山东省潍坊市青州市2020年九年级中考数学一模试卷(含解析)
山东省潍坊市中考一模数学考试卷(解析版)(初三)中考模拟.doc

山东省潍坊市中考一模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】的立方根是()A.2 B.±2 C.4 D.±4【答案】A.【解析】试题解析:=8,8的立方根是2.故选A.考点:1.算术平方根;2.立方根.【题文】下列运算正确的是()A.a0=1 B.=±3 C.(ab)3=ab2 D.(-a2)3=﹣a6【答案】D.【解析】试题解析:A、a0=1(a≠0),故此选项错误;B、=3,故此选项错误;C、(ab)2=a2b2,故此选项错误;D、(﹣a2)3=﹣a6,正确.故选D.考点:1.非零数的零次幂;2.算术平方根;3.积的乘方与幂的乘方.【题文】王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地()A.m B.100m C.150m D.m 【答案】D.【解析】试题解析:AD=ABsin60°=;BD=ABcos60°=50,∴CD=150.∴AC=.故选D.考点:解直角三角形的应用—方向角问题.【题文】若关于x 的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有解,那么m的取值范围是()A. B. C. 且m≠2 D. 且m≠2【答案】C【解析】试题解析:根据题意列出方程组,解之得m>且m≠2.故选C.考点:根的判别式.【题文】如图,组合体的俯视图是()【答案】A.【解析】试题解析:从上面看是两个同心圆,如图所示:.故选A.考点:简单组合体的三视图.【题文】在边长为2的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为2的概率为()A. B. C. D.【答案】B.【解析】试题解析:如图所示,∵在格点上任意放置点C,∴有关有16种可能,其中有6个点(见图)恰好能使得△ABC的面积为2,∴恰好能使得△ABC的面积为2的概率=.故选B.考点:概率公式.【题文】点P(a,b)是直线y=﹣x﹣5与双曲线的一个交点,则以a、b两数为根的一元二次方程是()A.x2﹣5x+6=0 B.x2+5x+6=0C.x2﹣5x﹣6=0 D.x2+5x﹣6=0【答案】B.【解析】试题解析:把P(a,b)分别代入y=﹣x﹣5和得b=﹣a﹣5,b=,所以a+b=﹣5,ab=6,而以a、b两数为根的一元二次方程为x2﹣(a+b)x+ab=0,所以所求的方程为x2+5x+6=0.故选B.考点:反比例函数与一次函数函数的交点问题.【题文】如图,AB的中垂线为CP交AB于点P,且AC=2CP.甲、乙两人想在AB上取D、E两点,使得AD=DC=CE=EB ,其作法如下:甲作∠ACP、∠BCP的角平分线,分别交AB于D、E两点,则D、E即为所求;乙作AC、BC 的中垂线,分别交AB于D、E两点,则D、E即为所求.对于甲、乙两人的作法,下列正确的是()A.两人都正确 B.两人都错误C.甲正确,乙错误 D.甲错误,乙正确【答案】A.【解析】试题解析:甲、乙都正确,理由是:∵CP是线段AB的垂直平分线,∴BC=AC,∠APC=∠BPC=90°,∵AC=2CP,∴∠A=30°,∴∠ACP=60°,∵CD平分∠ACP,∴∠ACD=∠ACP=30°,∴∠ACD=∠A,∴AD=DC,同理CE=BE,即D、E为所求;∵D在AC的垂直平分线上,∴AD=CD,同理CE=BE,即D、E为所求,故选A.考点:1.线段垂直平分线的性质;2.含30度角的直角三角形.【题文】某外贸公司要出口一批食品罐头,标准质量为每听454克,现抽去10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:﹣10,+5,0,+5,0,0,﹣5,0,+5,+10.则这10听罐头质量的平均数及众数为()A.454,454 B.455,454 C.454,459 D.455,0【答案】B.【解析】试题解析:平均数是:454+(﹣10+5+0+5+0+0﹣5+0+5+10)=454+1=455克,﹣10,+5,0,+5,0,0,﹣5,0,+5,+10的众数是0,因而这10听罐头的质量的众数是:454+0=454克.故选B.考点:1.众数;2.算术平均数.【题文】二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】D.【解析】试题解析:由图象开口向上可知a>0,对称轴x=﹣<0,得b>0.所以一次函数y=bx+a的图象经过第一、二、三象限,不经过第四象限.故选D.考点:1.一次函数图象与系数的关系;2.二次函数图象与系数的关系.【题文】如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是()A.相离 B.相切 C.相交 D.相切或相交【答案】B.【解析】试题解析:作CD⊥AB于点D.∵∠B=30°,BC=4cm,∴CD=BC=2cm,即CD等于圆的半径.∵CD⊥AB,∴AB与⊙C相切.故选B.考点:直线与圆的位置关系【题文】已知如图,等腰三角形ABC的直角边长为a,正方形MNPQ的边为b(a<b),C、M、A、N在同一条直线上,开始时点A与点M重合,让△ABC向右移动,最后点C与点N重合.设三角形与正方形的重合面积为y,点A移动的距离为x,则y关于x的大致图象是()【答案】B.【解析】试题解析:设三角形与正方形的重合面积为y,点A移动的距离为x,∴y关于x的函数关系式为:y=x2,①当x<a时,重合部分的面积的y随x的增大而增大,②当a<x<b时,重合部分的面积等于直角三角形的面积,且保持不变,③第三部分函数关系式为y=﹣当x>b时,重合部分的面积随x的增大而减小.故选B.考点:动点问题的函数图象.【题文】分解因式:﹣x﹣x3+x2=.【答案】﹣x(x﹣)2.【解析】试题解析:﹣x﹣x3+x2=﹣x(x2﹣x+)=﹣x(x﹣)2.考点:提公因式与公式法的综合运用.【题文】关于x、y的方程组,那么=.【答案】10.【解析】试题解析:①-②,得:=10.考点:解二元一次方程组.【题文】如图,已知△ABC,AC=BC,∠C=90°.O是AB的中点,⊙O与AC,BC分别相切于点D与点E.点F是⊙O与AB的一个交点,连DF并延长交CB的延长线于点G.则∠CDG=,若AB=,则BG=.【答案】67.5°,2﹣2.【解析】试题解析:连接OD.∵CD切⊙O于点D,∴∠ODA=90°,∠DOA=45°,∵OD=OF,∴∠ODF=∠OFD=∠DOA=22.5°,∴∠CDG=∠CDO﹣∠ODF=90°﹣22.5°=67.5°.∵AC为圆O的切线,∴OD⊥AC,又O为AB的中点,∴AO=BO=AB=2,∴圆的半径DO=FO=AOsinA=2×=2,∴BF=OB﹣OF=2﹣2.∵GC⊥AC,OD⊥AC,∴OD∥CG,∴∠ODF=∠G,又∠OFD=∠BFG,∴△ODF∽△BGF,∴,即∴BG=2﹣2.考点:圆的综合题.【题文】若关于x的不等式组有实数解,则a的取值范围是.【答案】a<4.【解析】试题解析:,由①得,x<3,由②得,x>,∵此不等式组有实数解,∴<3,解得a<4.考点:解一元一次不等式组.