数学建模,线性规划,运输为问题

合集下载

数学建模之运输问题

数学建模之运输问题

数学建模之运输问题1. 引言运输问题是指在给定产地到销售地之间有若干个供应点和需求点的情况下,如何安排运输使得总运输成本最低。

这是一个经济管理中的经典问题,也是数学建模中常见的一个研究方向。

2. 问题描述假设有n个供应点和m个需求点,其中每个供应点的供应量和每个需求点的需求量已知,并且每个供应点到每个需求点的运输成本也已知。

我们的目标是确定供应点到需求点的运输量,使得总运输成本最小。

3. 模型建立为了建立数学模型,我们可以引入一个矩阵来表示供应点和需求点之间的运输成本。

设C为一个n行m列的矩阵,其中Cij表示供应点i到需求点j的运输成本。

我们需要引入决策变量X,其中Xij表示从供应点i到需求点j的运输量。

那么,目标函数可以定义为最小化总运输成本,即$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} C_{ij} X_{ij}$$同时,我们需要保证供应点和需求点的供需平衡,即满足每个供应点的供应量和每个需求点的需求量。

这可以表示为以下约束条件:1. 对于每个供应点i,有 $\sum_{j=1}^{m} X_{ij} = s_i$,其中$s_i$ 表示供应点i的供应量。

2. 对于每个需求点j,有 $\sum_{i=1}^{n} X_{ij} = d_j$,其中$d_j$ 表示需求点j的需求量。

进一步地,我们需要确保运输量的非负性,即$X_{ij} \geq 0$。

4. 求解方法对于较小规模的问题,我们可以使用线性规划方法求解运输问题。

线性规划是一种数学优化方法,可以在满足一定约束条件的前提下,使得目标函数达到最小值。

对于大规模的问题,我们可以使用近似算法或启发式算法进行求解。

这些算法可以快速找到较好的解,但不能保证找到最优解。

常用的算法包括模拟退火算法、遗传算法等。

5. 应用领域运输问题在许多实际应用中都有广泛的应用。

例如,在物流管理中,优化运输方案可以减少运输成本、提高运输效率;在生产计划中,合理安排运输可以确保供应链的稳定性和高效性。

国赛数学建模2023c题

国赛数学建模2023c题

国赛数学建模2023c题(中英文实用版)国赛数学建模2023c题,要求我们针对一个具有实际背景的问题进行数学建模和求解。

本题旨在考察参赛选手的数据分析、数学建模、编程求解以及论文撰写能力。

下面我们将逐步分析题目,寻找解题思路,并完成具体的计算过程。

一、题目背景介绍本题背景设定在一个物流公司,该公司拥有多个仓库,每天需要完成货物的配送任务。

为了提高配送效率,公司希望建立一个优化模型,合理安排配送路线,降低配送成本。

题目给出了各个仓库的货物需求量、配送中心的容量限制以及配送过程中的时间限制等条件,要求我们构建一个数学模型,求解最优的配送方案。

二、题目分析根据题意,我们可以将问题转化为一个运输问题,利用线性规划方法进行求解。

我们需要建立如下目标函数和约束条件:1.目标函数:最小化总配送成本2.约束条件:a.各仓库货物需求量满足b.配送中心的容量限制c.配送过程中的时间限制三、解题思路与步骤1.数据准备:整理题目给出的数据,包括各仓库需求量、配送中心容量、时间限制等。

2.建立数学模型:根据分析,构建线性规划模型,设定目标函数和约束条件。

3.选择合适的求解方法:由于该问题具有线性规划特点,可以采用单纯形法、内点法等求解算法。

4.编程实现:利用编程语言(如MATLAB、Python等)实现求解算法,完成计算。

5.结果分析:根据计算结果,分析各配送方案的优缺点,为物流公司提供合理建议。

四、具体计算过程(此处省略具体编程和计算过程,具体细节可根据实际编程语言和求解方法进行实现)五、结论与启示1.通过本题,我们成功构建了一个数学模型,求解了物流公司的配送优化问题。

