数学建模运输问题

合集下载

数学建模之运输问题

数学建模之运输问题

数学建模之运输问题1. 引言运输问题是指在给定产地到销售地之间有若干个供应点和需求点的情况下,如何安排运输使得总运输成本最低。

这是一个经济管理中的经典问题,也是数学建模中常见的一个研究方向。

2. 问题描述假设有n个供应点和m个需求点,其中每个供应点的供应量和每个需求点的需求量已知,并且每个供应点到每个需求点的运输成本也已知。

我们的目标是确定供应点到需求点的运输量,使得总运输成本最小。

3. 模型建立为了建立数学模型,我们可以引入一个矩阵来表示供应点和需求点之间的运输成本。

设C为一个n行m列的矩阵,其中Cij表示供应点i到需求点j的运输成本。

我们需要引入决策变量X,其中Xij表示从供应点i到需求点j的运输量。

那么,目标函数可以定义为最小化总运输成本,即$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} C_{ij} X_{ij}$$同时,我们需要保证供应点和需求点的供需平衡,即满足每个供应点的供应量和每个需求点的需求量。

这可以表示为以下约束条件:1. 对于每个供应点i,有 $\sum_{j=1}^{m} X_{ij} = s_i$,其中$s_i$ 表示供应点i的供应量。

2. 对于每个需求点j,有 $\sum_{i=1}^{n} X_{ij} = d_j$,其中$d_j$ 表示需求点j的需求量。

进一步地,我们需要确保运输量的非负性,即$X_{ij} \geq 0$。

4. 求解方法对于较小规模的问题,我们可以使用线性规划方法求解运输问题。

线性规划是一种数学优化方法,可以在满足一定约束条件的前提下,使得目标函数达到最小值。

对于大规模的问题,我们可以使用近似算法或启发式算法进行求解。

这些算法可以快速找到较好的解,但不能保证找到最优解。

常用的算法包括模拟退火算法、遗传算法等。

5. 应用领域运输问题在许多实际应用中都有广泛的应用。

例如,在物流管理中,优化运输方案可以减少运输成本、提高运输效率;在生产计划中,合理安排运输可以确保供应链的稳定性和高效性。

运输问题

运输问题

《数学建模与计算》问题运输问题1. 具体问题有某种物资3个产地,8个销地,第i个产地产量为ai(i=1,2,…,m)第j个销地的需要量为bj(j=1,2,…,n)其中。

