蛋白质的理化性质(一)

合集下载

蛋白质的理化性质

蛋白质的理化性质
重金属离子及生物碱试剂等 。
• 应用举例 ➢ 临床医学上,变性因素常被应用来消毒及 灭菌。 ➢ 此外, 防止蛋白质变性也是有效保存蛋白质 制剂(如疫苗等)的必要条件。
若蛋白质变性程度较轻,去除变性因素 后,蛋白质仍可恢复或部分恢复其原有的构 象和功能,称为复性(renaturation) 。
去除尿素、 β-巯基乙醇
第二节 蛋白质的理化性质
蛋白质的理化性质
一、蛋白质的两性解离
蛋白质分子除两端的氨基和羧基可解离外,氨基酸 残基侧链中某些基团,在一定的溶液pH条件下都可解离 成带负电荷或正电荷的基团。
* 蛋白质的等电点( isoelectric point, pI)
当蛋白质溶液处于某一pH时,蛋白质解离成正、负 离子的趋势相等,即成为兼性离子,净电荷为零,此时溶 液的pH称为蛋白质的等电点。
天然状态, 有催化活性
尿素、 β-巯基乙醇
非折叠状态,无活性
* 蛋白质沉淀 在一定条件下,蛋白疏水侧链暴露在外,肽 链融会相互缠绕继而聚集,因而从溶液中析出。 变性的蛋白质易于沉淀,有时蛋白质发生沉 淀,但并不变性。 * 蛋白质的凝固作用(protein coagulation) 蛋白质变性后的絮状物加热可变成比较坚固 的凝块,此凝块不易再溶于强酸和强碱中。
R CH COOH NH2
R CH COOH +OH-
NH3+
+H+
R CH COO- +OH- R CH COO-
NH3+
+H+
NH2
pH<pI
阳离子
pH=pI
氨基酸的兼性离子
pH>pI
阴离子
二、蛋白质的胶体性质

蛋白质的理化性质和分类

蛋白质的理化性质和分类

• • • • •
3、蛋白质沉淀的方法: (1)盐析法 (2)有机溶剂沉淀法 (3)某些酸类沉淀法 (4)重金属盐沉淀法
(1)盐析法
• 定义:向蛋白质溶液中加入一定浓度的中 性盐,可破坏蛋白质表面的水化膜并中和 电荷,从而使蛋白质从溶液中析出的现象 称为盐析 • 一般用盐析法分离出来的蛋白质不变性, 故常用于天然蛋白质的分离 • 盐析时若将该溶液的PH调至该蛋白质的等 电点则效果更佳
二、蛋白质的分类
• (一)根据蛋白质形状 • 1.纤维状蛋白质 • 2.球状蛋白质
• (二)根据蛋白质组成成分 • 1.单纯蛋白质 • 根据来源及理化性质,可分为清蛋白、球 蛋白、谷蛋白、醇溶谷蛋白、精蛋白、组 蛋白、硬蛋白 • 2.结合蛋白质 = 蛋白质部分 + 非蛋白质部 分(辅基) • 根据辅基不同,结合蛋白可分为核蛋白、 糖蛋白、脂蛋白、色蛋白、磷蛋白、金属 蛋白
蛋白质的胶体性质
• 颗粒大小达1~100nm之间,属胶体。因此溶 于水,成为亲水胶体。 • 稳定亲水胶体的因素: 水化膜 表面电荷
不通透性:半透膜 透析原理:
透析
• 将蛋白质溶液(不纯)放入透析袋中,放 在流水中(纯水),让低分子杂质(如盐 类)透过半透膜扩散入水内,蛋白质则留 在袋中,质负离子结合成不溶 性的蛋白质盐而沉淀 • 此法常引起蛋白质变性 • 临床上可利用这性质抢救重金属盐中毒的 病人,如口服牛奶、蛋清等,然后把生成 的不溶性蛋白质盐排出体外
(三)凝固作用 加热使蛋白质变性并结成凝块,此凝块不在 溶于强酸和强碱中,这种现象称为蛋白质的 凝固作用。凝固其实是蛋白质变性后不可进 一步发展的不可逆的结果。
几种蛋白质的等电点
电泳
定义:溶液中带电粒子在电场中向电性相反 的电极移动的现象。

