第2章 随机分析(使用版)

合集下载

2020_2021学年高中数学第二章随机变量及其分布2.2.1条件概率学案含解析新人教A版选修2_3

2020_2021学年高中数学第二章随机变量及其分布2.2.1条件概率学案含解析新人教A版选修2_3

2.2 二项分布及其应用2.2.1 条件概率内容 标 准学 科 素 养 1.理解条件概率的定义. 2.掌握条件概率的计算方法.3.利用条件概率公式解决一些简单的实际问题.利用数学抽象 发展数学建模 提升数学运算授课提示:对应学生用书第32页[基础认识]知识点 条件概率预习教材P 51-53,思考并完成以下问题(1)三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小?提示:如果三张奖券分别用X 1,X 2,Y 表示,其中Y 表示那张中奖奖券,那么三名同学的抽奖结果共有六种可能:X 1X 2Y ,X 1YX 2,X 2X 1Y ,X 2YX 1,YX 1X 2,YX 2X 1.用B 表示事件“最后一名同学抽到中奖奖券”,则B 仅包含两个基本事件:X 1X 2Y ,X 2X 1Y .由古典概型计算概率的公式可知,最后一名同学抽到中奖奖券的概率为P (B )=26=13.(2)如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是多少?提示:因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有X 1X 2Y ,X 1YX 2,X 2X 1Y 和X 2YX 1.而“最后一名同学抽到中奖奖券”包含的基本事件仍是X 1X 2Y 和X 2X 1Y .由古典概型计算概率的公式可知,最后一名同学抽到中奖奖券的概率为24,即12.知识梳理 1.条件概率 (1)事件个数法:P (B |A )=n AB n A(2)定义法:P (B |A )=P AB P A(1)0≤P (B |A )≤1.(2)如果B 和C 是两个互斥的事件,则P (B ∪C |A )=P (B |A )+P (C |A ).[自我检测]1.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A.8225B.12C.38D.34 答案:C2.某人一周晚上值班2次,在已知他周日一定值班的条件下,他在周六晚上或周五晚上值班的概率为________.答案:13授课提示:对应学生用书第32页探究一 求条件概率[阅读教材P 53例1]在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率. 题型:求事件的概率及条件概率方法步骤:(1)先计算出不放回地依次抽2次的试验结果总数; (2)分别计算出第1次抽到理科题和两次都抽到的试验结果总数; (3)由概率的计算公式得出所求概率.[例1] 盒内装有除型号和颜色外完全相同的16个球,其中6个是E 型玻璃球,10个是F 型玻璃球.E 型玻璃球中有2个是红色的,4个是蓝色的;F 型玻璃球中有3个是红色的,7个是蓝色的.现从中任取1个,已知取到的是蓝球,问该球是E 型玻璃球的概率是多少?[解析] 由题意得球的分布如下:E 型玻璃球F 型玻璃球总计 红 2 3 5 蓝 4 7 11 总计61016设A ={取得蓝球法一:∵P (A )=1116,P (AB )=416=14,∴P (B |A )=P AB P A =141116=411. 法二:∵n (A )=11,n (AB )=4, ∴P (B |A )=n AB n A=411. 方法技巧 求条件概率P (B |A )的关键就是抓住事件A 为条件和A 与B 同时发生这两点,公式P (B |A )=n AB n A=P AB P A既是条件概率的定义,也是求条件概率的公式,应熟练掌握.跟踪探究 1.集合A ={1,2,3,4,5,6},甲、乙两人各从A 中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下.(1)求乙抽到的数比甲抽到的数大的概率; (2)求乙抽到偶数的概率;(3)集合A ={1,2,3,4,5,6},甲乙两人各从A 中任取一球.若甲先取(放回),乙后取,若事件A :“甲抽到的数大于4”;事件B :“甲、乙抽到的两数之和等于7”,求P (B |A ).解析:(1)设“甲抽到奇数”为事件C , “乙抽到的数比甲抽到的数大”为事件D ,则事件C 包含的基本事件总数为C 13·C 15=15个,事件CD 同时发生包含的基本事件总数为5+3+1=9个, 故P (D |C )=915=35.(2)在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率P =915=35.(3)甲抽到的数大于4的情形有:(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有:(5,2),(6,1),共2个.所以P (B |A )=212=16.探究二 条件概率的性质及应用[阅读教材P 53例2]一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率. 题型:互斥事件的条件概率方法步骤:(1)不超过2次就按对包含“第1次按对”和“第1次没按对,第2次按对”两事件的和事件;(2)分别求出“第1次按对”和“第1次没按对,第2次按对”的概率; (3)由互斥事件概率的计算公式得出所求概率.[例2] 在某次考试中,要从20道题中随机抽出6道题,若考生至少能答对其中4道题即可通过,至少能答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.[解析] 记事件A 为“该考生6道题全答对”,事件B 为“该考生答对了其中5道题,另一道答错”,事件C 为“该考生答对了其中4道题,另2道题答错”,事件D 为“该考生在这次考试中通过”,事件E 为“该考生在这次考试中获得优秀”,则A ,B ,C 两两互斥,且D =A ∪B ∪C ,E =A ∪B ,可知P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=C 610C 620+C 510C 110C 620+C 410C 210C 620=12 180C 620, P (AD )=P (A ),P (BD )=P (B ), P (E |D )=P (A |D )+P (B |D )=P A P D+P BPD =210C 62012 180C 620+2 520C 62012 180C 620=1358. 故获得优秀成绩的概率为1358.方法技巧 当所求事件的概率相对较复杂时,往往把该事件分成两个(或多个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用P (B ∪C |A )=P (B |A )+P (C |A )便可求得较复杂事件的概率.跟踪探究 2.在一个袋子中装有除颜色外其他都相同的10个球,其中有1个红球,2个黄球,3个黑球,4个白球,从中依次不放回地摸2个球,求在摸出的第一个球是红球的条件下,第二个球是黄球或黑球的概率.解析:法一:设“摸出的第一个球为红球”为事件A ,“摸出的第二个球为黄球”为事件B ,“摸出的第二个球为黑球”为事件C ,则P (A )=110,P (AB )=1×210×9=145,P (AC )=1×310×9=130.∴P (B |A )=P AB P A =145110=1045=29, P (C |A )=P AC P A =130110=13. ∴P (B ∪C |A )=P (B |A )+P (C |A )=29+13=59.故所求的条件概率为59.法二:∵n (A )=1×C 19=9,n [(B ∪C )∩A ]=C 12+C 13=5,∴P (B ∪C |A )=59.故所求的条件概率为59.授课提示:对应学生用书第33页[课后小结](1)条件概率:P (B |A )=P AB P A=n AB n A.(2)概率P (B |A )与P (AB )的区别与联系:P (AB )表示在样本空间Ω中,计算AB 发生的概率,而P (B |A )表示在缩小的样本空间ΩA 中,计算B 发生的概率.用古典概型公式,则P (B |A )=AB 中样本点数ΩA 中样本点数,P (AB )=AB 中样本点数Ω中样本点数.[素养培优]1.因把基本事件空间找错而致错一个家庭中有两名小孩,假定生男、生女是等可能的.已知这个家庭有一名小孩是女孩,问另一名小孩是男孩的概率是多少?易错分析:解决条件概率的方法有两种,第一种是利用公式P (B |A )=P AB P A.第二种为P (B |A )=n AB n A,其中找对基本事件空间是关键.考查数学建模的学科素养.自我纠正:法一:一个家庭的两名小孩只有4种可能:{两名都是男孩},{第一名是男孩,第二名是女孩},{第一名是女孩,第二名是男孩},{两名都是女孩}.由题意知这4个事件是等可能的,设基本事件空间为Ω,“其中一名是女孩”为事件A ,“其中一名是男孩”为事件B ,则Ω={(男,男),(男,女),(女,男),(女,女)},A ={(男,女),(女,男),(女,女)},B ={(男,男),(男,女),(女,男)},AB ={(男,女),(女,男)}.∴P (AB )=24=12,P (A )=34.∴P (B |A )=P AB P A =1234=23. 法二:由方法一可知n (A )=3,n (AB )=2. ∴P (B |A )=n AB n A =23. 2.“条件概率P (B |A )”与“积事件的概率P (A ·B )”混同袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率.易错分析:本题错误在于P (AB )与P (B |A )的含义没有弄清,P (AB )表示在样本空间S 中,A 与B 同时发生的概率;而P (B |A )表示在缩减的样本空间S A 中,作为条件的A 已经发生的条件下事件B 发生的概率.考查数学建模的学科素养.自我纠正:P (C )=P (AB )=P (A )·P (B |A )=410×69=415.。