2.在实际应用中,我们可以根据具体情况进行模型调整,如考虑更多约束条件、采用其他优化算法等。

3.数学建模竞赛不仅考验了我们的编程和计算能力,还锻炼了团队协作和沟通能力。

在解决实际问题时,应注重跨学科知识的运用,结合实际情况进行分析和建模。

4.今后在学习过程中,要加强对线性规划、运输问题等数学建模方法的学习,提高自己的建模能力。

数学建模 运输问题 送货问题

数学建模 运输问题 送货问题

数学建模论文题目:送货问题学院(直属系):数学与计算机学院年级、专业:2010级信息与计算科学姓名:杨尚安刘洋谭笑指导教师:蒲俊完成时间:2012年3月20日摘要本文讨论的是货运公司的运输问题,根据各公司需求和运输路线图,建立了线性规划模型和0-1规划模型,对货运公司的出车安排进行了分析和优化,得出运费最小的调度方案。

对于问题一,由于车辆在途中不能掉头,出车成本固定,要使得总成本最小,即要使在一定的车辆数下,既满足各公司的需求,又要尽量减小出车次数。

故以最小出车数为目标函数,建立线性规划模型,并通过lingo求解,得出最小出车数27次。

接着考虑车的方向问题,出车分为顺时针和逆时针,建立0-1模型,并求解,得出满足问题一的调度方案(见附录表1)。

对于问题二,车辆允许掉头,加上车辆装载货物和空装时运输费不同,,要使总成本最小,故可以通过修改原目标函数,建立线性规划模型和0-1规划模型,求解,得出最佳派出车辆3辆并列出满足问题二的调度方案。