蛋白质的理化性质

蛋白质的理化性质
蛋白质变性作用不仅广泛应用于生产实践,而且在理论上对阐明蛋白 质结构与功能的关系等问题具有重要意义。蛋白质变性作用有有利的一面 ,也有不利的一面。有利的方面可充分利用,不利的方面则需竭力阻止。
五、蛋白质的紫外吸收
大部分蛋白质均含有带芳香环的苯丙氨酸、酪氨酸和色氨酸。这三种 氨基酸的在280nm 附近有最大吸收值。因此,大多数蛋白质在280nm 附近显示强的吸收。利用这个性质,可以对蛋白质进行定性鉴定。
COO- H+ P
NH3+
COOH P
Cl3CCOO-
COOH P
NH3+
NH3+¡¤- OOC CCl3
蛋白质复合盐
生化检验工作中。常用此类试剂沉淀蛋白质。
(5)热凝固沉淀蛋白质
蛋白质受热变性后,在有少量盐类存在或将pH调至等电点,则很容
易发生凝固沉淀。
原因可能由于变性蛋白质的空间结构解体,疏水基团外露,水膜破 坏,同时由于等电点破坏了带电状态等而发生絮结沉淀。
天然蛋白质分子由于受各种物理和化学因素的影响,有序的空间结构 被破坏,致使蛋白质的理化性质和生物学性质都有所改变,但并不导致蛋 白质一级结构的破坏。这种现象称为蛋白质的变性作用。变性的蛋白质叫 做变性蛋白质,变性蛋白质的分子量不变。 2、变性因素
⑴物理因素。如:加热、紫外线照射、X射线照射、超声波、高压、剧烈 摇荡、搅拌、表面起泡等。
⑵化学因素。如:强酸、强碱、脲素、重金属盐、三氯醋酸、乙醇、胍、表 面活性剂、生物碱试剂等,都可引起蛋白质的变性。
3、变性的原因 可概括如下: ⑴蛋白质分子的副键破坏,致使其空间结构发生变化。 ⑵蛋白、-NH2等与某些化学试剂发生反应。
分离提取蛋白质常用硫酸铵[(NH4)2SO4]、硫酸钠(Na2SO4)、氯化钠( NaCl)、硫酸镁(MgSO4)等中性盐来沉淀蛋白质,这种沉淀蛋白质的方法 叫盐析法。

蛋白质的分离纯化(1)

蛋白质的分离纯化(1)
蛋白质等电点: 在某pH时蛋白质所带正电荷与负电荷恰好相等,即蛋
白质的净电荷为零时的pH称等电点(pI)。
蛋白质等离子点: 没有其他盐类干扰时, 蛋白质质子供体基团解离出来
的质子数与质子受体基团结合的质子数相等时的pH称为等 离子点。
二、蛋白质的紫外吸收性质
蛋白质溶液能吸收一定波长的紫外光,主要是由带 芳香环的氨基酸决定的。其在280nm处对紫外吸收能力 的强弱顺序为:








等电聚焦电泳
SDS-PAGE
双向电泳后的凝胶经染色蛋白呈现二维分布图,水平方向反映 出蛋白在pI上的差异,而垂直方向反映出它们在分子量上的差别。
所以双向电泳可以将分子量相同而等电点不同的蛋白质以及等 电点相同而分子量不同的蛋白质分开。
5.层析聚焦(P310)
是根据蛋白质的等电点差异分离蛋白质混合物的柱层析方法。
(polyacrylaminde gel electrophoresis) 电泳
PAGE
样品浓缩成很薄的起始区带(0.1mm)
它以聚丙烯酰胺 凝胶为支持物,一般 制成凝胶柱或凝胶板 (不连续体系)。
浓缩胶 分离胶
凝胶的浓度(孔径大小)、 缓冲液组分和离子强度、 pH以及电场强度都是不同的
分离成单区带
依次洗脱收集后, 通过紫外吸收法测定吸 收峰。
这样大小不同的蛋白 质就被分离开来了。
(二)根据蛋白质溶解度不同的纯化方法
(蛋白质的胶体和沉淀性质)
主要方法: 1:等电点沉淀和PH值控制 2:蛋白质的盐溶和盐析 3:有机溶剂分级分离法 4:改变温度
1.等电点沉淀和PH值控制
即在不改变其它条件的情况下,PH处于等电点时的蛋白质 溶解度达到最低点。而位于等电点两侧的PH条件下蛋白质的溶