《时间序列分析讲义第02章滞后算子》

《时间序列分析讲义第02章滞后算子》

第二章滞后算子及其性质滞后算子是对时间序列进行动态线性运算的主要工具,利用滞后算子可以使得一些非线性运算非常简洁。

§ 2.1基本概念时间序列是以观测值发生的时期作为标记的数据集合。

一般情况下,我们是从某个特定的时间开始采集数据,直到另一个固定的时间为止,我们可以将获得的数据表示为:(y i, V2, ,Y T)如果能够从更早的时间开始观测,或者观测到更晚的时期,那么上面的数据区间可以进一步扩充。

相对而言,上述数据只是一个数据的片段,整个数据序列可以表示为:( ,y i,y2, ,*"•,) ={y t}匚;例2.1几种代表性的时间序列(1) 时间趋势本身也可以构成一个时间序列,此时:y t =t ;(2) 另一种特殊的时间序列是常数时间序列,即:y t =c , c是常数,这种时间的取值不受时间的影响;(3) 在随机分析中常用的一种时间序列是高斯白噪声过程,表示为:y t =为,{%};妾是一个独立随机变量序列,每个随机变量都服从N (0,。

2)分布。

时间序列之间也可以进行转换,类似于使用函数关系进行转换。

它是将输入时间序列转换为输出时间序列。

例2.2几种代表性的时间序列转换(1) 假设x t是一个时间序列,假设转换关系为:y t =P为,这种算子是将一个时间序列的每一个时期的值乘以常数转换为一个新的时间序列。

(2) 假设X t和W t是两个时间序列,算子转换方式为:y t =* +W t ,此算子是将两个时间序列求和。

定义2.1如果算子运算是将一个时间序列的前一期值转化为当期值,则称此算子为滞后算子,记做L。

即对任意时间序列x t,滞后算子满足:L(x Q = X 4 (1)类似地,可以定义高阶滞后算子,例如二阶滞后算子记为L2,对任意时间序列x t,二阶滞后算子满足:L2(*)三L[L(xJ] =x^ ⑵一般地,对于任意正整数k ,有:L k (x t) = x t * (3)命题2.1滞后算子运算满足线性性质:(1) L(: x t) =':L(x t)(2) L(x t W t)=L(x Q L(W t)证明:(1)利用滞后算子性质,可以得到:L( ' xt) = :xj = ' L(xt)(2) L( x t w t)=x t】w t1 =L(x t) L(w t) End由于滞后算子具有上述运算性质和乘法的交换性质,因此可以定义滞后算子多项式,它的作用是通过它对时间序列的作用获得一个新的时间序列,并且揭示这两个时间序列之间的关系。