对于问题三第一小问,增加了运输车辆的类型。

即装载材料的方法很多,在上述分析的基础上,通过增加约束条件,建立新的线性规划模型,并求解,得出满足问题三的调度方案。

在第二小问中,由于给出部分公司有道路相通,可采用运筹学中的最短路问题的解决方法加以解决。

关键字:线性规划模型0-1规划模型调度一、问题重述某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。

路线是唯一的双向道路(如图1)。

货运公司现有一种载重6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。

每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。

运输车载重运费1.8元/吨公里,运输车空载费用0.4元/公里。

利用线性规划解决集装箱调运问题

利用线性规划解决集装箱调运问题

利用线性规划解决集装箱调运问题在现代物流中,集装箱运输是相当重要的货物运输方式。

管理好集装箱的调度,可以大大节省运输成本,提高物流企业的利润。

本文通过线性规划方法,对集装箱调运问题进行数学建模,并通过实例计算,得出利润最大的集装箱调运方案。

标签:集装箱调运线性规划空箱调运一、前提假设1.集装箱大小均视为一致,且空箱不计重量。

2.任意两个港口间COC空箱调度的成本是固定的。

3.如果一个港口需要从别处调运空箱,必须是在本处所有COC已经用完且还不能满足需求的情况下,且只调运所缺数量的集装箱。

4.集装箱运量必须满足需求。

二、建模1.变量选取Qijs:从i港运往j港的SOC数量Qijc:从i港运往j港的装有货物的COC数量,这个变量是指由其余港口发货到本港,卸货后再装货运走的COC数量Xijc:由其他港口调剂到i港再装货运到j港的COC空箱数量Eijc:从i港调剂到j港的COC空箱数量Dijs,Dijc:分别为i港到j港的SOC与COC需求N,W:分别为船只的载货数量与重量限制C:任意两个港口间COC空箱调度的成本Gijc,Gijs:分别为从i港到j港的COC与SOC重量Rijs,Rijc:分別为从i港到j港的SOC与COC运费Cijs,Cijc:分别为从i港到j港的SOC与COC运输成本2.目标函数采用利润最大化原则:maxZ=[(Rijc-Cijc)(Qijc+Xijc)]+(Rijs-Cijs)Qijs-C*Eijc;i≠j3.约束条件从i港到j港的SOC、COC数量不超过船的载运数量限制,COC包括从其他港调剂来的空箱装货后发出的数量和要调剂到其他港的空箱数量:Qijs+Qijc+Xijc+Eijc<=N;i,j=1,2,3…n,j≠i从i港到j港的SOC、COC数量不超过船的载运重量限制,COC包括从其他港调剂来的空箱装货后发出的数量:QijsGijs+(Qijc+Xijc)Gijc<=W;i,j=1,2,3…n,j≠ii港的、从其他港调剂来的空箱装货后发出的COC数量必须等于其他港调剂来i港的空箱数量:Xijc=Eijc;i,j=1,2,3…n,j≠i从i港到其他港的COC总数量和从i港调剂到其他港的空箱数量之和不超过其他港发货到i港的COC数量:(Qijc+Eijc)<=(Qjic+Xjic);i,j=1,2,3…n,j≠i从i港发货到j港的COC数量满足i港j港的COC需求:Qijc+Xijc=Dijc;i,j=1,2,3…n,j≠i从i港发货到j港的SOC数量满足i港j港的SOC需求:Qijs=Dijs;i,j=1,2,3…n,j≠i三、实例求解某货运公司拥有两种集装箱运输服务,分别针对COC(Carrier owned Container)集装箱和SOC(Shipper Owend Container)集装箱,SOC集装箱占用运输成本,但不算在空箱调运之中。

数学建模运输问题

数学建模运输问题

有时候把两个表写在一起:
销地 产地 1 2 . . . m 销量
销地 产地 1 2 . . . m
1
2

n
产 量 a1 a2 . . . am 销地 产地 1 1 2 … n 产 量 a1 a2 . . . am
b1
1
b2
2


bn
n
2 . . . m
销量
c11 c12 … c1n c21 c22 … c2n . . . . . . . . . cm1 cm2 … cmn b1 b2 … bn
B2 10 4 5 6 14 6 5 3 4 3+4 B3 B4’ B4’’ 产量 (万台) 10 12 10 10
4
4 2
6
4
Global optimal solution found at iteration: 8 Objective value: 172.0000
销地 厂家 1 2
1
2
3
4
销地 厂家 A1 A2 A3 最高需求(万台)
31
x
32
x x x x x
33
x 2 3 4 6
34
7
x 11 x x 12 x x 13 x x 14 x x
ij
21
31
22
32
23
33
LINGO求解
24
34
0
设有三个电视机厂供应四个地区某种型号的电视机。 各厂家的年产量、 销地 各地区的年销售量以及 B1 B2 B3 厂家 各地区的单位运价 A1 6 3 12 如右表, A2 4 3 9 试求出总的运费最省的 A3 9 10 13 6 14 0 最低需求(万台) 电视机调拨方案。