蛋白质的理化性质教学内容

蛋白质的理化性质教学内容

蛋白质的理化性质第四节蛋白质的理化性质一、两性离解和等电点蛋白质是由氨基酸组成的,在其分子表面带有很多可解离基团,如羧基、氨基、酚羟基、咪唑基、胍基等。

此外,在肽链两端还有游离的α-氨基和α-羧基,因此蛋白质是两性电解质,可以与酸或碱相互作用。

溶液中蛋白质的带电状况与其所处环境的pH 有关。

当溶液在某一特定的pH 条件下,蛋白质分子所带的正电荷数与负电荷数相等,即净电荷数为零,此时蛋白质分子在电场中不移动,这时溶液的pH 称为该蛋白质的等电点,此时蛋白质的溶解度最小。

由于不同蛋白质的氨基酸组成不同,所以蛋白质都有其特定的等电点,在同一pH 条件下所带净电荷数不同。

如果蛋白质中碱性氨基酸较多,则等电点偏碱,如果酸性氨基酸较多,等电点偏酸。

酸碱氨基酸比例相近的蛋白质其等电点大多为中性偏酸,约在5.0 左右。

1、两性解离蛋白质可以在酸性环境中与酸中和成盐,而游离成正离子,即蛋白质分子带正电,在电场中向阴极移动;在碱性环境中与碱中和成盐而游离成负离子,即蛋白质分子带负电,在电场中向阳极移动。

以“P”代表收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除蛋白质分子,以―NH 2 和―COOH 分别代表其碱性和酸性解离基团,随pH 变化,蛋白质的解离反应可简示如下:(pH>pI ) (pH=pI ) (pH<pI )移向阳极 不移动 移向阴极2、等电点沉淀和电泳①等电点沉淀蛋白质在等电点时,以两性离子的形式存在,其总电荷数为零,这样的蛋白质颗粒在溶液中因为没有相同电荷而相互排斥的影响,所以极易借静电引力迅速结合成较大的聚集体,因而易发生沉淀析出。

这一性质常在蛋白质分离、提纯时应用。

在等电点时,除了蛋白质的溶解度最小外,其导电性、粘度、渗透压以及膨胀性均为最小。

②电泳蛋白质颗粒在溶液中解离成带电的颗粒,在直流电场中向其所带电荷相反的电极移动。

这种大分子化合物在电场中定向移动的现象称为电蛋白质的阴离子蛋白质的阳离子蛋白质的兼性离子(等电点)NH 3+COO -P NH 3+P COOHNH 2COO-P泳。