【题文】如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于E.阴影部分面积为(结果保留π).【答案】8﹣π.【解析】试题解析:∵四边形ABCD为正方形,∴BC=CD=4,∴OC=2,∴S阴影=S△BCD﹣S扇形OCE=×4×4﹣=8﹣π.考点:1.扇形面积的计算;2.正方形的性质.【题文】式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为,这里的符号“”是求和的符号,如“1+3+5+7+…+99”即从1开始的100以内的连续奇数的和,可表示为.通过对以上材料的阅读,请计算:=(填写最后的计算结果).【答案】.【解析】试题解析:==1-=.考点:分式的加减法.【题文】下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的条形统计图如图.比赛项目票价(元/张)男篮1000足球800乒乓球x依据上列图、表,回答下列问题:(1)其中观看男篮比赛的门票有张;观看乒乓球比赛的门票占全部门票的 %;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到足球门票的概率是;(3)若购买乒乓球门票的总款数占全部门票总款数的,试求每张乒乓球门票的价格.【答案】(1)30;20;(2);(3)500元.【解析】试题分析:(1)由条形统计图可得购买男篮比赛的门票数为30张,购买乒乓球比赛的门票数为20张,然后计算观看乒乓球比赛的门票所占的百分比;(2)根据概率的公式求解;(3)根据题意列方程,然后解方程即可.试题解析:(1)某公司购买男篮比赛的门票张数为30(张),观看乒乓球比赛的门票所占的百分比=;(2)员工小亮抽到足球门票的概率=;(3)根据题意得.解得x=500.即每张乒乓球门票的价格为500元.考点:1.条形统计图;2.统计表;3.概率公式.【题文】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【答案】(1)证明见解析;(2)6.5;(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.【解析】试题分析:(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;(3)根据平行四边形的判定以及矩形的判定得出即可.(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=l∵∠ECF=90°,∴平行四边形AECF是矩形.【题文】小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.【答案】浮漂B与河堤下端C之间的距离为1.5米.【解析】试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出∠CAD=180°﹣∠ODB﹣∠ACD=90°,解Rt△ACD,得出AD=ACtan∠ACD=米,CD=2AD=3米,再证明△BOD是等边三角形,得到BD=OD=OA+AD=4.5米,然后根据BC=BD﹣CD即可求出浮漂B与河堤下端C 之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是60°,∴∠ODB=60°.∵∠ACD=30°,∴∠CAD=180°﹣∠ODB﹣∠ACD=90°.在Rt△ACD中,AD=ACtan∠ACD=(米),∴CD=2AD=3米,又∵∠O=60°,∴△BOD是等边三角形,∴BD=OD=OA+AD=3+=4.5(米),∴BC=BD﹣CD=4.5﹣3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.考点:解直角三角形的应用—坡度坡角问题.【题文】如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线;(2)若BC=2,sin∠BCP=,求点B到AC的距离.【答案】(1)证明见解析;(2)4.【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定【题文】某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元).(1)当x=1000时,y=元/件,w内=元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.【答案】(1)140;57500;(2)w内= x2+130x﹣62500,w外=x2+(150﹣a)x.(3)30.【解析】试题分析:(1)将x=1000代入函数关系式求得y,并根据等量关系“利润=销售额﹣成本﹣广告费”求得w内;(2)根据等量关系“利润=销售额﹣成本﹣广告费”“利润=销售额﹣成本﹣附加费”列出两个函数关系式;(3)对w内函数的函数关系式求得最大值,再求出w外的最大值并令二者相等求得a值.试题解析:(1)∵销售价格y(元/件)与月销量x(件)的函数关系式为y=l所以a=30.考点:二次函数的应用.【题文】如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6).(1)求抛物线的函数解析式;(2)直线m与⊙C相切于点A,交y轴于点D.动点P在线段OB上,从点O出发向点B运动;同时动点Q 在线段DA上,从点D出发向点A运动;点P的速度为每秒一个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值;(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.【答案】(1) y=x2﹣2x.(2) t=1.8秒;(3) R(,).【解析】试题分析:(1)根据抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6),利用待定系数法求抛物线解析式;(2)如图1,由已知条件,可以计算出OD、AE等线段的长度.当PQ⊥AD时,过点O作OF⊥AD于点F,此时四边形OFQP、OFAE均为矩形.则在Rt△ODF中,利用勾股定理求出DF的长度,从而得到时间t的数值;(3)因为OB为定值,欲使△ROB面积最大,只需OB边上的高最大即可.按照这个思路解决本题.如图2,当直线l平行于OB,且与抛物线相切时,OB边上的高最大,从而△ROB的面积最大.联立直线l 和抛物线的解析式,利用一元二次方程判别式等于0的结论可以求出R点的坐标.试题解析:(1)∵抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6),∴,解得∴抛物线的解析式为:y=x2﹣2x.(2)如图1,连接AC交OB于点E,由垂径定理得AC⊥OB.∵AD为切线,∴AC⊥AD,∴AD∥OB.过O点作OF⊥AD于F,∴四边形OFAE是矩形,∵tan∠AOB=,∴sin∠AOB=,∴AE=OAsin∠AOB=4×=2.4,OD=OAtan∠OAD=OAtan∠AOB=4×=3.当PQ⊥AD时,OP=t,DQ=2t.在Rt△ODF中,∵OD=3,OF=AE=2.4,DF=DQ﹣FQ=DQ﹣OP=2t﹣t=t,由勾股定理得:DF=,∴t=1.8秒;(3)如图2,设直线l平行于OB,且与抛物线有唯一交点R(相切),此时△ROB中OB边上的高最大,所以此时△ROB面积最大.∵tan∠AOB=,∴直线OB的解析式为y=x,由直线l平行于OB,可设直线l解析式为y=x+b.∵点R既在直线l上,又在抛物线上,∴x2﹣2x=x+b,化简得:2x2﹣11x﹣4b=0.∵直线l与抛物线有唯一交点R(相切),∴判别式△=0,即112+32b=0,解得b=﹣,此时原方程的解为x=,即xR=,而yR=xR2﹣2xR=∴点R的坐标为R(,).考点:1.二次函数综合题2.根的判别式;3.勾股定理的应用;4.圆的综合题;5.解直角三角形的应用.。