由产地i到销地j的距离已知为dij,问应如何分配该种物资,使既能满足各地的需求又能在花费的运输总吨公里数最少(具体距离数据见下表格)①②③④⑤⑥⑦⑧供应量A 4 8 8 19 11 6 22 20 200B 14 7 7 16 12 16 23 17 170C 20 19 11 14 6 15 5 10 160销售量75 60 80 70 100 55 90 80 75由上表可知:该问题中出现了销售量大于产量的情况,因此可以可以增加一个虚产地,其中该虚产地到销售地的距离为0,则上表可以修改如下:①②③④⑤⑥⑦⑧供应量A 4 8 8 19 11 6 22 20 200B 14 7 7 16 12 16 23 17 170C 20 19 11 14 6 15 5 10 160虚产地0 0 0 0 0 0 0 0 075 60 80 70 100 55 90 80 752. 解决方法建立数据模型如下:Minz=4*x11+8*x12+8*x13+19*x14+11*x15+6*x16+22*x17+20*x18+14*x21+7*x22+7*x23+16*x24+12*x25+16*x26+23*x27+17*x28+20*x31+19*x32+11*x33+14*x34+6*x35+15*x36+5*x 37+10*x38+10*x41+8*x42+5*x43+10*x44+10*x45+8*x46+5*x47+8*x48 ;x11+x12+x13+x14+x15+x16+x17+x18=200 ;x21+x22+x23+x24+x25+x26+x27+x28=170 ;x31+x32+x33+x34+x35+x36+x37+x38=160 ;x41+x42+x43+x44+x45+x46+x47+x48=80 ;x11+x21+x31+x41=75 ;x12+x22+x32+x42=60;x13+x23+x33+x43=80 ;x14+x24+x34+x44=70 ;x15+x25+x35+x45=100 ;x16+x26+x36+x46=55 ;x17+x27+x37+x47=90 ;x18+x28+x38+x48=80 ;x>=0(i=1:4, ,j=1:8)ij3. 程序代码于是便可利用lingo软件编写程序求解如下:Min=4*x11+8*x12+8*x13+19*x14+11*x15+6*x16+22*x17+20*x18+14*x21+7*x22+7*x 23+16*x24+12*x25+16*x26+23*x27+17*x28+20*x31+19*x32+11*x33+14*x34+6*x35+1 5*x36+5*x37+10*x38+10*x41+8*x42+5*x43+10*x44+10*x45+8*x46+5*x47+8*x48 ;x11+x12+x13+x14+x15+x16+x17+x18=200 ;x21+x22+x23+x24+x25+x26+x27+x28=170 ;x31+x32+x33+x34+x35+x36+x37+x38=160 ;x41+x42+x43+x44+x45+x46+x47+x48=80 ;x11+x21+x31+x41=75 ;x12+x22+x32+x42=60;x13+x23+x33+x43=80 ;x14+x24+x34+x44=70 ;x15+x25+x35+x45=100 ;x16+x26+x36+x46=55 ;x17+x27+x37+x47=90 ;x18+x28+x38+x48=80 ;end4. 结果分析Global optimal solution found.Objective value: 3890.000Total solver iterations: 11Variable Value Reduced CostX11 75.00000 0.000000X12 0.000000 2.000000X13 0.000000 2.000000X14 0.000000 4.000000X15 70.00000 0.000000X16 55.00000 0.000000 X17 0.000000 12.00000 X18 0.000000 5.000000 X21 0.000000 9.000000 X22 60.00000 0.000000 X23 80.00000 0.000000 X24 0.000000 0.000000 X25 30.00000 0.000000 X26 0.000000 9.000000 X27 0.000000 12.00000 X28 0.000000 1.000000 X31 0.000000 21.00000 X32 0.000000 18.00000 X33 0.000000 10.00000 X34 0.000000 4.000000 X35 0.000000 0.000000 X36 0.000000 14.00000 X37 90.00000 0.000000 X38 70.00000 0.000000 X41 0.000000 11.00000 X42 0.000000 9.000000 X43 0.000000 9.000000 X44 70.00000 0.000000 X45 0.000000 4.000000 X46 0.000000 9.000000 X47 0.000000 5.000000 X48 10.00000 0.000000 Row Slack or Surplus Dual Price1 3890.000 -1.0000002 0.000000 -15.000003 0.000000 -16.000004 0.000000 -10.000005 0.000000 0.0000006 0.000000 11.000007 0.000000 9.0000008 0.000000 9.0000009 0.000000 0.00000010 0.000000 4.00000011 0.000000 9.00000012 0.000000 5.00000013 0.000000 0.000000 由结果可知:当X11=75.00000X15=70.00000X16=55.00000X22=60.00000X23=80.00000X25=30.00000X37=90.00000X38=70.00000X44=70.00000X48=10.00000其余为0时,该方案为最优方案.Min z= 3890.000而对于其他平衡运输问题以及产大于销问题,由上论述可知均可转化为平衡问题求解,这里就不再一一赘述。

数学建模 运输问题与Lingo求解

数学建模 运输问题与Lingo求解

运输问题与Lingo求解
Min=12*x11+13*x12+10x13+11x14+10x21+12x22 +14x23+10x24+14x31+11x32+15x33+12x34; x11+x12+x13+x14<=7; x21+x22+x23+x24<=9; x31+x32+x33+x34<=7; x11+x21+x31>=3; x12+x22+x32>=5; x13+x23+x33>=7; x14+x24+x34>=8; END
数学 模型 部分
集合 定义 部分
运输问题与Lingo求解
sets: Supplier/@ole(‘D:\运输问题.xls','Supplier')/:Supply; Demander/@ole(‘D:\运输问题.xls','Demander')/:Demand; Matrix(Supplier,Demander):PriceMatrix,TransportationMatrix; endsets data: PriceMatrix=@ole(‘D:\运输问题.xls'); Supply=@ole(‘D:\运输问题.xls'); Demand=@ole(‘D:\运输问题.xls'); @OLE('D:\运输问题.xls','TransportationMatrix')=TransportationMatrix; enddata min=@sum(Matrix:PriceMatrix*TransportationMatrix); @for(Supplier(i): @sum(Demander(j):TransportationMatrix(i,j))=Supply(i) ); @for(Demander(j): @sum(Supplier(i):TransportationMatrix(i,j))=Demand(j) );