高中数学第二章随机变量及其分布 事件的独立性学案含解析新人教A版选修2_3

高中数学第二章随机变量及其分布 事件的独立性学案含解析新人教A版选修2_3

2.2.2 事件的独立性自主预习·探新知情景引入在一次有关“三国演义”的知识竞赛中,三个“臭皮匠”能答对某题目的概率分别为50%,45%,40%,“诸葛亮”能答对该题目的概率为85%,如果将“三个臭皮匠”组成一组与“诸葛亮”进行比赛,各选手独立答题,不得商量,团队中只要有一人答出即为该组获胜.试问:哪方获胜的可能性大?新知导学相互独立事件1.概念(1)设A,B为两个事件,若事件A是否发生对事件B发生的概率没有影响,即__P(B|A)=P(B)__,则称两个事件A,B相互独立,并把这两个事件叫做__相互独立事件__.(2)对于n个事件A1,A2,…,A n,如果其中任一个事件发生的概率不受__其他事件是否发生__的影响,则称n个事件A1,A2,…,A n相互独立.2.性质(1)如果事件A与B相互独立,那么事件A与__B__,A与__B__,__A__与__B__也都相互独立.(2)若事件A与B相互独立,则P(A|B)=__P(A)__,P(A∩B)=__P(A)×P(B)__.(3)若事件A1,A2,…,A n相互独立,那么这n个事件都发生的概率,等于__每个事件发生的概率积__,即P(A1∩A2∩…∩A n)=P(A1)×P(A2)×…×P(A n).并且上式中任意多个事件A i换成其对立事件后等式仍成立.预习自测1.(2020·刑台高二检测)甲、乙两人各用篮球投篮一次,若两人投中的概率都是0.7,则恰有一人投中的概率是( A )A .0.42B .0.49C .0.7D .0.91[解析] 设甲投篮一次投中为事件A ,则P (A )=0.7, 则甲投篮一次投不中为事件A ,则P (A )=1-0.7=0.3, 设乙投篮一次投中为事件B ,则P (B )=0.7,则乙投篮一次投不中为事件B ,则P (B )=1-0.7=0.3, 则甲、乙两人各投篮一次恰有一人投中的概率为:P =P (A ∩B )+P (A ∩B )=P (A )·P (B )+P (A )·P (B )=0.7×0.3+0.7×0.3=0.42.故选A . 2.国庆节放假,甲、乙、丙去北京旅游的概率分别是13、14、15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( B )A .5960B .35C .12D .160[解析] 设甲、乙、丙去北京旅游分别为事件A 、B 、C ,则P (A )=13,P (B )=14,P (C )=15,P (A )=23,P (B )=34,P (C )=45,由于A ,B ,C 相互独立,故A ,B ,C 也相互独立,故P (A B C )=23×34×45=25,因此甲、乙、丙三人至少有1人去北京旅游的概率P =1-P (A B C )=1-25=35. 3.已知A 、B 是相互独立事件,且P (A )=12,P (B )=23,则P (A B )=__16__;P (A B )=__16__.[解析] ∵A 、B 是相互独立事件, ∴A 与B ,A 与B 也是相互独立事件. 又∵P (A )=12,P (B )=23,故P (A )=12,P (B )=1-23=13,∴P (A B )=P (A )×P (B )=12×13=16;P (A B )=P (A )×P (B )=12×13=16.4.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于__0.128__.[解析] 此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128.互动探究·攻重难互动探究解疑 命题方向❶事件独立性的判断典例1 判断下列各对事件是不是相互独立事件:(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”.[解析] (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47,若前一事件没有发生,则后一事件发生的概率为57.可见,前一事件是否发生,对后一事件发生的概率有影响,所以两者不是相互独立事件.(3)记A :出现偶数点,B :出现3点或6点,则A ={2,4,6},B ={3,6},AB ={6}, ∴P (A )=36=12,P (B )=26=13,P (AB )=16,∴P (AB )=P (A )·P (B ), ∴事件A 与B 相互独立.『规律总结』 (1)利用相互独立事件的定义(即P (AB )=P (A )·P (B ))可以准确地判定两个事件是否相互独立,这是用定量计算方法,较准确,因此我们必须熟练掌握.(2)判别两个事件是否为相互独立事件也可以从定性的角度进行分析,即看一个事件的发生对另一个事件的发生是否有影响.没有影响就是相互独立事件,有影响就不是相互独立事件.┃┃跟踪练习1__■一个家庭中有若干个小孩,假设生男孩和生女孩是等可能的,设A ={一个家庭中既有男孩,又有女孩},B ={一个家庭中最多有一个女孩}. 对下列两种情况讨论事件A 与B 的独立性.(1)家庭中有两个小孩; (2)家庭中有三个小孩.[解析] (1)有两个小孩的家庭,对应的样本空间Ω={(男,男),(男,女),(女,男),(女,女)},有4个基本事件,每个基本事件的概率均为14,这时A ={(男,女),(女,男)},B ={(男,男),(男,女),(女,男)},AB={(男,女),(女,男)},于是P (A )=12,P (B )=34,P (AB )=12.由此可知P (AB )≠P (A )P (B ),所以事件A ,B 不相互独立.(2)有三个小孩的家庭,样本空间为Ω={(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)},每个基本事件的概率均为18,这时A 中有6个基本事件,B 中有4个基本事件,AB 中含有3个基本事件,于是P (A )=68=34,P (B )=48=12.P (A )·P (B )=38,即P (AB )=38=P (A )P (B )成立,从而事件A 与B 是相互独立的. 命题方向❷求相互独立事件的概率典例2 (2020·鹤岗高二检测)小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率; (2)这三列火车至少有一列正点到达的概率.[解析] 用A ,B ,C 分别表示这三列火车正点到达的事件,则P (A )=0.8,P (B )=0.7,P (C )=0.9,所以P (A )=0.2,P (B )=0.3,P (C )=0.1.(1)由题意得A ,B ,C 之间互相独立,所以恰好有两列正点到达的概率为P 1=P (A BC )+P (A B C )+P (AB C )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C )=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)三列火车至少有一列正点到达的概率为P 2=1-P (ABC )=1-P (A )P (B )P (C )=1-0.2×0.3×0.1=0.994.『规律总结』 与相互独立事件有关的概率问题求解策略明确事件中的“至少有一个发生”“至多有一个发生”“恰好有一个发生”“都发生”“都不发生”“不都发生”等词语的意义.一般地,已知两个事件A ,B ,它们的概率分别为P (A ),P (B ),那么: (1)A ,B 中至少有一个发生为事件A +B ; (2)A ,B 都发生为事件AB ; (3)A ,B 都不发生为事件A B ; (4)A ,B 恰有一个发生为事件A B +A B .(5)A ,B 中至多有一个发生为事件A B +A B +A B . 它们之间的概率关系如表所示:┃┃跟踪练习2__■(2020·浙江杭州高级中学检测)甲、乙两人各射击一次,击中目标的概率分别为23和34.假设两人射击是否击中目标相互之间没有影响,每人每次射击是否击中目标相互之间也没有影响.(1)求甲、乙各射击一次均击中目标概率; (2)求甲射击4次,恰有3次连续击中目标的概率;(3)若乙在射击中出现连续2次未击中目标则会被终止射击,求乙恰好射击4次后被终止射击的概率.[解析] (1)记事件A 表示“甲击中目标”,事件B 表示“乙击中目标”. 依题意知,事件A 和事件B 相互独立,因此甲、乙各射击一次均击中目标的概率为P (AB )=P (A )·P (B )=23×34=12.(2)记事件A i 表示“甲第i 次射击击中目标”(其中i =1,2,3,4),并记“甲4次射击恰有3次连续击中目标”为事件C ,则C =A 1A 2A 3A 4∪A 1A 2A 3A 4,且A 1A 2A 3A 4与A 1A 2A 3A 4是互斥事件. 由于A 1,A 2,A 3,A 4之间相互独立,所以A i 与A j (i ,j =1,2,3,4,且i ≠j )之间也相互独立. 由于P (A 1)=P (A 2)=P (A 3)=P (A 4)=23,故P (C )=P (A 1A 2A 3A 4∪A 1A 2A 3A 4)=P (A 1)P (A 2)P (A 3)P (A 4)+P (A 1)P (A 2)P (A 3)P (A 4) =(23)3×13+13×(23)3=1681. (3)记事件B i 表示“乙第i 次射击击中目标”(其中i =1,2,3,4),并记事件D 表示“乙在第4次射击后终止射击”,则D =B 1B 2B 3B 4∪B 1B 2B3B 4,且B 1B 2B3B 4与B 1B 2B 3B 4是互斥事件.由于B 1,B 2,B 3,B 4之间相互独立,所以B i 与B j (i ,j =1,2,3,4,且i ≠j )之间也相互独立. 由于P (B i )=34(i =1,2,3,4),故P (D )=P (B 1B 2B3B 4∪B 1B 2B3B 4)=P (B 1)P (B 2)P (B 3)P (B 4)+P (B 1)P (B 2)P (B 3)P (B 4) =(34)2×(14)2+34×(14)3=364. 命题方向❸相互独立事件的综合应用典例3 (2020·西安高二检测)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率; (2)X 表示3号歌手得到观众甲、乙、丙的票数之和,求X 的分布列. [解析] (1)设事件A 表示:观众甲选中3号歌手且观众乙未选中3号歌手. 观众甲选中3号歌手的概率为23,观众乙未选中3号歌手的概率为1-35.所以P (A )=23×(1-35)=415.因此,观众甲选中3号歌手且观众乙未选中3号歌手的概率为415.(2)X 表示3号歌手得到观众甲、乙、丙的票数之和,则X 可取0,1,2,3. 观众甲选中3号歌手的概率为23,观众乙、丙选中3号歌手的概率为35.当观众甲、乙、丙均未选中3号歌手时,这时X =0, P (X =0)=(1-23)×(1-35)2=475.当观众甲、乙、丙中只有1人选中3号歌手时,这时X =1,P (X =1)=23×(1-35)2+(1-23)×35×(1-35)+(1-23)×(1-35)×35=8+6+675=2075.当观众甲、乙、丙中只有2人选中3号歌手时,这时X =2,P (X =2)=23×35×(1-35)+(1-23)×35×35+23×(1-35)×35=12+9+1275=3375.当观众甲、乙、丙均选中3号歌手时,这时X =3, P (X =3)=23×(35)2=1875.X 的分布列如下表:『规律总结』 概率问题中的数学思想(1)正难则反.灵活应用对立事件的概率关系(P (A )+P (A )=1)简化问题,是求解概率问题最常用的方法.(2)化繁为简.将复杂事件的概率转化为简单事件的概率,即寻找所求事件与已知事件之间的关系.“所求事件”分几类(考虑加法公式,转化为互斥事件)还是分几步组成(考虑乘法公式,转化为互独事件).(3)方程思想.利用有关的概率公式和问题中的数量关系,建立方程(组),通过解方程(组)使问题获解.┃┃跟踪练习3__■某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.[解析] (1)两地区用户满意度评分的茎叶图如图.通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(2)记C A 1表示事件:“A 地区用户的满意度等级为满意或非常满意”; C A 2表示事件:“A 地区用户的满意度等级为非常满意”; C B 1表示事件:“B 地区用户的满意度等级为不满意”; C B 2表示事件:“B 地区用户的满意度等级为满意”;则C A 1与C B 1相互独立,C A 2与C B 2相互独立,C B 1与C B 2互斥,C =C B 1C A 1∪C B 2C A 2. P (C )=P (C B 1C A 1∪C B 2C A 2) =P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2),由所给数据得C A 1,C A 2,C B 1,C B 2的频率分别为1620,420,1020,820,故P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020, P (C B 2)=820,所以P (C )=1020×1620+820×420=0.48.学科核心素养正难则反的思想的应用正难则反的思想在求解概率问题中应用广泛,尤其是解概率问题的综合题中,出现“至少”或“至多”等事件的概率求解问题,如果从正面考虑,它们是诸多事件的和或积,求解过程繁杂,而且容易出错,但如果考虑“至少”或“至多”事件的对立事件往往会简单,其概率很容易求出,此时可逆向分析问题,先求出其对立事件的概率,再利用概率的和或积的互补公式求出原来事件的概率.典例4三支球队中,甲队胜乙队的概率为0.4,乙队胜丙队的概率为0.5,丙队胜甲队的概率为0.6,比赛顺序是:第一局是甲队对乙队,第二局是第一局的胜者对丙队,第三局是第二局的胜者对第一局的败者,第四局是第三局的胜者对第二局的败者,求乙队连胜四局的概率.[思路分析]乙队每局胜利的事件是相互独立的,可由其公式计算概率.[解析]设乙队连胜四局为事件A,有下列情况:第一局中乙胜甲(A1),其概率为1-0.4=0.6,第二局中乙胜丙(A2),其概率为0.5,第三局中乙胜甲(A3),其概率为1-0.4=0.6,第四局中乙胜丙(A4),其概率为0.5,因各局比赛中的事件相互独立,故乙队连胜四局的概率为P(A)=P(A1A2A3A4)=0.62·0.52=0.09.『规律总结』(1)求复杂事件的概率一般可分三步进行:①列出题中涉及的各个事件,并用适当的符号表示它们;②理清各事件之间的关系,列出关系式;③根据事件之间的关系准确地运用概率公式进行计算.(2)直接计算符合条件的事件个数较复杂,可间接地先计算对立事件的个数,求得对立事件的概率,再求出符合条件的事件的概率.┃┃跟踪练习4__■在一段线路中并联着3个自动控制的常开开关,只要其中1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.[解析]如图所示,分别记这段时间内开关J A,J B,J C能够闭合为事件A,B,C.由题意,这段时间内3个开关是否能够闭合相互之间没有影响,根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是P(A B C)=P(A)P(B)P(C)=[1-P(A)][1-P(B)][1-P(C)]=(1-0.7)(1-0.7)(1-0.7)=0.027,于是这段时间内至少有1个开关能够闭合,从而使线路能正常工作的概率是1-P (A B C )=1-0.027=0.973.易混易错警示因混淆独立事件和互斥事件而致错典例5 设事件A 与B 相互独立,两个事件中只有A 发生的概率和只有B 发生的概率都是14,求事件A 和事件B 同时发生的概率.[错解] ∵A 与B 相互独立,且只有A 发生的概率和只有B 发生的概率都是14,∴P (A )=P (B )=14,∴P (AB )=P (A )·P (B )=14×14=116.[正解] 在相互独立事件A 和B 中,只有A 发生即事件A B 发生,只有B 发生即事件A B 发生.∵A 和B 相互独立,∴A 与B ,A 和B 也相互独立.∴P (A B )=P (A )·P (B )=P (A )·[1-P (B )]=14,① P (A B )=P (A )·P (B )=[1-P (A )]·P (B )=14.② ①-②得P (A )=P (B ).③联立①③可解得P (A )=P (B )=12.∴P (AB )=P (A )·P (B )=12×12=14.[误区警示] 在A 与B 中只有A 发生是指A 发生和B 不发生这两个事件同时发生,即事件A B 发生.课堂达标·固基础1.下列事件A ,B 是相互独立事件的是( A )A .一枚硬币掷两次,A =“第一次为正面”,B =“第二次为反面”B .袋中有2个白球,2个黑球,不放回地摸球两次,每次摸一球,A =“第一次摸到白球”,B =“第二次摸到白球”C .掷一枚骰子,A =“出现点数为奇数”,B =“出现点数为偶数”D .A =“一个灯泡能用1 000小时”,B =“一个灯泡能用2 000小时”[解析] 把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响,故A 是相互独立事件;B 中是不放回地摸球,显然A 事件与B 事件不相互独立;对于C,其结果具有唯一性,A ,B 应为互斥事件;D 中事件B 受事件A 的影响.故选A .2.已知A ,B 是两个相互独立事件,P (A ),P (B )分别表示它们发生的概率,则1-P (A )P (B )是下列哪个事件的概率( C )A .事件A ,B 同时发生B .事件A ,B 至少有一个发生C .事件A ,B 至多有一个发生D .事件A ,B 都不发生[解析] P (A )P (B )是指A ,B 同时发生的概率,1-P (A )P (B )是A ,B 不同时发生的概率,即至多有一个发生的概率.3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A 、B 中至少有一件发生的概率是( C )A .512B .12C .712D .34[解析] 由题意P (A )=12,P (B )=16,事件A 、B 中至少有一个发生的概率P =1-12×56=712. 4.甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球.从每袋中任取一个球,则取得同色球的概率为__12__. [解析] 若都取到白球,P 1=812×612=13,若都取到红球,P 2=412×612=16, 则所求概率P =P 1+P 2=13+16=12. 5.甲、乙两人独立地破译密码的概率分别为13、14.求: (1)两个人都译出密码的概率;(2)两个人都译不出密码的概率;(3)恰有一人译出密码的概率;(4)至多一人译出密码的概率;(5)至少一人译出密码的概率.[解析] 记事件A 为“甲独立地译出密码”,事件B 为“乙独立地译出密码”.(1)两个人都译出密码的概率为P (AB )=P (A )P (B )=13×14=112.(2)两个人都译不出密码的概率为P(A B)=P(A)P(B)=[1-P(A)][1-P(B)]=(1-13)(1-14)=12.(3)恰有一人译出密码分为两类:甲译出乙译不出,乙译出甲译不出, 即A B+A B,∴P(A B+A B)=P(A B)+P(A B)=P(A)·P(B)+P(A)P(B)=13×(1-14)+(1-13)×14=512.(4)至多一人译出密码的对立事件是两人都译出密码,∴其概率为1-P(AB)=1-112=1112.(5)至少一人译出密码的对立事件为两个都没有译出密码, ∴其概率为1-P(A B)=1-12=12.。