2020届山东省潍坊市中考数学模拟试题有答案(Word版)(已审阅)

潍坊市初中学业水平考试数学试题第I 卷(选择题共36分)一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.|12|=-( ) A .12-B .21-C .12+D .12--2.生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.000036用科学记数法表示正确的是( ) A .53.610-⨯B .50.3610-⨯C .63.610-⨯D .60.3610-⨯3.如图所示的几何体的左视图是( )4.下列计算正确的是( )A .236a a a ⋅= B .33a a a ÷= C .()2ab a a b --=- D .3311()26a a -=-5.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则1∠的度数是( )A .45oB .60oC .75oD .82.5o6.如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB ,分别以,A B 为圆心,以AB 长为半径作弧,两弧的交点为C ;(2)以C 为圆心,仍以AB 长为半径作弧交AC 的延长线于点D ; (3)连接,BD BC 下列说法不正确的是( ) A .30CBD ∠=oB .234BDC S AB ∆=C .点C 是ABD ∆的外心D .22sin cos 1A D +=7.某篮球队10名队员的年龄结构如下表,已知该队队员年龄的中位数为21.5,则众数与方差分别为( )A .22,3B .22,4C .21,3D .21,48.在平面直角坐标系中,点(,)P m n 是线段AB 上一点,以原点O 为位似中心把AOB ∆放大到原来的两倍,则点P 的对应点的坐标为( ) A .(2,2)m n B .(2,2)m n 或(2,2)m n -- C .11(,)22m nD .11(,)22m n 或11(,)22m n --9.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-1,则h 的值为( ) A .3或6B .1或6C .1或3D .4或610.在平面内由极点、极轴和极径组成的坐标系叫做极坐标系如图,在平面上取定一点O 称为极点;从点O 出发引一条射线Ox 称为极轴;线段OP 的长度称为极径点P 的极坐标就可以用线段OP 的长度以及从Ox 转动到OP 的角度(规定逆时针方向转动角度为正)来确定,即(3,60)P o或(3,300)P -o或(3,420)P o等,则点P 关于点O 成中心对称的点Q 的极坐标表示不正确的是( )A .(3,240)Q oB .(3,120)Q -oC .(3,600)Q oD .(3,500)Q -o11.已知关于x 的一元二次方程2(2)04mmx m x -++=有两个不相等的实数根12,x x ,若12114m x x +=,则m 的值是( ) A .2B .-1C .2或-1D .不存在12.如图,菱形ABCD 的边长是4厘米,60B ∠=o,动点P 以1厘米/秒的速度自A 点出发沿AB 方向运动至B 点停止,动点Q 以2厘米/秒的速度自B 点出发沿折线BCD 运动至D 点停止若点,P Q 同时出发运动了t 秒,记BPQ ∆的面积为2S 厘米,下面图象中能表示S 与t 之间的函数关系的是( )第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)13.因式分解:(2)2x x x +--= . 14.当m = 时,解分式方程533x mx x-=--会出现增根. 15.用教材中的计算器进行计算,开机后依次按下. 把显示结果输人下侧的程序中,则输出的结果是 .16.如图,正方形ABCD 的边长为1,点A 与原点重合,点B 在y 轴的正半轴上,点D 在x 轴的负半轴上将正方形ABCD 绕点A 逆时针旋转30o至正方形AB C D '''的位置,B C ''与CD 相交于点M ,则M 的坐标为 .17.如图,点1A 的坐标为(2,0),过点1A 作不轴的垂线交直:3l y x =于点1B 以原点O 为圆心,1OB 的长为半径断弧交x 轴正半轴于点2A ;再过点2A 作x 轴的垂线交直线l 于点2B ,以原点O 为圆心,以2OB 的长为半径画弧交x 轴正半轴于点3A ;…按此作法进行下去,则¼20192018A B 的长是 .18.如图.一-艘渔船正以60海里/小时的速度向正东方向航行,在A 处测得岛礁P 在东北方向上,继续航行1.5小时后到达B 处此时测得岛礁P 在北偏东30o方向,同时测得岛礁P 正东方向上的避风港M 在北偏东60o方向为了在台风到来之前用最短时间到达M 处,渔船立刻加速以75海里/小时的速度继续航行 小时即可到达 (结果保留根号)三、解答题(本大题共7小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤)19.如图,直线35y x =-与反比例函数1k y x-=的图象相交于(2,)A m ,(,6)B n -两点,连接,OA OB .(1)求k 和n 的值; (2)求AOB ∆的面积.20.如图,点M 是正方形ABCD 边CD 上一点,连接AM ,作DE AM ⊥于点E ,BF AM ⊥手点F ,连接BE .(1)求证:AE BF =;(2已知2AF =,四边形ABED 的面积为24,求EBF ∠的正弦值.21.为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,小莹随机抽查了所住小区n 户家庭的月用水量,绘制了下面不完整的统计图.(1)求n 并补全条形统计图;(2)求这n 户家庭的月平均用水量;并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数;(3)从月用水量为35m 和39m 的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为35m 和39m 恰好各有一户家庭的概率.22.如图,BD 为ABC ∆外接圆O e 的直径,且BAE C ∠=∠.(1)求证:AE 与O e 相切于点A ;(2)若,27AE BC BC =∥,22AC = ,求AD 的长.23.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有,A B 两种型号的挖掘机,已知3台A 型和5台B 型挖掘机同时施工一小时挖土165立方米;4台A 型和7台B 型挖掘机同时施工一小时挖土225立方米.