教学目标1.知识与技能:让学生掌握配方法的基本概念、方法和应用。

2.过程与方法:通过学生的自主探究和合作交流,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生体验到数学在生活中的重要性。

四. 教学重难点1.配方法的基本概念和步骤。

2.配方法在解决实际问题中的应用。

五. 教学方法1.引导法:教师引导学生自主探究,发现配方法的基本概念和步骤。

2.讲解法:教师通过讲解配方法的原理和例子,使学生理解和掌握配方法。

3.练习法:学生通过大量的练习,巩固所学的配方法知识。

4.合作交流法:学生分组讨论,共同解决问题,培养学生的合作精神。

六. 教学准备1.准备相关的教学PPT,包括配方法的基本概念、步骤和应用。

2.准备一些实际问题,让学生在课堂上进行配方法的实践操作。

3.准备一些练习题,用于巩固学生的学习效果。

七. 教学过程1.导入(5分钟)教师通过一个实际问题,引导学生思考如何解决这个问题。

例如,一个长方形的长是10cm,宽是5cm,求这个长方形的面积。

让学生尝试使用已学的知识解决这个问题,从而引出配方法的概念。

2.呈现(15分钟)教师通过PPT呈现配方法的基本概念和步骤,配方法的定义、目的和应用。

人教版数学九年级上册21.2.2《配方法(1)》教学设计

人教版数学九年级上册21.2.2《配方法(1)》教学设计

人教版数学九年级上册21.2.2《配方法(1)》教学设计一. 教材分析《配方法(1)》是人教版数学九年级上册第21.2.2节的内容,主要讲述了配方法的基本概念和应用。

配方法是一种解决二次方程的有效方法,通过将二次方程转化为完全平方形式,从而简化计算和求解过程。

本节内容主要包括配方法的定义、配方法的步骤以及配方法在解决实际问题中的应用。

二. 学情分析九年级的学生已经掌握了二次方程的基本概念和求解方法,具备了一定的数学基础。

但学生在解决实际问题时,往往对这些方法的应用范围和条件把握不清,不能灵活运用。

因此,在教学本节内容时,需要帮助学生巩固已有的知识,并通过实例讲解和练习,让学生理解和掌握配方法的特点和应用。

三. 教学目标1.知识与技能:使学生理解配方法的基本概念和步骤,能够运用配方法解决简单的实际问题。

2.过程与方法:通过实例分析和练习,培养学生运用配方法解决问题的能力,提高学生的数学思维水平。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。

四. 教学重难点1.配方法的基本概念和步骤。

2.配方法在解决实际问题中的应用。

五. 教学方法1.讲授法:通过讲解配方法的基本概念和步骤,使学生掌握配方法的理论知识。

2.案例分析法:通过实例分析,让学生了解配方法在解决实际问题中的应用。

3.练习法:通过课堂练习和课后作业,巩固学生对配方法的理解和应用。

4.小组讨论法:鼓励学生分组讨论,培养学生的团队合作精神和数学思维能力。

六. 教学准备1.教材和教辅:准备人教版数学九年级上册教材和相关教辅资料。

2.课件和幻灯片:制作课件和幻灯片,用于课堂讲解和展示。

3.练习题和答案:准备一些配方法的练习题,并准备相应的答案。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,例如:“某数加上其倒数的和为2,求这个数。

”让学生尝试解决此问题,引发学生对配方法的思考。

2.呈现(15分钟)讲解配方法的基本概念和步骤,并举例说明配方法在解决实际问题中的应用。

人教版数学九年级上册教学设计21.2.1《配方法》

人教版数学九年级上册教学设计21.2.1《配方法》

人教版数学九年级上册教学设计21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21.2.1节的内容,主要是让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。

本节课的内容是学生在学习了二次函数的基础上进行学习的,对于学生来说,配方法是一种新的解决问题的方法,对于教师来说,需要引导学生从直观的图形理解配方法,逐步过渡到抽象的数学公式。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于二次函数的基本概念和性质有一定的了解。

但是,学生在学习过程中,对于一些抽象的数学公式可能会感到困惑,因此,教师需要通过具体的例子,引导学生理解配方法的原理和步骤。

三. 教学目标1.让学生理解配方法的原理和步骤,并能够运用配方法解决一些实际问题。

2.培养学生的逻辑思维能力和抽象思维能力。

3.通过对配方法的学习,培养学生解决问题的能力和创新精神。

四. 教学重难点1.配方法的原理和步骤。

2.如何引导学生从直观的图形理解配方法,逐步过渡到抽象的数学公式。

五. 教学方法1.采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解配方法的原理和步骤。

2.采用数形结合的教学方法,通过直观的图形,帮助学生理解配方法。

3.采用小组合作的学习方法,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.准备相关的教学PPT,包括配方法的原理和步骤,以及一些实际问题的例子。