随机信号分析与处理(第2版)

随机信号分析与处理(第2版)

随机信号分析与处理(第2版)概述本文档介绍了随机信号分析与处理(第2版)的主要内容。

随机信号是一种在时间上或空间上具有随机性质的信号,在诸多领域中都有广泛的应用,如通信、图像处理、控制系统等。

随机信号的分析和处理对于了解其性质、提取有用信息以及设计有效的处理算法都是必不可少的。

主要内容第一章:随机信号的基本概念本章介绍了随机信号的基本概念和特性,包括随机信号的定义、概率密度函数、均值、方差等。

通过对随机信号的特性分析,可以为后续的分析和处理提供基础。

第二章:随机过程本章讨论了随机过程的定义和性质。

随机过程是一类具有随机性质的信号集合,其在时间上的取值不确定,但具有统计规律性。

通过对随机过程的分析,可以了解其演化规律和统计性质。

本章介绍了随机信号的表示与分解方法。

随机信号可以通过不同的数学模型进行表示,如傅里叶级数、傅里叶变换、小波变换等。

通过将随机信号进行分解,可以提取出其中的有用信息。

第四章:随机信号的功率谱密度本章研究了随机信号的功率谱密度。

功率谱密度描述了随机信号在频率域上的分布,通过分析功率谱密度可以获得随机信号的频率特性和频谱信息。

第五章:随机信号的相关与协方差本章讨论了随机信号的相关与协方差。

相关是用来描述随机信号之间的依赖关系,协方差是用来描述随机信号之间的线性关系。

通过分析随机信号的相关与协方差,可以研究信号之间的相关性和相关结构。

本章介绍了随机信号的滤波和平均处理方法。

滤波是用来抑制或增强随机信号中的某些频率分量,平均则是通过对多次采样的随机信号进行求平均来减小随机性。

第七章:随机信号的参数估计本章研究了随机信号的参数估计方法。

参数估计是通过对随机信号进行采样和分析,通过估计参数来了解信号的统计性质和特征。

第八章:随机信号的检测和估计本章讨论了随机信号的检测和估计方法。

检测是用来判断随机信号的存在或不存在,估计是通过对随机信号的采样和分析来估计信号的参数。

第九章:随机信号的最优滤波本章研究了随机信号的最优滤波方法,最优滤波是通过优化设计滤波器来最小化系统误差或最大化输出信噪比。

随机分析1--均方极限

随机分析1--均方极限
aX bY H ,
证明
E aX bY
2
E ( a X b Y )( a X b Y )
E ( a X b Y )( a X b Y ) E ( aX
2
bY
2
aX bY aX bY )
aX bY aX bY 2 Re( aX bY )
E a
二阶矩过程的均方微积分
研究对象 一类具有二阶矩的随机过程 研究内容 连续性、可导性与可积性等. 是均方极限意义下的随机微积分
重点
均方极限,均方连续,均方可导
以及均方可积的概念和准则.
要求 掌握均方极限,均方连续,均方可导 以及均方可积的的概念以及相应准则. 熟悉一阶线性随机微分方程及其解. 熟悉正态过程的随机分析的一些结果.
a

k
a l R X ( k , l )收 敛 .
二阶矩过程均方极限定义
设 { X ( t ), t T }是 二 阶 矩 过 程 , X H , t 0 T ,
如 果 lim E X ( t ) X
t t0 2
0,
则 称 当 t t 0时 ,X ( t ), t T }收 敛 于 X . {
定理(均方大数定理)
设 { X n , n 1, 2, } H
是相互独立同分布的随机变量序列,且
E X n , n 1, 2, , 则
l.i.m
n
1
X n
k 1
n
k
,
证明:E
n
1
n i 1
n
1
n
2
Xi
E
2
i 1
(X n