每台A 型挖掘机一小时的施工费用为300元,每台B 型挖掘机一小时的施工费用为180元. (1)分别求每台A 型, B 型挖掘机一小时挖土多少立方米?(2)若不同数量的A 型和B 型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元? 24.如图1,在ABCD Y 中,DH AB ⊥于点,H CD 的垂直平分线交CD 于点E ,交AB 于点F ,6,4AB DH ==,:1:5BF FA =.(1)如图2,作FG AD ⊥于点G ,交DH 于点M ,将DGM ∆沿DC 方向平移,得到CG M ''∆,连接M B '. ①求四边形BHMM '的面积;②直线EF 上有一动点N ,求DNM ∆周长的最小值.(2)如图3.延长CB 交EF 于点Q .过点Q 作OK AB ∥,过CD 边上的动点P 作PK EF ∥,并与QK 交于点K ,将PKQ ∆沿直线PQ 翻折,使点K 的对应点K '恰好落在直线AB 上,求线段CP 的长. 25.如图1,抛物线2112y ax x c =-+与x 轴交于点A 和点(1,0)B ,与y 轴交于点3(0,)4C ,抛物线1y 的顶点为,G GM x ⊥轴于点M .将抛物线1y 平移后得到顶点为B 且对称轴为直l 的抛物线2y .(1)求抛物线2y 的解析式;(2)如图2,在直线l 上是否存在点T ,使TAC ∆是等腰三角形?若存在,请求出所有点T 的坐标:若不存在,请说明理由;(3)点P 为抛物线1y 上一动点,过点P 作y 轴的平行线交抛物线2y 于点Q 点Q 关于直线l 的对称点为R 若以,,P Q R 为顶点的三角形与AMC 全等,求直线PR 的解析式.潍坊市初中学业水平考试 数学试题(A)参考答案及评分标准一、选择题(本大题共12小题,每小题选对得3分,共36分)BCDCC DDBBD AD二、填空题(本大题共6小题,每小题填对得3分,共18分)13.(2)(1)x x +-14.2 15.716.3(1,)3- 17.201923π18.18635+ 三、解答题(本大题共7小题,共66分)19.解:(1)Q 点(,6)B n -在直线35y x =-上,635n ∴-=-,解得13n =-,1(,6)3B ∴--,Q 反比例函数1k y x -=的图象也经过点1(,6)3B --, 11 6()23k ∴-=-⨯-=,解得3k =;(2)设直线35y x =-分别与x 轴,y 轴相交于点C ,点D , 当0y =时,即5350,3x x -==,53OC ∴=, 当0x =时,3055y =⨯-=-,5OD ∴=,Q 点(2,)A m 在直线35y x =-上,3251m ∴=⨯-=.即(2,1)A ,AOB AOC COD BOD S S S S ∆∆∆∆∴=++155135(155)23336=⨯⨯+⨯+⨯=. 20.(1)证明:90BAF DAE ∠+∠=oQ ,90ADE DAE ∠+∠=o ,BAF ADE ∴∠=∠,在Rt DEA ∆和Rt AFB ∆中,,ADE BAF DEA AFB ∠=∠∠=∠,DA AB =,Rt Rt DEA AFB ∴∆≅∆AE BF ∴=.(2)解:设AE x =,则BF x =,Q 四边形ABED 的面积为24,2DE AF ==,21122422x x ∴+⨯=, 解得126,8x x ==-(舍),624EF AE AF ∴=-=-=,在Rt EFB ∆中,2264213BE =+=, sin EF EBF BE ∴∠==21313213=.21.解:(1)由题意知:(32)25%20n =+÷=, 补全的条形图为:(2)这20户家庭的月平均用水量为:42526784931026.9520⨯+⨯+⨯+⨯+⨯+⨯=3()米,月用水量低于36.95m 的家庭共有11户, 所以1142023120⨯=, 估计小莹所住小区月用水量低于36.95m 的家庭户数为231.(3)月用水量为35m 的有两户家庭,分别用,a b 来表示;月用水量为39m 的有三户家庭,分别用,,c d e 来表示,画树状图如下:由树状图可以看出,有10种等可能的情况,其中满足条件的共有6种情况, 所以63105P ==, 22.证明:(1)连接OA 交BC 于点F ,则OA OD =,D DAO ∴∠=∠,,D C C DAO ∠=∠∴∠=∠Q ,BAE C ∠=∠Q ,BAE DAO ∴∠=∠,BD Q 是O e 的直径,90DAB ∴∠=o ,即90DAO OAB ∠+∠=o,90BAE OAB ∴∠+∠=o ,即90OAE ∠=o ,AE OA ∴⊥,AE ∴与O e 相切于点A .(2),AE BC AE OA ⊥Q ∥,OA BC ∴⊥»»1,2AB AC FB BC ∴==,AB AC ∴=,27,22BC AC ==Q 7,2BF AB ∴==,在Rt ABF ∆中,871AF =-=,在Rt OFB ∆中,222()OB BF OB AF =+-,4OB ∴=, 8BD ∴=,∴在Rt ABD ∆中,22AD BD AB =-=64856214-==23.解:(1)设每台A 型,B 型挖掘机一小时分别挖土x 立方米和y 立方米,根据题意,得35165,47225,x y x y +=⎧⎨+=⎩解得30,15.x y =⎧⎨=⎩所以,每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米. (2)设A 型挖掘机有m 台,总费用为W 元,则B 型挖据机有(12)m -台.根据题意,得43004180W m =⨯+⨯(12)4808640m m -=+, 因为430415(12)108043004180(12)12960m m m m ⨯+⨯-≥⎧⎨⨯+⨯-≤⎩,解得69m m ≥⎧⎨≤⎩,又因为12m m ≠-,解得6m ≠,所以79m ≤≤. 所以,共有三种调配方案.方案一:当7m =时,125m -= ,即A 型挖据机7台,B 型挖掘机5台; 案二:当8m =时,124m -= ,即A 型挖掘机8台,B 型挖掘机4台; 方案三:当9m =时,123m -= ,即A 型挖掘机9台,B 型挖掘机3台.4800>Q ,由一次函数的性质可知,W 随m 的减小而减小,当7m =时,=4807+8640=12000W ⨯最小,此时A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元. 24.解:(1)①在ABCD Y 中,6AB = ,直线EF 垂直平分CD ,3DE FH ∴==,又:1:5BF FA =,1,5BF FA ∴==,2AH ∴=,Rt Rt AHD MHF ∆∆Q :,HM AH FH DH ∴=, 234HM ∴=, 32HM ∴=, 根据平移的性质,6MM CD '== ,连结BM ,13=622BHMM S '⨯⨯四边形1315+4=222⨯⨯.②连结CM 交直线EF 于点N ,连结DN ,Q 直线EF 垂直平分CD ,CN DN ∴=,35,22MH DM =∴=Q ,在Rt COM ∆中,222MC DC DM =+,22256()2MC ∴=+,即132MC =, MN DN MN CN MC +=+=Q DNM ∴∆周长的最小值为9.