蛋白质的理化性质PPT课件

蛋白质的理化性质PPT课件
第三章蛋白质的理化性质
蛋白质的理化性质
一、两性性质及等电点 二、胶体性质 三、变性与复性作用 四、蛋白质的沉淀作用 五、蛋白质的颜色反应 六、蛋白质的紫外吸收性质
一、蛋白质的两性解离与等电点
蛋白质分子中氨基酸残基的侧链上存在游离的 氨基和羧基,因此蛋白质与氨基酸一样具有两 性解离性质,具有特定的等电点(pI)。 溶液pH=pI时,蛋白质所带正负电荷相等; pH>pI时,蛋白质带净负电荷; pH<pI时,蛋白质带净正电荷。
2.沉淀种类:可逆与不可逆
3.沉淀方法:
沉淀后蛋白质仍能保持生物活性的沉淀方 法
沉淀后蛋白质失去生物活性的沉淀方法
四、蛋白质的沉淀作用
2.沉淀种类:可逆与不可逆 3.沉淀方法:
沉淀后蛋白质仍能保持生物活性的沉淀方 法
(1)盐析-中性盐沉淀法 (2)有机溶剂沉淀法 (3)酸沉淀法
蛋白质仍能保持生物活性的沉淀方法
等电点时特点:
(1)净电荷为零 (2)一定离子强度的缓冲液:等离子点特征常数 (3)多数蛋白质在水中等电点偏酸(较低) 碱性AA/酸性AA 胃蛋白酶 0.2 等电点 1.0
血红蛋白
细胞色素C 菊糖酶
1.7
2.9 0.34
6.7
10.7 8.2
(4)导电性、溶解度、黏度及渗透压都最小。
蛋白质分子在一定pH的溶液中可带净的负电 荷或正电荷,故可在电场中发生移动。 不同蛋白质分子所带电荷量不同,且分子大 小也不同,故在电场中的移动速度也不同,
蛋白质仍能保持生物活性的沉淀方法
(1)盐析—中性盐沉淀
常用的中性盐:硫酸铵、氯化钠、硫酸钠等。
盐析时,pH在蛋白质的等电点处效果最好。
盐析沉淀蛋白质通常不会引起蛋白质的变性。 优点 盐析应用举例