2.准备一些相关的数学题目,用于巩固学生对配方法的理解。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这个问题,从而引出配方法的概念。

2.呈现(10分钟)通过PPT,向学生介绍配方法的原理和步骤,以及一些相关的例子。

3.操练(10分钟)让学生通过小组合作,解决一些实际问题,从而加深对配方法的理解。

4.巩固(5分钟)通过一些相关的数学题目,巩固学生对配方法的理解。

5.拓展(5分钟)引导学生思考,配方法在实际生活中有哪些应用,从而培养学生的创新精神。

人教版数学九年级上册22.2.2《配方法》教学设计1

人教版数学九年级上册22.2.2《配方法》教学设计1

人教版数学九年级上册22.2.2《配方法》教学设计1一. 教材分析《配方法》是人教版数学九年级上册第22章第2节的内容,这部分内容是在学生已经掌握了整式的加减、乘除,以及完全平方公式的基础上进行学习的。

配方法是一种解决问题的方法,通过构造完全平方公式,将问题转化为学生已经掌握的知识点,从而解决问题。

配方法在解决二次方程、二次不等式以及函数图像的平移等问题中有着广泛的应用。

二. 学情分析九年级的学生已经具备了一定的数学基础,能够理解和运用整式的加减、乘除以及完全平方公式。

但是,对于配方法的原理和应用,他们可能还不太清楚。

因此,在教学过程中,需要通过具体例子让学生理解配方法的原理,并通过练习让学生掌握配方法的应用。

三. 教学目标1.知识与技能:让学生掌握配方法的原理,并能够运用配方法解决相关问题。

2.过程与方法:通过具体例子,让学生理解配方法的过程,并能够独立完成配方法的操作。

3.情感态度与价值观:培养学生对数学的兴趣,提高学生解决问题的能力。

四. 教学重难点1.配方法的原理理解2.配方法在解决实际问题中的应用五. 教学方法采用讲解法、示范法、练习法、讨论法等教学方法,通过具体例子引导学生理解配方法,并通过练习让学生巩固所学知识。

六. 教学准备1.教学PPT七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这类问题。

例如,解决方程x^2 -5x + 6 = 0。

2.呈现(15分钟)讲解配方法的原理,并通过PPT展示配方法的具体步骤。

配方法的步骤如下:(1)将方程写成完全平方的形式;(2)根据完全平方公式,构造出两个相同的因式;(3)将方程转化为两个因式的乘积等于0的形式;(4)根据乘积等于0的性质,解出方程的解。

3.操练(15分钟)让学生独立完成配方法的操作,教师巡回指导。

4.巩固(10分钟)让学生解答一些相关的练习题,检验学生对配方法的理解和掌握程度。

5.拓展(10分钟)讲解配方法在解决二次方程、二次不等式以及函数图像的平移等问题中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.解下列方程:○1 x2-8x+7=0
○2 2x2+8x-2=0
○3 2x2+1=3x
○4 3x2-6x+4=0
题目设置说明:
1.○1 与上节课衔接(二次项系数为 1)
2.○2 至○4 二次项系数不为 1.二次项系数化为 1 后,○2 的一次项
系数为偶数.为后面做铺垫.○3 的一次项系数为分数,○4 无解.
教学程序及教学内容
师生行为
设计意图
一、复习引入
导语:我们在上节课,已经学习了用直接开平方法解形如 x2=p 点题,板书课题. 回顾上节课内
(p≥0)或(mx+n)2=p(p≥0)的一元二次方程,以及用配方
容以得以衔接
法解二次项系数是 1,一次项系数是偶数的一元二次方程,这
节课继续学习配方法解一元二次方程.
加深认识,深化 提高,形成学生 自己的知识体
2 / 3文档可自由编辑打印
必做:P42:3(3)(4)
系.
选做:P43:8、9
教 学 反思
3 / 3文档可自由编辑打印
右边是负数,则一元二次方程无解.
不写出完整的解方程过程,原方程变形为(x+m)2=n 的形
式后,若 n 为 0,原方程有两个相等的实数根;若 n 为正数,原
方程有两个不相等的实数根;若 n 为负数,则原方程无实数根.
五、作业设计
学生归纳,总结阐 述,体会,反思.并 做出笔记.
加强教学反 思,帮助学生 养成系统整理 知识的学 习惯
C.(2x+1)2+3=0 D.( 1 x-a)2=a
2
4.解决课本练习 2(2)到(6)
5.已知 x2+y2+z2-2x+4y-6z+14=0,则 x+y+z 的值是( ).
A.1 B.2 C.-1
D.-2
6. a , b , c 是 ABC的三条边 ○1 当 a2 2ab c2 2bc 时,试判断 ABC的形状. ○2 证明 a2 b2 c2 2ac 0 四、小结归纳
1 / 3文档可自由编辑打印
○2 .方程两边同除以二次项系数,化二次项系数为 1; ○3 .方程两边都加上一次项系数一半的平方; ○4 .原方程变形为(x+m)2=n 的形式;
与经验,总结成 文,为熟练运用 作准备
○5 .如果右边是非负数,就可以直接开平方求出方程的解,
如果右边是负数,则一元二次方程无解.
(3)运用总结的配方法步骤解方程○3 ,先观察将其变形,即将一
次项移到方程的左边,常数项移到方程的右边;解方程○4 配方
后右边是负数,确定原方程无解.
(4) 不写出完整的解方程过程,到哪一步就可以确定方程的解
得情况?
三、课堂训练
1.方程 4x2 4 3x 2 0化为x a2 b的形式,正确的是 ( )
A.(x- 1 )2= 8 B.(x- 2 )2=0 C.(x- 1 )2= 8
39
3
39
2= 10
9
).