(2)BF CE Q ∥,143QF BF QF CE ∴==+,2QF ∴=,6PK PK '∴==过点K '作E F EF ''∥,分别交CD 于点E ,交QK 于点F ', 当点P 在线段CE 上时, 在Rt PK E ''∆中,222PE PK E K ''''=-,25PE '∴=,Rt ~Rt PE K K F Q ''''∆∆Q , PE E K K F QF '''∴='''2542QF ∴=', 45QF '∴=, PE PE EE ''∴=-=456525=15655CP-∴=,同理可得,当点P在线段ED上时,15655CP+'=.综上可得,CP的长为15655-或15655+.25.解:(1)由题意知,3412ca c⎧=⎪⎪⎨⎪-+=⎪⎩,解得14a=-,所以,抛物线y的解析式为21113424y x x=--+;因为抛物线1y平移后得到抛物线2y,且顶点为(1,0)B,所以抛物线2y的解析式为221(1)4y x=--,即2111424y x x=-+-;(2)抛物线2y的对称轴l为1x=,设(1,)T t,已知3(3,0),(0,)4A C-,过点T作TE y⊥轴于E,则22221TC TE CE=+=+223325()4216t t t-=-+,222TA TB AB=+=222(13)16t t++=+,215316AC =, 当TC AC =时, 即232515321616t t -+=, 解得13137t +=或23137t -=; 当TC AC =时,得21531616t +=,无解; 当TC AC =时,得2232516216t t t -+=+,解得3778t =-; 综上可知,在抛物线2y 的对称轴l 上存在点T 使TAC ∆是等腰三角形,此时T 点的坐标为13137(1,)T +,23137(1,)T -,377(1,)8T -. (3)设2113(,)424P m m m --+, 则2111(,)424Q m m m -+-, 因为,Q R 关于1x =对称,所以2111(2,)424R m m m --+-, 情况一:当点P 在直线的左侧时,2113424PQ m m =--+-2111()1424m m m -+-=-,22QR m =-,又因为以,,P Q R 构成的三角形与AMG ∆全等, 当PQ GM =且QR AM =时,0m =, 可求得3(0,)4P ,即点P 与点C 重合 所以1(2,)4R -,设PR 的解析式y kx b =+,则有3,412.4b k b ⎧=⎪⎪⎨⎪+=-⎪⎩解得12k =-, 即PR 的解析式为1324y x =-+, 当PQ AM =且QR GM =时,无解, 情况二:当点P 在直线l 右侧时,2111424P Q m m ''=--+-2111()1424m m m -+-=-,22Q R m ''=-,同理可得51(2,),(0,)44P R ''--P R ''的解析式为1124y x =--,综上所述, PR 的解析式为1324y x =-+或1124y x =--.。
初三青州一模数学试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 下列数中,是负数的是()A. -3B. 0C. 1.5D. -2.52. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b < 0C. a - b < 0D. a + b > 03. 下列图形中,是轴对称图形的是()A. 长方形B. 平行四边形C. 等腰三角形D. 梯形4. 已知函数y = 2x - 3,当x = 2时,y的值为()A. 1B. 3C. 5D. 75. 在等腰三角形ABC中,AB = AC,若∠BAC = 40°,则∠B =()A. 40°B. 50°C. 60°D. 70°6. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001...D. -57. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 4 = 5C. 2x + 3 = 0D. 3x - 4 = 08. 若一个正方形的周长为20cm,则其面积为()A. 100cm²B. 200cm²C. 150cm²D. 250cm²9. 在直角坐标系中,点A(2,3)关于y轴的对称点为()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)10. 若sinθ = 0.6,cosθ = 0.8,则tanθ的值为()A. 0.75B. 0.6C. 0.8D. 0.5二、填空题(每题5分,共50分)1. 若x² - 4x + 3 = 0,则x的值为______。
2. 在直角三角形ABC中,∠C = 90°,AC = 3cm,BC = 4cm,则AB = ______cm。
3. 函数y = -2x + 5的图象与x轴的交点坐标为______。
4. 若∠A = 45°,∠B = 135°,则∠C = ______°。
山东省潍坊市2020年(春秋版)数学中考一模试卷(II)卷

山东省潍坊市2020年(春秋版)数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 169的算术平方根是()A .B . ±13C . -13D . 132. (2分)(2012·温州) 我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A .B .C .D .3. (2分) (2017七上·和平期中) 如果规定符号“⊗”的意义为a⊗b= ,则2⊗(﹣3)的值是()A . 6B . ﹣6C .D .4. (2分)下列说法:①平移不改变图形的形状和大小;②一个多边形的内角中最多有3个锐角;③一个图形和它经过平移所得的图形中,两组对应点的连线段平行(或在同一条直线上)且相等;④同位角相等;⑤任何数的零次幂都等于1;⑥一个角的两边和另一个角的两边分别平行,则这两个角相等;正确的有()A . 2个B . 3个C . 4个D . 5个5. (2分)反比例函数y= 的图象如图所示,P、Q为该图象上关于原点对称的两点,分别过点P、Q作y 轴的垂线,垂足分别为A、B.若四边形AQBP的面积大于12,则关于x的方程(a﹣1)x2﹣x+ =0的根的情况是()A . 没有实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 不能确定6. (2分) (2020八下·杭州月考) 某班30名学生的身高情况如下表关于身高的统计量中,不随x、y的变化而变化的有()A . 众数,中位数B . 中位数,方差C . 平均数,方差D . 平均数,众数8. (2分)(2018·隆化模拟) 已知等边三角形的内切圆半径,外接圆半径和高的比是()A . 1:2:B . 2:3:4C . 1::2D . 1:2:39. (2分) (2017八上·乌拉特前旗期末) 一列客车已晚点6分钟,如果将速度每小时加快10km,那么继续行驶20km便可正点运行,如果设客车原来行驶的速度是xkm/h.