新人教版高中数学选修三第二单元《随机变量及其分布》检测卷(答案解析)(1)

新人教版高中数学选修三第二单元《随机变量及其分布》检测卷(答案解析)(1)

一、选择题1.已知随机变量ξ的分布列如下表,若()2E ξ=,则()D ξ的最小值等于( )A .0B .2C .1D .122.近几年新能源汽车产业正持续快速发展,动力蓄电池技术是新能源汽车的核心技术.已知某品牌新能源汽车的车载动力蓄电池充放电次数达到800次的概率为90%,充放电次数达到1000次的概率为36%.若某用户的该品牌新能源汽车已经经过了800次的充放电,那么他的车能够达到充放电100次的概率为( ) A .0.324B .0.36C .0.4D .0.543.从一个装有3个白球,3个红球和3个蓝球的袋中随机抓取3个球,记事件A 为“抓取的球中存在两个球同色”,事件B 为“抓取的球中有红色但不全是红色”,则在事件A 发生的条件下,事件B 发生的概率()|P B A =( ) A .37B .1237C .1219D .16214.元旦游戏中有20道选择题,每道选择题给了4个选项(其中有且只有1个正确).游戏规定:每题只选1项,答对得2个积分,否则得0个积分.某人答完20道题,并且会做其中10道题,其它试题随机答题,则他所得积分X 的期望值()E X =( ) A .25B .24C .22D .205.已知随机变量()2~0,X N σ,若()10.2P X>=,则()01P X <<的值为( )A .0.1B .0.3C .0.6D .0.46.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为( ) A .12B .25C .35D .457.已知一种元件的使用寿命超过1年的概率为0.8,超过2年的概率为0.6,若一个这种元件使用到1年时还未失效,则这个元件使用寿命超过2年的概率为( ) A .0.75B .0.6C .0.52D .0.488.某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为( )A .313 B .413C .14D .159.已知ξ是离散型随机变量,则下列结论错误的是( ) A .21133P P ξξ⎛⎫⎛⎫≤≤≤ ⎪ ⎪⎝⎭⎝⎭ B .()()()22E E ξξ≤C .()()1D D ξξ=-D .()()()221D D ξξ=-10.吸烟有害健康,远离烟草,珍惜生命.据统计一小时内吸烟5支诱发脑血管病的概率为0.02,一小时内吸烟10支诱发脑血管病的概率为0.16.已知某公司职员在某一小时内吸烟5支未诱发脑血管病,则他在这一小时内还能继吸烟5支不诱发脑血管病的概率为( ) A .67B .2125C .4950D .不确定11.已知随机变量X 的分布列如下表所示则(25)E X -的值等于 A .1B .2C .3D .412.随机变量()~1,4X N ,若()20.2p x ≥=,则()01p x ≤≤为( ) A .0.2B .0.3C .0.4D .0.6二、填空题13.加工某种零件需要两道工序,第一道工序出废品的概率为0.4,两道工序都出废品的概率为0.2,则在第一道工序出废品的条件下,第二道工序又出废品的概率为__________. 14.一批产品的一等品率为0.9,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的一等品件数,则D()X =__________。

分析化学第六版第二章


x t n s
以t为统计量的分布称为t分布。t分布可说明当n不大时 (n<20)随机误差分布的规律。
t分布曲线的纵坐标仍为概率密度,但横坐标为统计量t。
t分布与标准正态分布的区别: 1.横坐标不同t u; 2.随测定次数减少,t分布曲线 趋于平坦,即t分布曲线随着自 由度(f=n-1)而改变:

2.1 定量分析中的 误差
误差与准确度
准确度(accuracy)是指测定平均值与真值接近的程度,
常用误差大小表示。误差小,准确度高。

误差(Error) :
表示测量值与真值之差,表征测量

结果的准确度。 误差有两种表示方法:绝对误差(E)和相对误差(Er)。

绝对误差(E)是测量值(x)与真实值(xT)之间的
标准正态分布曲线
这样,曲线的横坐标就变为μ,纵坐标为概率密度,用μ和概率密度
表示的正态分布曲线称为标准正态分布曲线,用符号N(0,1)表示。这样, 曲线的形状与σ大小无关,即不论原来正态分布曲线是瘦高的还是扁平的 ,经过这样的变换后都得到相同的一条标准正态分布曲线。
误差在某些区间出现的概率
标准正态分布曲线与横坐标之间所加的面积,代表了某 一区间的测量值或某一范围 随机误差出现的概率。
准确度与精密度的关系
高的精密度不一定保证高的准确度; 但精密度高是准确度高的前提。
例2 p10
误差的分类及减免误差的方法
在定量分析中,对于各种原因导致的误差,根据误差的 来源和性质的不同,可以分为系统误差和随机误差两大类。
根据产生的具体原因,系统误差可分为:方法误差; 仪器和试剂误差;操作误差;主观误差。
亦称偶然误差,由难以控制且无法避免的偶然因素造成 ,如测定过程中温度、湿度、气压等变化引起的误差。 由于疏忽或错误引起,实质是一种错误,不能成为误差。

2020-2021人教版数学3教师用书:第2章 2.1 2.1.1简单随机抽样含解析

2020-2021学年人教A版数学必修3教师用书:第2章2.1 2.1.1简单随机抽样含解析2。

1随机抽样2.1.1简单随机抽样学习目标核心素养1.理解简单随机抽样的定义、特点及适用范围.(重点)2.掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.(难点)1.通过抽取样本,培养数据分析素养.2.借助简单随机抽样的定义,培养数学抽象素养。