蛋白质的理化性质

蛋白质的理化性质

蛋白质的理化性质蛋白质是一类高分子生物大分子化合物,由氨基酸分子结合而成。

下面将从化学、物理、生化等方面来介绍蛋白质的理化性质。

1. 氨基酸的性质氨基酸是蛋白质的基本组成单位,其分子结构具有酸性和碱性两部分,分别是羧基和氨基。

氨基酸的酸性和碱性反应性决定蛋白质的异性和电性。

氨基酸的酸性基团和碱性基团在不同的环境下会存在不同的离子形式,从而影响蛋白质的电性质。

2. 构象的性质蛋白质的构象是指氨基酸之间的立体构型,决定了蛋白质的特殊结构和功能。

蛋白质的构象主要由五种不同层次的结构组成,包括原生构象、二级构象、三级构象、四级构象和超级结构。

每一层次的构象都有一定的稳定性和特殊结构,是蛋白质功能和特性的决定因素。

3. 溶解和凝固的性质蛋白质在水中具有一定的溶解性,但可能会因为温度、pH值、离子强度等因素的改变而发生凝固。

这种溶解或凝固的性质取决于蛋白质的特殊结构以及其所处环境。

当蛋白质分子与水分子之间的相互作用受到破坏或受到特定溶剂或离子的作用时,蛋白质分子会转化为凝胶态或沉淀态。

4. 热力学性质蛋白质分子的热力学性质涉及其结构及其所处溶液环境的物理化学性质,可用于研究蛋白质折叠和复性过程。

蛋白质的热力学性质包括热容量、热稳定性、相转化、热解离等。

这些性质的变化与蛋白质结构的稳定性和功能密切相关。

蛋白质的光学性质主要表现为它们具有的吸收、发射光线的光学行为。

蛋白质的吸收和发射光束涉及其分子内的色团,这些分子内的色团主要由氨基酸的芳香族侧链所构成。

蛋白质的光学性质可以利用光谱分析来研究蛋白质的结构和功能。

综上所述,蛋白质的理化性质是多方面的,包括氨基酸的性质、构象的性质、溶解和凝固的性质、热力学性质以及光学性质等,这些性质的变化都会导致蛋白质的性质和功能的变化。

因此,对蛋白质的理化性质进行研究对于理解蛋白质的结构、功能与机制具有重要意义。

蛋白质的理化性质课件参考.ppt

蛋白质的理化性质课件参考.ppt

精选课件
4
练习
• 下列哪种蛋白质在pH5.0的溶液 中带负电荷?
• A.pI为5.5的蛋白质 B.pI为4.0的蛋白质 C.pI为7.0的蛋白质 D.pI为5.0的蛋白质
精选课件
5
体内大多数蛋白质的等电点在pH5.0 左右,
因而在生理条件下以阴离子形式存在 。
精选课件
6
3.电泳
定义: 带电粒子在电场中向电性相反的电极移动的现象。
若蛋白质变性程度较轻,去除变性因素,有些
可恢复其天然构象和生物活性,称为蛋白质的复性。
精选课件
25
核糖核酸酶的变性与复性示意图
8M尿素或 β-巯基乙醇
透析
精选课件
26
(五)、变性与复性
过核 程糖
核 酸 酶 的 变 性
精选课件
27
蛋白质沉淀
概念 蛋白质从溶液中析出的现象称为沉淀。
方法 盐析法、有机溶剂的沉淀、重金属盐沉淀、
蛋白质在带电场中泳动的速度和方向与其所 带电荷的性质、数量及分子的大小、形状有关。
带电荷多,分子小的泳动速度较快;反之则泳动 较慢,从而达到分离蛋白质的目的。
血清蛋白醋酸纤维素薄膜电泳可将血清蛋白
分为清蛋白、α1球蛋白、α2球蛋白、β球蛋白
、γ球蛋白。
精选课件
7
精选课件
8
A:染色后显示的蛋白质区带 B:光密度扫描定量分析
精选课件
9
精选课件
10
精选课件
11
正常
肝硬化
精选课件
12
精选课件
13
二、蛋白质的胶体性 质
1.蛋白质有胶体性质
蛋白质是生物大分子,分子量在1万~10万 kD(千道尔顿)之间,分子直径在胶体颗粒 的范围(1—100nm)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质的理化性质(一)
关键词:蛋白质蛋白质是由氨基酸组成的大分子化合物,其理化性质一部分与氨基酸相似,如两性电离、等电点、呈色反应、成盐反应等,也有一部分又不同于氨基酸,如高分子量、胶体性、变性等。

一、蛋白质的胶体性质
蛋白质分子量颇大,介于一万到百万之间,故其分子的大小已达到胶粒1~100nm范围之内。

球状蛋白质的表面多亲水基团,具有强烈地吸引水分子作用,使蛋白质分子表面常为多层水分子所包围,称水化膜,从而阻止蛋白质颗粒的相互聚集。

与低分子物质比较,蛋白质分子扩散速度慢,不易透过半透膜,粘度大,在分离提纯蛋白质过程中,我们可利用蛋白质的这一性质,将混有小分子杂质的蛋白质溶液放于半透膜制成的囊内,置于流动水或适宜的缓冲液中,小分子杂质皆易从囊中透出,保留了比较纯化的囊内蛋白质,这种方法称为透析(dialysis)。

蛋白质大分子溶液在一定溶剂中超速离心时可发生沉降。

沉降速度与向心加速度之比值即为蛋白质的沉降系数S。

校正溶剂为水,温度20℃时的沉降系数S20·w可按下式计算:式中X 为沉降界面至转轴中心的距离,W为转子角速度,W2X为向心加速度,dX/dt为沉降速度。

单位用S,即Svedberg单位,为1×1013秒,分子愈大,沉降系数愈高,故可根据沉降系数来分离和检定蛋白质。

二、蛋白质的两性电离和等电点
蛋白质是由氨基酸组成的,其分子中除两端的游离氨基和羧基外,侧链中尚有一些解离基,如谷氨酸、天门冬氨酸残基中的γ和β-羧基,赖氨酸残基中的ε-氨基,精氨酸残基的胍基和组氨酸的咪唑基。

作为带电颗粒它可以在电场中移动,移动方向取决于蛋白质分子所带的电荷。

蛋白质颗粒在溶液中所带的电荷,既取决于其分子组成中碱性和酸性氨基酸的含量,又受所处溶液的pH影响。

当蛋白质溶液处于某一pH时,蛋白质游离成正、负离子的趋势相等,即成为兼性离子(zwitterion,净电荷为O),此时溶液的pH值称为蛋白质的等电点(isoelectricpoint,简写pI)。