数学建模中优化模型之运输问题讲解

数学建模中优化模型之运输问题讲解

6
5 3
9
10
6
v1=10
v2=6
v3=4
单位费用变化:5-(4+(-4)=5
4 3
u1=-4
7 u2=-2
6
13 u3=6
v4=0
对偶变量法(10)
1
2
3
6
7
5
1
14
5
5
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
v3=4
单位费用变化:3-(0+(-4)=7
4
3 u1=-4
7
7 u2=-2
6
6
13 u3=6
v4=0
对偶变量法(6)
1
2
3
6
7
5
1
14
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
u2+v1=c21 v1=10
v3=4
4 3
u1
7 u2=-2
6
13 u3=6
v4=0
对偶变量法(7)
1
2
3
6
7
5
1
14
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
u1+v1=c11 u1=-4
运输问题
运输问题的表示 网络图、线性规划模型、运输表 初始基础可行解 西北角法、最小元素法 求解方法 闭回路法、对偶变量法 特殊形式运输问题 不平衡问题、转运问题

基于运输问题的数学建模

基于运输问题的数学建模

数学建模一周论文论文题目:基于运输问题的数学模型姓名1:学号:姓名2:学号:姓名3:学号:专业:班级:指导教师:2011年12 月29 日(十五)、已知某运输问题的产销平衡表与单位运价表如下表所示(1)求最优调拨方案;(2)如产地的产量变为130,又B地区需要的115单位必须满足,试重新确定最优调拨方案。

一论文摘要一般的运输问题就是要解决把某种产品从若干个产地调运到若干个销地,在每个产地的供应量与每个销地的需求量已知,并知道各地之间的运输单价的前提下,如何确定一个使得总的运输费用最小的方案的问题。

本论文运用线性规划的数学模型来解决此运输问题中总费用最小的问题。

引入x变量作为决策变量,建立目标函数,列出约束条件,借助MATLAB软件进行模型求解运算,得出其中的最优解,使得把某种产品从3个产地调运到5个销地的总费用最小。

针对模型我们探讨将某产品从3个产地调运到5个销地的最优调拨方案,通过运输问题模,得到模型Z=1011x+1512x+2013x+2014x+4015x+2021x+4022x+1523x+3024x minx+3031x+3532x+4033x+5534x+2535x+3025Z=并用管理运筹学软件软件得出最优解为:min关键词:运输模型最优化线性规划二.问题的重述和分析A(i=1,2,3)和五个销地j B(j=1,2,3,4,5),已知产地i A的产量有三个产地is和销地j B的销量j d,和将物品从产地i运到销地j的单位运价ij c,请问:i将物品从产地运往销地的最优调拨方案。

A,2A,3A三个产地的总产量为50+100+150=300单位;1B,我们知道,1B,3B,4B,5B五个销地的总销量为25+115+60+30+70=300单位,总2A,2A,3A的产量全产量等于总销量,这是一个产销平衡的运输问题。

把产地1B,2B,3B,4B,5B,正好满足这三个销地的需要。

先将安排的部分配给销地1运输量列如下表中:三.模型的假设与符号说明1.模型的假设①每一个产地都有一个固定的供应量,所有的供应量都必须配送到各个销地;②每一个销地都有一个固定的需求量,整个需求量都必须由产地满足;③从任何一个产地到任何一个销地的物品运输成本和所运输的数量成线性比例关系;④这个成本就等于运输的单位成本乘以运输的数量。

数学建模--运输问题

数学建模--运输问题

运输问题摘要本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。

关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。

考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。

关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。

首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。

即最短路线为:1-5-7-6-3-4-8-9-10-2-1。

但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。

关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。

这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。

因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。

得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。

关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。

数学建模中优化模型之运输问题详解

数学建模中优化模型之运输问题详解

2
3
6
7
5
1 14
5
5
8
4
2
2 8
13
6
5 3
9
10
6
22
13
12
单位费用变化:5+8-6-2=5
4 3
14
7 27
6 19
13
13
闭回路法(3)
1
2
3
4
6
7
5
3
1 14
5
5
7 14
8
4
2
7
2 8
13
6
27
5 3
9
10
6
19
6
13
22
13
12
13
单位费用变化:3+10+8-6-2-6=7
闭回路法(4)
1
2
3
6
7
5
1
14
5
5
8
4
2
2
8
13
6
5 3
9
10
6
22
13
12
单位费用变化:7+10-6-2=9
4
3
7 14
7
9 27
6
19 13
13
闭回路法(5)
1
2
3
4
6
7
5
3
1
14
5
5
7 14
8
4
2
7
2 8
13
6
9 27
5
9
3
-11
10
6
6 19
13
22
13