线性规划的应用

线性规划的应用

线性规划的应用引言概述:线性规划是一种优化问题的数学建模方法,可以用于解决许多实际问题。

本文将探讨线性规划在不同领域的应用,包括生产计划、资源分配、运输问题、金融投资和市场营销等。

一、生产计划1.1 产能规划:线性规划可以匡助企业确定最优产能规划,通过最大化产量和最小化成本,实现生产效益的最大化。

1.2 原材料采购:线性规划可以优化原材料的采购计划,确保原材料的供应充足,同时最小化采购成本。

1.3 生产调度:线性规划可以匡助企业制定最佳的生产调度方案,合理安排生产过程,提高生产效率和产品质量。

二、资源分配2.1 人力资源:线性规划可以匡助企业合理分配人力资源,根据不同部门和岗位的需求,确定最佳的人员配置方案。

2.2 设备调度:线性规划可以优化设备的调度计划,确保设备的利用率最大化,减少闲置时间和能源浪费。

2.3 资金分配:线性规划可以匡助企业合理分配资金,根据不同项目的需求,确定最佳的资金分配方案,实现资金的最大效益。

三、运输问题3.1 物流配送:线性规划可以优化物流配送路线,确定最佳的配送方案,减少运输成本和时间。

3.2 仓储管理:线性规划可以匡助企业优化仓储管理,确定最佳的仓储位置和库存量,减少库存成本和仓储空间的浪费。

3.3 运输调度:线性规划可以匡助企业制定最佳的运输调度计划,合理安排运输车辆和货物的装载,提高运输效率和减少运输成本。

四、金融投资4.1 资产配置:线性规划可以匡助投资者确定最佳的资产配置方案,平衡风险和收益,实现投资组合的最优化。

4.2 资金规划:线性规划可以优化资金的规划和运用,确保资金的最大化利用和最小化风险。

4.3 投资决策:线性规划可以匡助企业制定最佳的投资决策方案,根据不同项目的收益和风险,确定最优的投资方向。

五、市场营销5.1 定价策略:线性规划可以匡助企业确定最佳的定价策略,根据市场需求和成本考虑,确定最优的价格水平。

5.2 促销策略:线性规划可以优化促销策略,确定最佳的促销活动方案,提高产品销售量和市场份额。

数学建模—货物配送问题

数学建模—货物配送问题

数学建模—货物配送问题本文将会探讨货物配送问题,其中会使用到数学建模的方法来解决。

问题描述假设有 $n$ 个城市需要被配送货物,每个城市之间的距离是已知的 $d_{i,j}$,其中 $d_{i,j}$ 表示第 $i$ 个城市和第 $j$ 个城市之间的距离。

需要找到一种合理的方案使得每个城市都能够被配送到且总的成本最小。

模型建立这是一个典型的旅行商问题,可以使用线性规划的方法来解决。

我们设 $x_{i,j}$ 表示是否从城市 $i$ 转移到城市 $j$,则可以得到以下的规划模型:$$\begin{aligned}\min \quad & \sum_{i=1}^n \sum_{j=1}^n d_{i,j} x_{i,j} \\s.t. \quad & \sum_{j=1}^n x_{i,j} = 1, \quad i=1,\cdots,n \\& \sum_{i=1}^n x_{i,j} = 1, \quad j=1,\cdots,n \\& u_i - u_j + nx_{i,j} \leq n-1, \quad i,j=2,\cdots,n, i \neq j \\& x_{i,j} \in \{0,1\}, \quad i,j=1,\cdots,n\end{aligned}$$其中,第一个约束是保证每个城市都恰好被访问一次,第二个约束也是保证每个城市都恰好被访问一次,第三个约束是 TSP 约束条件。