可列出分式方程为()A . ﹣ =6B . ﹣ =6C . ﹣ =D . ﹣ =10. (2分)在平面直角坐标系中,抛物线y=-(x-2)2+1的顶点是点P,对称轴与x轴相交于点Q,以点P 为圆心,PQ长为半径画⊙P,那么下列判断正确的是()A . x轴与⊙P相离;B . x轴与⊙P相切;C . y轴与⊙P与相切;D . y轴与⊙P相交.二、填空题 (共8题;共9分)11. (1分)(2017·邵阳模拟) 多项式2x2﹣8因式分解的结果是________.12. (1分)a6÷a2=________13. (1分)不等式组的整数解是________14. (1分) (2019九上·南山期末) 如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y= (k≠0)的图象过点C,则该反比例函数的表达式为________;15. (1分)如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=________ .16. (2分)(2017·岳麓模拟) 如图,AD和AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD,交AC于点B,若OB=3,则BC=________.17. (1分) (2016八上·平阳期末) 如图,点E在边长为4的正方形ABCD的边AD上,点A关于BE的对称点为A′,延长EA′交DC于点F,若CF=1cm,则AE=________m.18. (1分)如图是有规律的一组图案,它们是由边长相同的正方形和正三角形镶嵌而成的.第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形……按此规律,第n个图案有________个三角形(用含n的代数式表示).三、解答题 (共10题;共67分)19. (5分)(2012·宿迁) 计算:|2﹣ |+(﹣1)0+2cos30°.20. (5分)(2018·曲靖) 先化简,再求值(﹣)÷ ,其中a,b满足a+b﹣ =0.21. (10分)(2019·霞山模拟) 某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?22. (5分)(2017·娄底模拟) 如图,某小区楼房附近有一个斜坡,小张发现楼房在水平地面与斜坡处形成的投影中,在斜坡上的影子长CD=6m,坡角到楼房的距离CB=8m.在D点处观察点A的仰角为60°,已知坡角为30°,你能求出楼房AB的高度吗?23. (10分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球试验,将球搅匀后,从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近于多少?摸球的次数m100150200 500 800 1000 摸到白球的次数n 5896 116 295 484 601摸到白球的概率0.580.640.58 0.59 0.605 0.601(3)试估算口袋中黑、白两种颜色的球各有多少个?24. (11分)体育委员统计了全班同学60秒跳绳的次数,并列出下列人数次数分布表,回答下列问题:次数x人数60≤x<80280≤x<1005100≤x<12021120≤x<14013140≤x<1608160≤x<1804(1)全班有多少人?(2)组距、组数是多少?(3)跳绳次数在100≤x<140范围内同学有多少人,占全班的百分之几(精确到0.01%)?25. (2分)(2019·海门模拟) 如图,一次函数与反比例函数的图象交于A(1,4),B (4,n)两点.(1)求反比例函数和一次函数的解析式;(2)直接写出当x>0时,的解集.(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.26. (2分)如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.27. (2分)(2019·花都模拟) 抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).(1)求抛物线的解析式;(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC =90°,请指出实数m的变化范围,并说明理由.(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.28. (15分)(2014·深圳) 如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共67分)19-1、20-1、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、27-1、27-2、27-3、28-1、。
2020届潍坊市中考数学模拟试卷(有答案)(Word版)

山东省潍坊市中考数学试卷(解析版)一、选择题(共12小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.下列算式,正确的是()A.a3×a2=a6B.a3÷a=a3C.a2+a2=a4 D.(a2)2=a4【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据整式运算法则即可求出答案.【解答】解:(A)原式=a5,故A错误;(B)原式=a2,故B错误;(C)原式=2a2,故C错误;故选(D)2.如图所示的几何体,其俯视图是()A. B.C.D.【考点】U1:简单几何体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,內圆是虚线,故选:D.3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×1014【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1000亿用科学记数法表示为:1×1011.故选:C.4.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)【考点】P6:坐标与图形变化﹣对称;D3:坐标确定位置.【分析】首先确定x轴、y轴的位置,然后根据轴对称图形的定义判断.【解答】解:棋盘中心方子的位置用(﹣1,0)表示,则这点所在的横线是x轴,右下角方子的位置用(0,﹣1),则这点所在的纵线是y轴,则当放的位置是(﹣1,1)时构成轴对称图形.故选B.5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B【考点】25:计算器—数的开方;29:实数与数轴.【分析】此题实际是求﹣的值.【解答】解:在计算器上依次按键转化为算式为﹣=;计算可得结果介于﹣2与﹣1之间.故选A.6.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°【考点】JA:平行线的性质.【分析】过C作CF∥AB,根据平行线的性质得到∠1=∠α,∠2=180°﹣∠β,于是得到结论.