运筹学 运输问题例题数学建模

运筹学 运输问题例题数学建模

运筹学运输问题例题数学建模运筹学是一门研究如何在有限的资源和多种约束条件下,寻求最优或近似最优解的科学。

运输问题是运筹学中的一个重要分支,它主要研究如何把某种商品从若干个产地运至若干个销地,使总的运费或总的运输时间最小。

本文将介绍运输问题的数学建模方法,以及用表上作业法求解运输问题的步骤和技巧。

同时,本文还将给出几个典型的运输问题的例题,帮助读者理解和掌握运输问题的求解过程。

运输问题的数学建模运输问题可以用以下的数学模型来描述:设有m 个产地(或供应地),分别记为A 1,A 2,…,A m ,每个产地i 的产量(或供应量)为a i ;有n 个销地(或需求地),分别记为B 1,B 2,…,B n ,每个销地j 的需求量为b j ;从产地i 到销地j 的单位运费(或单位运输时间)为c ij ;用x ij 表示从产地i 到销地j 的运量,则运输问题可以归结为以下的线性规划问题:其中,目标函数表示总的运费或总的运输时间,约束条件表示每个产地的供应量必须等于其产量,每个销地的需求量必须等于其销量,以及每条运输路线的运量不能为负数。

在实际问题中,可能出现以下几种情况:产销平衡:即∑m i =1a i =∑n j =1b j ,也就是说总的供应量等于总的需求量。

这种情况下,上述数学模型可以直接应用。

产大于销:即∑m i =1a i >∑n j =1b j ,也就是说总的供应量大于总的需求量。

这种情况下,可以增加一个虚拟的销地,其需求量等于供需差额,且其与各个产地的单位运费为零。

这样就可以把问题转化为一个产销平衡的问题。

产小于销:即∑m i =1a i <∑n j =1b j ,也就是说总的供应量小于总的需求量。

这种情况下,可以增加一个虚拟的产地,其产量等于供需差额,且其与各个销地的单位运费为零。

这样也可以把问题转化为一个产销平衡的问题。

弹性需求:即某些销地对商品的需求量不是固定不变的,而是随着商品价格或其他因素而变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有时候把两个表写在一起:
销地 产地 1 2 . . . m 销量
销地 产地 1 2 . . . m
1
2

n
产 量 a1 a2 . . . am 销地 产地 1 1 2 … n 产 量 a1 a2 . . . am
b1
1
b2
2


bn
n
2 . . . m
销量
c11 c12 … c1n c21 c22 … c2n . . . . . . . . . cm1 cm2 … cmn b1 b2 … bn
B2 10 4 5 6 14 6 5 3 4 3+4 B3 B4’ B4’’ 产量 (万台) 10 12 10 10
4
4 2
6
4
Global optimal solution found at iteration: 8 Objective value: 172.0000
销地 厂家 1 2
1
2
3
4
销地 厂家 A1 A2 A3 最高需求(万台)
31
x
32
x x x x x
33
x 2 3 4 6
34
7
x 11 x x 12 x x 13 x x 14 x x
ij
21
31
22
32
23
33
LINGO求解
24
34
0
设有三个电视机厂供应四个地区某种型号的电视机。 各厂家的年产量、 销地 各地区的年销售量以及 B1 B2 B3 厂家 各地区的单位运价 A1 6 3 12 如右表, A2 4 3 9 试求出总的运费最省的 A3 9 10 13 6 14 0 最低需求(万台) 电视机调拨方案。
x ij a i ( i 1 , , m ) j1 m s . t . x ij b j ( j 1 , , n ) i1 x 0 ij
2)求解方法: 转化为产销平衡问题
销大于产时,在产销平衡表中增加一个假想的产地 i = m+1, 该地产量为 在单位运价表中, 从假想产地到各销地的单位运价为

m
n

i1
ai

j1
bj
1
2 . . . m
x11 x12 … x1n x21 x22 … x2n . . . . . . . . . xm1 xm2 … xmn
a1 a2 . . . am
m
n
min
n
z

i1 j1
销量
c ij x
ij
b1 b2 … bn
二.问题的概述
在线性规划中研究这样一类问题: 有某种物资需要调运,这种物资的计量单位可以是重量, 包装单位或其他。 已知: 有m 个地点可以供应该种物资(统称产地,用 i =1,…,m 表示); 有 n 个地点需要该种物资(统称销地,用 j =1,…,n 表示)。 又知 m 个产地的可供量(统称产量)为a1 , a2, …, am(统写为a i ); n 个销地的需要量(统称销量)为b1 , b2, …, bn(统写为 b j )。 从第 i 个产地到第 j 个销地的单位物资运价为c i j 。
5 12 6 不限
产量 (万台)
10 12 10 10
销地 厂家 A1 A2 A3 A4
B1’
B1’’
B2 10 4
B3
B4’
B4’’
产量 (万台) 10 12 10 10
6
2 2 4
5 6
3 4
销量
6
14
6
5
3+4
总运价:172元
销地 厂家 A1 A2 A3 A4 销量 B1’ B1’’
Lingo求解
上面这些数据通常用产销平衡表和单位运价表来表示。
产销平衡表 销地 产地
单位运价表
1
2