完成.教师巡视指
导,了解学生掌握情
D.(x-
1 3
况,对于好的做法, )加以鼓励表扬.并集
体进行交流评价,体
会方法,形成规律.
使学生自主探 究,进一步领 会配方思想, 并熟练进行配 方.
3.下列方程中,一定有实数解的是( ). A.x2+1=0 B.(2x+1)2=0
1. 通过对配方法的探究活动,培养学生勇于探索的学习精神. 2. 感受数学的严谨性和数学结论的确定性. 3. 温故知新,培养学生利用旧知解决问题的能力.
用配方法解一元二次方程
用配方法解二次项系数不是 1 的一元二次方程,首先方程两边都除以二次项系数, 将方程化为二次项系数是 1 的类型.
教学过程设计
2019 版中考数学复习 配方法教案 新人教版
教学时间
教学媒体 教 知识
技能 学
过程 目 方法
情感 标 态度
教学重点
教学难点
课题
配方法
新 课型 授
多媒体
1.进一步理解配方法和配方的目的.
2.掌握运用配方法解一元二次方程的步骤.
3.会利用配方法熟练灵活地解二次项系数不是 1 的一元二次方程.
通过对比用配方法解二次项系数是 1 的一元二次方程,解二次项系数不是 1 的 一元二次方程,经历从简单到复杂的过程,对配方法全面认识.
A. x 3 2 5 4
2
x
3 2
3
B. x 3 2 5 4
C.
x
2
3 2
1 4
根据上述方程的根 的情况,学生思考并 D. 叙述
学生先自主,再合 作交流,总结经验,
初步了解一元 二次方程的根 的情况,并为 公式法的学习 奠定基础
2.配方法解方程 2x2- 4 x-2=0 应把它先变形为( 3
二、探究新知
1.填空:
○1 x2 8x ____ x ____2 ○2 x2 x ____ x ____2
○3 x2 ___ 4 x ____2 ○4 x2 ___ 9 x ____2
4
2.填空: ○1 x2 8x a是完全平方式, a =
○2 x2 mx 9是完全平方式, m
用配方法解一元二次方程的步骤:
1.把原方程化为 ax2 bx c 0a 0 的形式,
2.把常数项移到方程右边;
3.方程两边同除以二次项系数,化二次项系数为 1;
4.方程两边都加上一次项系数一半的平方;
5.原方程变形为(x+m)2=n 的形式;
6.如果右边是非负数,就可以直接开平方求出方程的解,如果
分析:
复习完全平方
式的,为下面用
配方法解方程
作铺垫
让学生独立完成
○1 ,复习巩固上节
课内容. 通过对比方程○1 ○2 温故知新,对比 结构,尝试解方程 探究,发现二次 ○2 ,探讨二次项系 项系数不是 1 数不是 1 的一元二 的一元二次方 次方程的解法,教 程的解法,培养 师组织学生讨论, 学生发现问题 师生交流看法,肯 的能力
(1)解方程○1 ,复习用配方法解二次项系数为 1 的一元二次方 定其可行性,总结
程步骤;
出一般步骤.
(2)对比○1 的解法得到方程○2 的解法,总结出用配方法解二次 让学生运用总结出
项系数不为 1 的一元二次方程的一般步骤: ○1 .把常数项移到方程右边;
的一般步骤解方程 ○3 ○4 ,其中○3 需要 通过学生亲自 先整理,○4 无解. 解方程的感受
相关文档
最新文档