【解答】解:过C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠1=∠α,∠2=180°﹣∠β,∵∠BCD=90°,∴∠1+∠2=∠α+180°﹣∠β=90°,∴∠β﹣∠α=90°,故选B.7.甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()甲乙平均数98方差11A.甲B.乙C.丙D.丁【考点】W7:方差;VD:折线统计图;W2:加权平均数.【分析】求出丙的平均数、方差,乙的平均数,即可判断.【解答】解:丙的平均数==9,丙的方差= [1+1+1=1]=0.4,乙的平均数==8.2,由题意可知,丙的成绩最好,故选C.8.一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a﹣b确定符号,确定双曲线的位置.【解答】解:A、由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a﹣b>0,∴反比例函数y=的图象过一、三象限,所以此选项不正确;B、由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a﹣b<0,∴反比例函数y=的图象过二、四象限,所以此选项不正确;C、由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a﹣b>0,∴反比例函数y=的图象过一、三象限,所以此选项正确;D、由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.9.若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>2【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件即可求出x的范围;【解答】解:由题意可知:∴解得:x≥2故选(B)10.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°【考点】M6:圆内接四边形的性质.【分析】根据四点共圆的性质得:∠GBC=∠ADC=50°,由垂径定理得:,则∠DBC=2∠EAD=80°.【解答】解:如图,∵A、B、D、C四点共圆,∴∠GBC=∠ADC=50°,∵AE⊥CD,∴∠AED=90°,∴∠EAD=90°﹣50°=40°,延长AE交⊙O于点M,∵AO⊥CD,∴,∴∠DBC=2∠EAD=80°.故选C.11.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]=x2的解为()#N.A.0或B.0或2 C.1或 D.或﹣【考点】A8:解一元二次方程﹣因式分解法;2A:实数大小比较;E6:函数的图象.【分析】根据新定义和函数图象讨论:当1≤x≤2时,则x2=1;当﹣1≤x≤0时,则x2=0,当﹣2≤x<﹣1时,则x2=﹣1,然后分别解关于x的一元二次方程即可.【解答】解:当1≤x≤2时,x2=1,解得x1=,x2=﹣;当﹣1≤x≤0时,x2=0,解得x1=x2=0;当﹣2≤x<﹣1时,x2=﹣1,方程没有实数解;所以方程[x]=x2的解为0或.12.点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或2【考点】M4:圆心角、弧、弦的关系;L8:菱形的性质.【分析】过B作直径,连接AC交AO于E,①如图①,根据已知条件得到BD=×2×3=2,如图②,BD=×2×3=4,求得OD=1,OE=2,DE=1,连接OD,根据勾股定理得到结论,【解答】解:过B作直径,连接AC交AO于E,∵点B为的中点,∴BD⊥AC,①如图①,∵点D恰在该圆直径的三等分点上,∴BD=×2×3=2,∴OD=OB﹣BD=1,∵四边形ABCD是菱形,∴DE=BD=1,∴OE=2,连接OD,∵CE==,∴边CD==;如图②,BD=×2×3=4,同理可得,OD=1,OE=1,DE=2,连接OD,∵CE===2,∴边CD===2,故选D.二、填空题(共6小题,每小题3分,满分18分。
2020年山东省潍坊市市区中考数学一模试卷 (解析版)

2020年山东省潍坊市市区中考数学一模试卷一、选择题(共12小题).1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.下列运算正确的是()A.a4+a2=a6B.(m﹣n)2=m2﹣n2C.(x2y)3=x6y3D.b6÷b2=b33.成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣54.疫情无情人有情,爱心捐款传真情,防控期间,某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如表:金额/元5102050100人数6171485则他们捐款金额的平均数和中位数分别是()A.27.6,10B.27.6,20C.37,10D.37,205.如图,已知直线a∥b,点C在直线b上,∠DCB=90°,若∠1=75°,则∠2=()A.15°B.20°C.25°D.30°6.如图是圆桌正上方的灯泡(看做一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2m,桌面距离地面1m.若灯泡距离地面3m,则地面上阴影部分的面积为()A.0.36πm2B.0.81πm2C.2πm2D.3.24πm27.下列因式分解正确的是()A.x2﹣2x=x(x+2)B.a2﹣a﹣6=(a﹣2)(a+3)C.4a2+4ab﹣b2=(2a﹣b)2D.4x2﹣y2=(2x+y)(2x﹣y)8.数轴上的点A表示的数是a,当点A在数轴上向左平移了个单位长度后得到点B,若点A和点B表示的数恰好互为相反数,则数a的大小在()A.0与1之间B.1与2之间C.2与3之间D.3与4之间9.如图,已知∠MON=60°,以点O为圆心,适当长度为半径作弧,分别交边OM,ON 于点C,D,分别以点C,D为圆心,大于CD的长为半径作弧,两弧在∠MON内交于点P,作射线OP,若A是OP上一点,过点A作ON的平行线交OM于点B,且AB =6,则直线AB与ON之间的距离是()A.3B.2C.3D.610.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.若AC=4,AB=6,则四边形ADCF的面积为()A.12B.24C.6 D.1211.如图,半径为R的⊙O的弦AC=BD,且AC⊥BD于E,连结AB、AD,若AD=,则半径R的长为()A.1B.C.D.12.已知二次函数y=﹣x2+mx+m(m为常数),当﹣2≤x≤4时,y的最大值是15,则m 的值是()A.﹣19或B.6或或﹣10C.﹣19或6D.6或或﹣19二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.化简:(1﹣)÷的结果是.14.已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是(只需填写一个你认为适合的条件).15.如图所示,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴、y轴分别交于点A、B,且AB=BC,已知△AOB的面积为1,则k的值为.16.