处于等电点的蛋白质颗粒,在电场中并不移动。

蛋白质溶液的pH 大于等电点,该蛋白质颗粒带负电荷,反之则带正电荷。

各种蛋白质分子由于所含的碱性氨基酸和酸性氨基酸的数目不同,因而有各自的等电点。

凡碱性氨基酸含量较多的蛋白质,等电点就偏碱性,如组蛋白、精蛋白等。

反之,凡酸性氨基酸含量较多的蛋白质,等电点就偏酸性,人体体液中许多蛋白质的等电点在pH5.0左右,所以在体液中以负离子形式存在。

三、蛋白质的变性
天然蛋白质的严密结构在某些物理或化学因素作用下,其特定的空间结构被破坏,从而导致理化性质改变和生物学活性的丧失,如酶失去催化活力,激素丧失活性称之为蛋白质的变性作用(denaturation)。

变性蛋白质只有空间构象的破坏,一般认为蛋白质变性本质是次级键,二硫键的破坏,并不涉及一级结构的变化。

变性蛋白质和天然蛋白质最明显的区别是溶解度降低,同时蛋白质的粘度增加,结晶性破坏,生物学活性丧失,易被蛋白酶分解。

引起蛋白质变性的原因可分为物理和化学因素两类。

物理因素可以是加热、加压、脱水、搅拌、振荡、紫外线照射、超声波的作用等;化学因素有强酸、强碱、尿素、重金属盐、十二烷基磺酸钠(SDS)等。

在临床医学上,变性因素常被应用于消毒及灭菌。

反之,注意防止蛋白质变性就能有效地保存蛋白质制剂。

变性并非是不可逆的变化,当变性程度较轻时,如去除变性因素,有的蛋白质仍能恢复或部分恢复其原来的构象及功能,变性的可逆变化称为复性。

例如,前述的核糖核酸酶中四对二硫键及其氢键。

在巯基乙醇和8M尿素作用下,发生变性,失去生物学活性,变性后如
经过透析去除尿素,巯基乙醇,并设法使疏基氧化成二硫键,酶蛋白又可恢复其原来的构象,生物学活性也几乎全部恢复,此称变性核糖核酸酶的复性。

许多蛋白质变性时被破坏严重,不能恢复,称为不可逆性变性。

四、蛋白质的沉淀
蛋白质分子凝聚从溶液中析出的现象称为蛋白质沉淀(precipitation),变性蛋白质一般易于沉淀,但也可不变性而使蛋白质沉淀,在一定条件下,变性的蛋白质也可不发生沉淀。

蛋白质所形成的亲水胶体颗粒具有两种稳定因素,即颗粒表面的水化层和电荷。

若无外加条件,不致互相凝集。

然而除掉这两个稳定因素(如调节溶液pH至等电点和加入脱水剂)蛋白质便容易凝集析出。

从图1-0可以看出,如将蛋白质溶液pH调节到等电点,蛋白质分子呈等电状态,虽然分子间同性电荷相互排斥作用消失了。

但是还有水化膜起保护作用,一般不致于发生凝聚作用,如果这时再加入某种脱水剂,除去蛋白质分子的水化膜,则蛋白质分子就会互相凝聚而析出沉淀;反之,若先使蛋白质脱水,然后再调节pH到等电点,也同样可使蛋白质沉淀析出。

引起蛋白质沉淀的主要方法有下述几种:
(一)盐析(SaltingOut)
在蛋白质溶液中加入大量的中性盐以破坏蛋白质的胶体稳定性而使其析出,这种方法称为盐析。

常用的中性盐有硫酸铵、硫酸钠、氯化钠等。

各种蛋白质盐析时所需的盐浓度及pH不同,故可用于对混和蛋白质组分的分离。

例如用半饱和的硫酸铵来沉淀出血清中的球蛋白,饱和硫酸铵可以使血清中的白蛋白、球蛋白都沉淀出来,盐析沉淀的蛋白质,经透析除盐,仍保证蛋白质的活性。

调节蛋白质溶液的pH至等电点后,再用盐析法则蛋白质沉淀的效果更好。

(二)重金属盐沉淀蛋白质
蛋白质可以与重金属离子如汞、铅、铜、银等结合成盐沉淀,沉淀的条件以pH稍大于等电点为宜。

因为此时蛋白质分子有较多的负离子易与重金属离子结合成盐。

重金属沉淀的蛋白质常是变性的,但若在低温条件下,并控制重金属离子浓度,也可用于分离制备不变性的蛋白质。

相关文档
最新文档