1.简单随机抽样的定义一般地,设一个总体含有N个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.这样抽取的样本,叫做简单随机样本.2.简单随机抽样的方法(1)抽签法:把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.(2)随机数法:随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.3.抽签法和随机数法的特点优点缺点抽签法简单易行,当总体的个体数不多时,使总体处于“搅拌”均匀的状态比较容易,这时,每个个体都有均等的机会被抽中,从而能够保证样本的代表性仅适用于个体数较少的总体,当总体容量较大时,费时费力又不方便,况且,如果号签搅拌的不均匀,可能导致抽样不公平随机数法操作简单易行,它很好地解决了用抽签法当总体中的个数较多时制签难的问题,在总体容量不大的情况下是行之有效的如果总体中的个体数很多,对个体编号的工作量太大,即使用随机数表法操作也不方便快捷1.新华中学为了了解全校302名高一学生的身高情况,从中抽取30名学生进行测量,下列说法正确的是()A.总体是302名学生B.个体是每1名学生C.样本是30名学生D.样本容量是30D[本题是研究学生的身高,故总体、个体、样本数据均为学生身高,而不是学生.]2.在简单随机抽样中,某一个个体被抽中的可能性()A.与第几次抽样有关,第一次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性要大些D.每个个体被抽中的可能性无法确定B[在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.]3.抽签法中确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回B[逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算再放回)也不影响样本的代表性,制签也一样.]4.一个总体共有60个个体,其编号为00,01,02,…,59,现从中抽取一个容量为10的样本,请从随机数表的第8行第11列的数字开始,向右读,到最后一列后再从下一行左边开始继续向右读,依次获取样本号码,直到取满样本为止,则获得的样本号码是________.附表:(第8行~第10行)63 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 79(第8行)33 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 54(第9行)57 60 86 32 4409 47 27 96 5449 17 46 09 6290 52 84 77 2708 02 73 43 28(第10行)16,55,19,10,50,12,58,07,44,39[第8行第11列的数字为1,由此开始,依次抽取号码,第一个号码为16,可取出;第二个号码为95〉59,舍去.按照这个规则抽取号码,抽取的10个样本号码为16,55,19,10,50,12,58,07,44,39.]简单随机抽样的概念(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)小乐从玩具箱中的10件玩具中随意拿出一件玩,玩后放回,再拿出一件,连续拿出四件;(4)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区参加救灾工作;(5)一福彩彩民买30选7彩票时,从装有30个大小、形状都相同的乒乓球的盒子(不透明)中逐个无放回地摸出7个有标号的乒乓球,作为购买彩票的号码;[解](1)总体数目不确定、不是简单随机抽样.(2)简单随机抽样要求的是“逐个抽取”本题是一次性抽取,不是简单随机抽样.(3)简单随机抽样是不放回抽样,这里的玩具玩以后又放回,再抽下一件,不是简单随机抽样.(4)从中挑出的50名官兵,是200名中最优秀的,每个个体被抽的可能性不同,不是简单随机抽样.(5)符合简单随机抽样的特点,是简单随机抽样.简单随机抽样的判断方法判断所给的抽样是否为简单随机抽样的依据是简单随机抽样的四个特征:上述四点特征,如果有一点不满足,就不是简单随机抽样.错误!1.判断下面的抽样方法是否为简单随机抽样,并说明理由.(1)某班45名同学,指定个子最矮的5名同学参加学校组织的某项活动.(2)从20个零件中一次性抽出3个进行质量检查.[解](1)不是简单随机抽样.因为指定个子最矮的5名同学,是在45名同学中特指的,不存在随机性,不是等可能抽样.(2)不是简单随机抽样.因为一次性抽取3个不是逐个抽取,不符合简单随机抽样的特征.抽签法及应用【例2】为迎接2022年北京冬奥会,奥委会从报名的北京某高校20名志愿者中选取5人组成冬奥会志愿小组,请用抽签法设计抽样方案.[解](1)将20名志愿者编号,号码分别是01,02, (20)(2)将号码分别写在20张大小、形状都相同的纸条上,揉成团儿,制成号签;(3)将所得号签放在一个不透明的袋子中,并搅拌均匀;(4)从袋子中依次不放回地抽取5个号签,并记录下上面的编号;(5)所得号码对应的志愿者就是志愿小组的成员.抽签法的应用条件及注意点1一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法。

2020-2021人教版数学3教师用书:第2章 2.1 2.1.2系统抽样含解析

2020-2021学年人教A版数学必修3教师用书:第2章2.1 2.1.2系统抽样含解析2。

1.2系统抽样学习目标核心素养1.理解系统抽样的概念.(重点) 2.掌握系统抽样的方法与步骤,能用系统抽样从总体中抽取样本.(难点、易错点)1.通过系统抽样的学习,体现数学运算素养.2.借助系统抽样步骤的理解,养成数学建模素养.1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔逐个抽取即得到所需样本.2.系统抽样的步骤一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:思考:当总体中的个数较多时,为什么不宜用简单随机抽样.[提示]因为个体较多,采用简单随机抽样如制作号签等工作会耗费大量的人力、物力和时间,而且不容易做到“搅拌均匀",从而使样本的代表性不强.1.系统抽样适用的总体应是()A.容量较小的总体B.容量较大的总体C.个体数较多但均衡的总体D.任何总体C[根据系统抽样的概念,只能是个体数较多且个体之间均衡的总体才能使用系统抽样.]2.在10 000个有机会中奖的号码(编号为0 000~9 999)中,有关部门按照随机抽样的方式确定后两位数字是68的号码为中奖号码.这是运用哪种抽样方法来确定中奖号码的()A.抽签法B.系统抽样法C.随机数表法D.其他抽样方法B[由题意,中奖号码分别为0 068,0 168,0 268,…,9 968.显然这是将10 000个中奖号码平均分成100组,从第一组抽0 068号,其余号码是在此基础上加100的整数倍得到的,是系统抽样.]3.有20个同学,编号为1~20,现在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽的编号为()A.5,10,15,20 B.2,6,10,14C .2,4,6,8D .5,8,11,14A [将20分成4组.每组5个号,间隔等距离为5.]4.为了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k =________.40 [分段间隔k =N n =错误!=40。