结论通过进行线性规划求解,可以求得货物配送问题的最优解。

当然,对于特别大的问题,我们还可以使用遗传算法等启发式算法来解决。

通过本文的学习,相信大家可以掌握货物配送问题的建模方法,并且对于线性规划方法有更深入的了解。

数学建模,线性规划,运输为问题

数学建模,线性规划,运输为问题
X26 20.00000 0.000000
X31 30.00000 0.000000
X32 20.00000 0.000000
X33 0.000000 3.000000
X34 0.000000 11.00000
X35 0.000000 23.00000
X36 0.000000 8.000000
X41 0.000000 7.000000
Objective value: 1620.000
Infeasibilities: 0.000000
Total solver iterations: 9
Variable Value Reduced Cost
X11 0.000000 14.00000
X12 0.000000 6.000000
X13 0.000000 4.000000
X55 0.000000 8.000000
X56 0.000000 32.00000
X64 30.00000 0.000000
X65 0.000000 3.000000
X66 0.000000 7.000000
Row Slack or Surplus Dual Price
1 1620.000 -1.000000
X42 0.000000 0.000000
X43 40.00000 0.000000
X44 0.000000 26.00000
X45 0.000000 16.00000
X46 0.000000 13.00000
X52 30.00000 0.000000
X53 0.000000 0.000000
X54 0.000000 21.00000
供应限制:x11+x12+x13+x14+x15+x16=20
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X14 0.000000 3.000000
X15 20.00000 0.000000
X16 0.000000 5.000000
X21 0.000000 7.000000
X22 0.000000 2.000000
X23 0.000000 17.00000
X24 0.000000 6.000000
X25 10.00000 0.000000
12
8
11
27
19
14
40
发点5
-
7
10
21
10
32
30
发点6
-
-
-
6
11
13
30
接受量
30
50
40
30
30
20
设:发点i向收点j的货物供应量为xij.
目标函数:
MinZ=20x11+15x12+16x13+5x14+4x15+7x16+17x21+15x22+33x23+12x24+8x25+6x26+9x31+12x32+18x33+16x34+30x35+13x36+12x41+8x42+11x43+27x44+19x45+14x46+7x52+10x53+21x54+10x55+32x56+6x64+11x65+13x66
X26 20.00000 0.000000
X31 30.00000 0.000000
X32 20.00000 0.000000
X33 0.000000 3.000000
X34 0.000000 11.00000
X35 0.000000 23.00000
X36 0.000000 8.000000
X41 000 -10.00000
11 0.000000 0.000000
12 0.000000 -2.000000
13 0.000000 0.000000
所以运输方案为:
运输点1接收点1
运输点23020接收点2
运输点33040接收点3
运输点41020接收点4
运输点520接收点5
40
运输点6接收点6
x11+x12+x13+x14+x15+x16=20;
x21+x22+x23+x24+x25+x26=30;
x31+x32+x33+x34+x35+x36=50;
x41+x42+x43+x44+x45+x46=40;
x52+x53+x54+x55+x56=30;
x64+x65+x66=30;
x11+x21+x31+x41=30;
这样的方案费用最小为1620.
有限制的运输问题:6个发点6个收点,其供应量、接收量和运费如下表1(”-”表示某个发电无法向某个收点运输货物)。求运输方案,使得总费用最小。所建模型最好具有推广性。
收点1
收点2
收点3
收点4
收点5
收点6
供应量
发点1
20
15
16
5
4
7
20
发点2
17
15
33
12
8
6
30
发点3
9
12
18
16
30
13
50
发点4
供应限制:x11+x12+x13+x14+x15+x16=20
x21+x22+x23+x24+x25x+26=30
x31+x32+x33+x34+x35+x36=50
x41+x42+x43+x44+x45+x46=40
x52+x53+x54+x55+x56=30
x64+x65+x66=30
需求限制:x11+x21+x31+x41=30
2 0.000000 -2.000000
3 0.000000 -6.000000
4 0.000000 -5.000000
5 0.000000 -1.000000
6 0.000000 0.000000
7 0.000000 -6.000000
8 0.000000 -4.000000
9 0.000000 -7.000000
x12+x22+x32+x42+x52=50;
x13+x23+x33+x43+x53=40;
x14+x24+x34+x44+x54+x64=30;
x15+x25+x35+x45+x55+x65=30;
x16+x26+x36+x46+x56+x66=20;
LINGO求解结果:
Global optimal solution found.
Objective value: 1620.000
Infeasibilities: 0.000000
Total solver iterations: 9
Variable Value Reduced Cost
X11 0.000000 14.00000
X12 0.000000 6.000000
X13 0.000000 4.000000
X55 0.000000 8.000000
X56 0.000000 32.00000
X64 30.00000 0.000000
X65 0.000000 3.000000
X66 0.000000 7.000000
Row Slack or Surplus Dual Price
1 1620.000 -1.000000
x12+x22+x32+x42+x52=50
x13+x23+x33+x43+x53=40
x14+x24+x34+x44+x54+x64=30
x15+x25+x35+x45+x55+x65=30
x16+x26+x36+x46+x56+x66=20
LINGO代码:
min=20*x11+15*x12+16*x13+5*x14+4*x15+7*x16+17*x21+15*x22+33*x23+12*x24+8*x25+6*x26+9*x31+12*x32+18*x33+16*x34+30*x35+13*x36+12*x41+8*x42+11*x43+27*x44+19*x45+14*x46+7*x52+10*x53+21*x54+10*x55+32*x56+6*x64+11*x65+13*x66;
X42 0.000000 0.000000
X43 40.00000 0.000000
X44 0.000000 26.00000
X45 0.000000 16.00000
X46 0.000000 13.00000
X52 30.00000 0.000000
X53 0.000000 0.000000
X54 0.000000 21.00000
相关文档
最新文档