n
产量
销地 产地
1
2

n
1 2 . . . m
销量
a1 a2 . . . am b1 b2 … bn
1
2 . . . m
c11 c12 … c1n c21 c22 … c2n . . . . . . . . . cm1 cm2 … cmn
j 1
c ij x ij c ij x ij
n ij i x x ij a j j 1 1 mm x x ij b 1 ij j i i 1 x x ij 0 0 ij
i 1
销地 产地
1
2
… n
a ( i 1, , m ) ( i i 1, , m )
c m 1, j 0
产地 1 2 . . . m 销地

n m

j 1
b
j


i 1
ai
1
c11 c21 . . . cm1
2

n
产量
a1 a2 . . . am
就转化为产销平衡的运输问题。
具体做法如下:
c12 … c1n c22 … c2n . . . . . . cm2 … cmn
最高需求(万台) 销地 厂家 A1 A2 A3 A4 销量 B1’ 6 4 9 M 6 B1’’ 6 4 9 0 4 B2 3 3 10 M 14 B3 12 9 13 0 6 B4’ 6 - M 10 M 5 10 B4’’ 6 - M 10 0 7 14
B4 6 - 10
产量 (万台) 10 12 10
1
2

n
产 量 a1 a2 . . . am
产 量 a1 a2 . . . am
1
2 . . . m
销量
c11 c12 … c1n c21 c22 … c2n . . . . . . . . . cm1 cm2 … cmn
b1 b2 … bn
min min
n
z z

m
i 1
j 1
m+1 销量
0
0 … 0
短缺
b 1 b 2 … bn
应用实例
设有A1、A2、A3三个产地生产某种物资,产量分别为7、5、7吨, B1、B2、B3、B4四个销地需要该物资,销量分别为2、3、4、6吨。 又知各产销地之间的单位运价见下表, 试决定总运费最少的调运方案。
销地 产地 B1 B2 B3 B4 4 9 2
c11 c12 … c1n c21 c22 … c2n . . . . . . . . . cm1 cm2 … cmn
三.运输问题模型
设 xij 代表从第 i 个产地调运给 第 j 个销地的物资数量。 在产销平衡的条件下,要求解 运输问题使总的运费支出最小, 则有如下的运输问题数学模型:
m n
n
销地 产地
B1 B2 B3 6 4 9 10
B4
产量 (万台) 10 12 10
x11 x12 x13 x14 x21 x22 x23 x24
3
min z 6 x 11 3 x 12 最低需求(万台) 4 x 6 14 x 22 0 9 5 23 12 x 13 6 x 14 3 x 21 1000 x 24 9 x 31 10 x 32 13 x 33 10 x 34 min z 6 x 11 3 x 12 12 x 13 6 x 14 4 x 21 3 x 22 9 x 23 x 11 x 12 x 13 x 14 10 1000 x 24 9 x 31 10 x 32 13 x 33 10 x 34 x x 22 x 23 12 x 11 x 12 x 13 x 14 10 21 x x x x 10 31 32 x 33x 22 34x 23 12 21 x 33 6 x 11 x x 21 x x 31 10 x 34 10 31 32 s .t . x x 226 xx32 14 x 10 11 x 21 12 31 x x x x x 6 x 14 13 23 12 33 22 32 Lingo求解 x 14 x 34x 5 x 23 x 33 6 13 x 0 x 14 x 34 5 ij
a1 a2 . . . am
m in
n
z


i 1 j 1
i
c 销量 ij b b … x ij 1 2
bn
s.t.
x ij j 1 m x ij i 1
a b
( i 1, , m ) ( j 1, , n ) 0
j
3
4
6
4
销地 产地 A1 A2 A3 销量
产量 7 5 7
用表上作业法计算, 求得最优调运方案为:
销地 产地
B1
B2
B3
B4
产量 7 5 7
3
销地 产地
B1
B2
B3
B4
A1 A2 A3
销量
x11 x21 x31
2
x12 x22 x32
3
x13 x23 x33
4 min
x14 x24 x34
6 z
销地 产地 1 2 … n
n+1
0 0
产量
1
2 . . . m 销量
c11 c21 . . . cm1
c12 … c1n c22 … c2n . . . . . . cm2 … cmn
相关文档
最新文档