高中数学 第二章 随机变量及其分布 2.3.2 离散型随机变量的方差学案(含解析)新人教A版选修2-

2.3.2 离散型随机变量的方差[目标] 1.理解取有限个值的离散型随机变量的方差及标准差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质,以及两点分布、二项分布的方差的求法.[重点] 离散型随机变量的方差和标准差的概念和计算;方差的性质以及两点分布、二项分布的方差的求法.[难点] 离散型随机变量的方差的计算与应用.知识点一 离散型随机变量的方差、标准差[填一填]1.方差及标准差的定义 设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n(1)方差D (X )=∑i =1n(x i -E (X ))2·p i . (2)标准差为D (x ). 2.方差的性质 D (aX +b )=a 2D (X ).[答一答]1.方差与标准差有什么实际意义?提示:随机变量X 的方差和标准差都反映了随机变量X 取值的稳定与波动、集中与离散的程度.D (X )越小,稳定性越高,波动越小.显然D (X )≥0,随机变量的标准差与随机变量本身有相同的单位.2.你能类比样本数据方差的计算公式,理解离散型随机变量方差的计算公式吗? 提示:设x 1、x 2、…、x n 为样本的n 个数据,x =x 1+…+x n n ,则该样本数据的方差s 2=∑i =1n(x i -x )2·1n ,由于x 相当于离散型随机变量中的E (X ),而1n相当于每个数据出现的频率(概率)p i ,故离散型随机变量X 的方差可定义为:D (X )=∑i =1n(x i -E (X ))2·p i (i =1,2,…,n ).3.随机变量的方差与样本方差有什么关系?提示:随机变量的方差即为总体的方差,它是一个客观存在的常数,不随抽样样本的变化而变化;样本方差则是随机变量,它是随着样本的不同而变化的.对于简单随机样本,随着样本容量的增加,样本方差越来越接近于总体方差.知识点二 两个常见分布的方差[填一填]1.若X 服从两点分布,则D (X )=p (1-p ). 2.若X ~B (n ,p ),则D (X )=np (1-p ).[答一答]4.两点分布的方差同二项分布的方差存在什么关系?提示:由于两点分布是特殊的二项分布,故两点分布的方差同二项分布的方差存在特殊与一般的关系.1.对随机变量X 的方差、标准差的理解(1)随机变量X 的方差的定义与一组数据的方差的定义是相同的.(2)随机变量X 的方差和标准差都反映了随机变量X 取值的稳定性和波动、集中与离散程度.(3)D (X )越小,稳定性越高,波动越小.(4)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛. 2.剖析方差的性质当a ,b 均为常数时,随机变量η=aξ+b 的方差D (η)=D (aξ+b )=a 2D (ξ).特别地: (1)当a =0时,D (b )=0,即常数的方差等于0.(2)当a =1时,D (ξ+b )=D (ξ),即随机变量与常数之和的方差等于这个随机变量的方差本身.(3)当b =0时,D (aξ)=a 2D (ξ),即随机变量与常数之积的方差,等于这个常数的平方与这个随机变量方差的乘积.类型一 离散型随机变量的方差及性质【例1】 已知η的分布列如下:η 0 10 20 50 60 P1325115215115(1)求η(2)设Y =2η-E (η),求D (Y ).【分析】 (1)首先求出均值E (η),然后利用D (η)的定义求方差;(2)由于E (η)是一个常数,所以D (Y )=D [2η-E (η)]=22D (η).【解】 (1)∵E (η)=0×13+10×25+20×115+50×215+60×115=16,∴D (η)=(0-16)2×13+(10-16)2×25+(20-16)2×115+(50-16)2×215+(60-16)2×115=384,∴D (η)=8 6.(2)∵Y =2η-E (η),∴D (Y )=D [2η-E (η)]=22D (η)=4×384=1 536.(1)求离散型随机变量的均值或方差的关键是列分布列,而列分布列的关键是要清楚随机试验中每一个可能出现的结果,同时还要正确求出每一个结果出现的概率.(2)利用离散型随机变量X 的方差的性质:当a ,b 为常数时,随机变量Y =aX +b ,则D (Y )=D (aX +b )=a 2D (X ),可以简化解答过程,提高解题效率.某校从6名学生会干部(其中男生4人,女生2人)中选3人参加市中学生运动会志愿者. (1)所选3人中女生人数为ξ,求ξ的分布列及方差. (2)在男生甲被选中的情况下,求女生乙也被选中的概率. 解:(1)ξ的可能取值为0,1,2. 由题意P (ξ=0)=C 34C 36=15,P (ξ=1)=C 24C 12C 36=35,P (ξ=2)=C 14C 22C 36=15,所以ξ的分布列为ξ 0 1 2 P153515E (ξ)=0×15+1×35+2×15=1,D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.(2)设在男生甲被选中的情况下,女生乙也被选中的事件为C ,男生甲被选中的种数为C 25=10,男生甲被选中,女生乙也被选中的种数为C 14=4,所以P (C )=C 14C 25=410=25,在男生甲被选中的情况下,女生乙也被选中的概率为25.类型二 二项分布的方差【例2】 已知某运动员投篮命中率p =0.6. (1)求一次投篮命中次数ξ的数学期望与方差;(2)求重复5次投篮时,命中次数η的数学期望与方差.【分析】 解本题的关键是正确地判断出第(1)小题属于两点分布,第(2)小题属于二项分布,利用相应的公式计算可得解.【解】 (1)投篮一次命中次数ξ的分布列为:ξ 0 1 P0.40.6则E (ξ)=0×0.4+1×0.6=0.6,D (ξ)=(0-0.6)2×0.4+(1-0.6)2×0.6=0.24.(2)由题意知重复5次投篮,命中的次数η服从二项分布,即η~B (5,0.6). 由二项分布的数学期望与方差的公式得: E (η)=5×0.6=3,D (η)=5×0.6×0.4=1.2.解此类题的一般步骤如下:第一步,判断随机变量X 服从什么分布(两点分布还是二项分布).第二步,代入相应的公式,X 服从两点分布时,D (X )=p (1-p );X 服从二项分布,即X ~B (n ,p )时,D (X )=np (1-p ).甲、乙比赛时,甲每局赢的概率是p =0.51,乙每局赢的概率是p =0.49.甲乙一共进行了10次比赛,当各次比赛的结果是相互独立时,计算甲平均赢多少局,乙平均赢多少局,哪一个技术比较稳定?解:用X 表示10局中甲赢的次数,则X 服从二项分布B (10,0.51).E (X )=10×0.51=5.1,即甲平均赢5.1局.用Y 表示10局中乙赢的次数,则Y 服从二项分布B (10,0.49).E (Y )=10×0.49=4.9,于是乙平均赢4.9局.又D (X )=10×0.51×0.49=2.499,D (Y )=10×0.49×0.51=2.499.所以他们技术一样稳定.类型三 离散型随机变量方差的应用【例3】 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20 频数10201616151310以100①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列,数学期望及方差.②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【解】 (1)当n ≥16时,y =16×(10-5)=80. 当n ≤15时,y =5n -5(16-n )=10n -80.得:y =⎩⎨⎧10n -80(n ≤15),80(n ≥16)(n ∈N ).(2)①X可取60,70,80.P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7.X的分布列为X 607080P 0.10.20.7E(X)=60×0.1+70×0.2+80×0.7=76,D(X)=162×0.1+62×0.2+42×0.7=44.②购进17枝时,当天的利润的期望值为y=(14×5-3×5)×0.1+(15×5-2×5)×0.2+(16×5-1×5)×0.16+17×5×0.54=76.4.由76.4>76得,应购进17枝.有甲、乙两名同学,据统计,他们在解答同一份数学试卷时,各自的分数在80分,90分,100分的概率分布大致如下表所示:试分析甲、乙两名同学谁的成绩好一些.解:在解答同一份数学试卷时,甲、乙两人成绩的均值分别为E(X甲)=80×0.2+90×0.6+100×0.2=90,E(X乙)=80×0.4+90×0.2+100×0.4=90.方差分别为D (X 甲)=(80-90)2×0.2+(90-90)2×0.6+(100-90)2×0.2=40, D (X 乙)=(80-90)2×0.4+(90-90)2×0.2+(100-90)2×0.4=80. 由上面数据,可知E (X 甲)=E (X 乙),D (X 甲)<D (X 乙).这表示甲、乙两人所得分数的均值相等,但两人的分数的稳定程度不同,甲同学分数较稳定,乙同学分数波动较大,所以甲同学的成绩较好.离散型随机变量期望与方差的综合应用【例4】 设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E (η)=53,D (η)=59,求abc .【思路分析】 第一问关键是分清取出2个球所得分数之和的所有情况,然后分类讨论,根据情况算出相应的概率、写出分布列;第二问类似地写出分布列,根据期望、方差的公式建立方程求解.【解】 (1)由题意得ξ=2,3,4,5,6. 故P (ξ=2)=3×36×6=14,P (ξ=3)=2×3×26×6=13,P (ξ=4)=2×3×1+2×26×6=518,P (ξ=5)=2×2×16×6=19,P (ξ=6)=1×16×6=136.所以ξ的分布列为ξ 2 3 4 5 6 P141351819136(2)由题意知η的分布列为η 1 2 3 paa +b +cba +b +cca +b +c所以E (η)=a a +b +c +2b a +b +c +3c a +b +c =53,D (η)=(1-53)2·a a +b +c +(2-53)2·b a +b +c +(3-53)2·c a +b +c =59.化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0,解得a =3c ,b =2c ,故abc =321.【解后反思】 离散型随机变量的分布列和期望是理科数学考题中的高频考点之一,其中,浙江省又多以摸球为背景,以对立事件、相互独立事件、两点分布、二项分布等知识为载体,综合考查事件发生的概率及随机变量的分布列、数学期望与方差.解题时首先要理解关键词,其次要准确无误地找出随机变量的所有可能取值,计算出相应的概率,后面一般就是计算问题.若随机事件A 在1次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数.(1)求方差D (ξ)的最大值; (2)求2D (ξ)-1E (ξ)的最大值.解:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而E (ξ)=0×(1-p )+1×p =p , D (ξ)=(0-p )2×(1-p )+(1-p )2×p =p -p 2.(1)D (ξ)=p -p 2=-(p 2-p +14)+14=-(p -12)2+14,∵0<p <1,∴当p =12时,D (ξ)取得最大值,最大值为14.(2)2D (ξ)-1E (ξ)=2(p -p 2)-1p =2-(2p +1p ),∵0<p <1,∴2p +1p≥2 2.当2p =1p ,p =22时,取“=”,因此,当p =22时,2D (ξ)-1E (ξ)取得最大值2-2 2.1.下面说法中正确的是(D)A.离散型随机变量ξ的期望E(ξ)反映了ξ取值的概率的平均值B.离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平C.离散型随机变量ξ的期望E(ξ)反映了ξ取值的波动水平D.离散型随机变量ξ的方差D(ξ)反映了ξ取值的波动水平解析:由于离散型随机变量ξ的期望E(ξ)反映的是随机变量的平均取值水平,而不是概率的平均值,故A错.而D(ξ)则反映随机变量的集中(或稳定)的程度,即波动水平.2.若X~B(n,p),且E(X)=1.6,D(X)=1.28,则(A)A.n=8,p=0.2 B.n=4,p=0.4C.n=5,p=0.32 D.n=7,p=0.45解析:由E(X)=np=1.6,D(X)=np(1-p)=1.28,可知1-p=0.8,所以p=0.2,n=8.3.已知随机变量ξ,D(ξ)=19,则ξ的标准差为13.解析:D(ξ)=19=13.4.有两台自动包装机甲与乙,包装质量分别为随机变量ξ1,ξ2,已知E(ξ1)=E(ξ2),D(ξ1)>D(ξ2),则自动包装机乙的质量较好.解析:均值仅体现了随机变量取值的平均大小,如果两个随机变量的均值相等,还要看随机变量的取值如何在均值周围变化,方差大说明随机变量取值较分散;方差小,说明取值较集中.故乙的质量较好.5.已知随机变量X的分布列是X 0123 4P 0.2m n 0.20.1且E(X)=1.8.(1)求D(X);(2)设Y=2X-1,求D(Y).解:(1)由分布列可知0.2+m+n+0.2+0.1=1,且E(X)=0×0.2+1×m+2×n+3×0.2+4×0.1=1.8.即⎩⎪⎨⎪⎧ m +n =0.5,m +2n =0.8,解得m =0.2,n =0.3. ∴D (X )=(0-1.8)2×0.2+(1-1.8)2×0.2+(2-1.8)2×0.3+(3-1.8)2×0.2+(4-1.8)2×0.1=1.56.(2)∵D (X )=1.56,∴D (2X -1)=4D (X )=6.24.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则 X (t) ,t (,) t在 处均方可微的充要条件是
其相关函数R(s,t) 在(t,t) 处广义二次可微。

由均方收敛准则知 l.i.m X (t h) X (t)
h0
h
存在
的充要条件是
lim
h0 k 0
E

X
(t

h) h

X
(t
) X

(t

k) k

X
(t
)

存在
R(t h,t k) R(t h,t) R(t,t k) R(t,t) hk
Home
当 h 0, k 0 时 正是 R(s,t) 在(t,t) 处广义二次可微。
21/41
三、均方导数的性质
性质1 设 X (t) 和Y (t) 均方可微,a,b 为常数,
10/41
性质2
若 l.i.m X n X l.i.m Yn Y

lim
n
E[
X
nYm
]

E(
XY)
E(l.i.m
X n l.i.m Yn )
m
证 由许瓦兹不等式得
Home
| E( X nYm ) E( XY ) || E( X nYm XY ) |
| E[ X (Ym Y ) ( X n X )Y ( X n X )(Ym Y )] |
dt
dt
dt
Home
22/41
性质3
设X (t)在t处均方可微,则 X (t)在t处均方连续。
性质4 设 X (t) 均方可微,R(s,t) 为其相关函数,则
R(s,t) E[X (s)X (t)] s R(s,t) E[ X (s) X (t)] t
2 R(s,t) 2 R(s,t) E[ X (s) X (t)]

0
Home
19/41
二次均方可微 若{ X (t) , t (,) }在 t 处均方可微,
则称 X (t) 在 t 处二次均方可微
二阶均方导数 X (t) 的均方导数记为X (t)
定义2 广义二次可微
设 R(s,t) 为随机过程{ X (t) ,t T }的相关函数,
若它在(s,t) 点当h, k 0 时,极限
则称为二阶矩过程。
Home
3/41
例1 设 X (t) X 0 Vt ,a t b ,
其中 X 0和V是相互独立且都服从正态分布N(0,1) 的随机变量,试判断 X (t) 为二阶矩过程。
解 由正于态分X布0和,V且都服从正态分布,所以 X (t)也具有
mX (t) E[X (t)] E[X0 Vt] E[X0] tE[V ] 0
st
ts
证1
Home
23/41
E[X (s)X (t)] E l.i.m X (s h) X (s) X (t)
h0
h
lim E X (s h) X (s) X (t)
则 aX (t) bY(t) 也均方可微,且
d [ aX (t) bY(t) ] a dX (t) b dY(t)
dt
dt
dt
性质2 设 X (t) 为均方可微, f (t) 为一个普通可微函数,
则 f (t) X (t) 也均方可微,且
d [ f (t) X (t) ] df (t) X (t) f (t) dX (t)
三、均方收敛性质
性质1 证
若l.i.m Xn X 则
lim
n
E[X n
]

E(X
)

E(l.i.m
Xn
)
由许瓦兹不等式得
Home
| E(X n ) E(X ) |2 | E(X n X ) |2 E | X n X |2

lim[E(
n
X
n

X
)2
]

0
故得证
注 当 X n均方收敛于X时,X n的期望收敛于X的期望
Home
17/41
定理3 若二阶矩过程{ X (t) ,t T }是均方连续的,

lim E[X (t h)] E[X (t)]
h0
证 由均方连续定义
lim E[(X (t h) X (t))2 ] 0
h0
从而 lim E[X (t h)] E(l.i.mX (t h)) E[X (t)]
C(t1,t2) E[X (t1)X (t2)] E[( X0 Vt1)( X0 Vt2 )]
E[X02] t1t2E[V 2] 1 t1t2
令t1 t2 t ,得 DX (t) 1 t 2
故 X (t) 为二阶矩过程。
Home
4/41
二、性质
二阶矩过程的协方差函数一定存在
R( h, k) E(X ( h)(X ( k))
由均方收敛性质2得
首页
lim R( h, k) E(X ( )X ( )) R( , )
h0 k 0
即 R(s,t) 在(, ) 连续。
定理2 如果 R(s,t) 在{ (t,t) , t (,) }处连续,
证 C(t1,t2 ) cov[ X (t1), X (t2 )] E{[ X (t1) m(t1)][ X (t2 ) m(t2 )]}
由许瓦兹不等式得
| C(t1,t2 ) |2 | E{[ X (t1) m(t1)][ X (t2) m(t2)]}|2
E{[ X (t1) m(t1)]2}E{[ X (t2 ) m(t2 )]2}
h0
h0
说明
在均方连续的条件下,均值运算与极限运算的次 序可以互换。但要注意,上式左边为普通函数的 极限,而右边表示均方收敛意义下的极限。
Home
18/41
第四节 均方导数
一、均方导数的定义
定义1 设随机变量{ X (t) ,t (,) }为二阶矩过程
对于确定的t (,) , 如果均方极限
m

X
)2
]

0
Home
8/41
又由
( X n X m )2 [( X n X ) ( X m X )]2
2( X n X )2 2( X m X )2
所以 当 n , m 时,得
0

lim
n
E[(X n

X m )2 ]
m

2{lim n
l.i.m X (t h) X (t) 存在
h0
h
则称X (t)在t处均方可微, 并将此极限记作X (t)
称为 X (t) 在 t 处的均方导数
即有 X (t) l.i.m X (t h) X (t)
h0
h

lim
h 0
E

X
(t

h) h

X
(t)

2
X (t)
l.i.mX (t h) X (t) h0
再由均方收敛性质2,得
lim R(s h,t k) lim E[X (s h)X (t k)]
h0
h0
k 0
k 0
E[X (s)X (t)] R(s,t)
即 R(s,t) 在{(s,t) ,s,t (,) }处连续。
1/41
第二章 随机分析
第一节 二阶矩过程 第二节 均方极限 第三节 均方连续 第四节 均方导数 第五节 均方积分
2/41
第一节 二阶矩过程
一、定义
若随机过程{ X (t) ,t T },对任意t T ,有 m(t) E[ X (t)]
D(t) E[( X (t) m(t))2 ]
| E[ X (Ym Y )] | | E[( X n X )Y ] | | E[( X n X )(Ym Y )] |
1
1
{E( X
2 )E(Ym
Y )2 ]}2
{E[( 1
X
n

X
)2 ]E(Y )}2
{E[( X n X )2 ]E[(Ym Y )2 ]}2
Home
6/41
第二节 均方极限
一、均方收敛
定义1
设量随X都机存变在量二序阶列矩{ ,X如n果,n = 1,2,…}和随机变
lim
n
E[(X
n

X
)2
]

0
则称{ X n }均方收敛于X, 或称X是{ X n }的均方极限
记作
l n
.i
. mX
n

X
或简记为 l.i.m X n X
D[ X (t1)] D[ X (t2 )]
故 | C(t1, t2 ) |2
即二阶矩过程X (t) 的协方差函数存在
注 二阶矩过程的相关函数R(t1,t2 ) 也一定存在。
Home
5/41
说明
在讨论二阶矩过程中,常假定均值为零, 这样相关函数的形式和协方差函数的形式 相同。
返回
2a2E[( X n X )2 ] 2b2E[(Yn Y )2 ] n 0
故得证
Home
12/41
性质4 均方极限的唯一性
若 l.i.m Xn X
l.i.m Xn Y
则 X Y
注 若 P(X Y ) 1 ,则称 X 与 Y 相等
相关文档
最新文档