关于x的方程x2﹣2(k﹣1)x+k2=0的两个实数根x1、x2满足x1+x2=1﹣x1x2,则k 的值为.17.如图,在矩形纸片ABCD中,AB=4,AD=6,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是.18.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l 的垂线交y轴于点A2;…按此作法继续下去,则点B2020的坐标为.三、解答题(共7小题;满分66分)19.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)根据图象直接写出当kx+b>时,x的取值范围.20.2020年防控期间,全国各大中小学纷纷开设空中课堂,学生要面对电脑等电子产品上网课.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)该校共有学生800人,请你估计该校对视力保护“非常重视”的学生人数;(3)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护交流,请利用树状图或列表的方法,求恰好抽到一男一女的概率.21.图①②分别是某种型号跑步机的实物图与示意图,已知跑步机的手柄AB平行于地面且离地面的高度h约为1.05m,踏板CD与地面DE的夹角∠CDE为10°,支架(线段AC)的长为0.8m,∠ACD为82°.求跑步机踏板CD的长度(精确到0.1m).(参考数据:sin10°=cos80°≈0.17,sin72°=cos18°≈0.95,tan72°≈3.1)22.如图1,CD是⊙O的直径,且CD过弦AB的中点H,连接BC,过弧AD上一点E作EF∥BC,交BA的延长线于点F,连接CE,其中CE交AB于点G,且FE=FG.(1)求证:EF是⊙O的切线;(2)如图2,连接BE,求证:BE2=BG•BF.23.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.(1)求A、B两种型号汽车的进货单价;(2)销售过程中发现:A型汽车的每周销售量y A(台)与售价x A(万元/台)满足函数关系y A=﹣x A+18;B型汽车的每周销售量y B(台)与售价x B(万元/台)满足函数关系y B=﹣x B+14.若A型汽车的售价比B型汽车的售价高1万元/台,设每周销售这两种车的总利润为w万元.求当B型号的汽车售价为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?24.如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.25.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)若点P为线段OA上方抛物线上的一点,过点P作x轴的垂线,交OA于点Q,求线段PQ长度的最大值.(3)求tan∠OAB的值.(4)在抛物线的对称轴上是否存在一点N,使得△BAN为以AB为腰的等腰三角形,若不存在,请说明理由,若存在,请直接写出点N的坐标.参考答案一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.2.下列运算正确的是()A.a4+a2=a6B.(m﹣n)2=m2﹣n2C.(x2y)3=x6y3D.b6÷b2=b3【分析】分别根据合并同类项法则,完全平方公式,积的乘方运算法则以及同底数幂的除法法则逐一判断即可.解:A.a4与a2不是同类项,所以不能合并,故本选项不合题意;B.(m﹣n)2=m2﹣2mn+n2,故本选项不合题意;C.(x2y)3=x6y3,故本选项符合题意;D.b6÷b2=b4,故本选项不合题意.故选:C.3.成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5【分析】本题用科学记数法的知识即可解答.解:0.0000046=4.6×10﹣6.故选:C.4.疫情无情人有情,爱心捐款传真情,防控期间,某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如表:金额/元5102050100人数6171485则他们捐款金额的平均数和中位数分别是()A.27.6,10B.27.6,20C.37,10D.37,20【分析】根据平均数的计算公式求出这组数据的平均数,再根据中位数的定义直接求出这组数据的中位数即可.解:这组数的平均数是:(5×6+10×17+20×14+50×8+100×5)=27.6(元),把这些数从小到大排列,最中间两个数的平均数是=20元,则中位数是20元;故选:B.5.如图,已知直线a∥b,点C在直线b上,∠DCB=90°,若∠1=75°,则∠2=()A.15°B.20°C.25°D.30°【分析】先根据对顶角的定义求出∠3的度数,再由平行线的性质即可得出结论.解:∵∠1=75°,∠1与∠3是对顶角,∴∠3=∠1=75°,∵a∥b,点C在直线b上,∠DCB=90°,∴∠2+∠DCB+∠3=180°,∴∠2=180°﹣∠3﹣∠DCB=180°﹣75°﹣90°=15°.故选:A.6.如图是圆桌正上方的灯泡(看做一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2m,桌面距离地面1m.若灯泡距离地面3m,则地面上阴影部分的面积为()A.0.36πm2B.0.81πm2C.2πm2D.3.24πm2【分析】欲求投影圆的面积,可先求出其直径,而直径可通过构造相似三角形,由相似三角形性质求出.解:构造几何模型如图:依题意知DE=1.2米,FG=1米,AG=3米,由△DAE∽△BAC得=,即=,得BC=1.8,故S圆=(BC)2•π=()2•π=0.81π,故选:B.7.下列因式分解正确的是()A.x2﹣2x=x(x+2)B.a2﹣a﹣6=(a﹣2)(a+3)C.4a2+4ab﹣b2=(2a﹣b)2D.4x2﹣y2=(2x+y)(2x﹣y)【分析】各项分解因式得到结果,判断即可.解:A、原式=x(x﹣2),不符合题意;B、原式=(a﹣3)(a+2),不符合题意;C、原式不能分解,不符合题意;D、原式=(2x+y)(2x﹣y),符合题意,故选:D.8.数轴上的点A表示的数是a,当点A在数轴上向左平移了个单位长度后得到点B,若点A和点B表示的数恰好互为相反数,则数a的大小在()A.0与1之间B.1与2之间C.2与3之间D.3与4之间【分析】根据题意得出a﹣=b,由点A和点B表示的数恰好互为相反数得:a+b=0,求出即可.解:设B点表示的数是b,根据题意得:a﹣=b,a+b=0,解得:a=,∵2<<3,∴1<<2,即1<a<2;故选:B.9.如图,已知∠MON=60°,以点O为圆心,适当长度为半径作弧,分别交边OM,ON 于点C,D,分别以点C,D为圆心,大于CD的长为半径作弧,两弧在∠MON内交于点P,作射线OP,若A是OP上一点,过点A作ON的平行线交OM于点B,且AB =6,则直线AB与ON之间的距离是()A.3B.2C.3D.6【分析】过B作BE⊥ON于E,依据平行线的性质以及角平分线的定义,即可得到BO =BA=6,再根据含30°角的直角三角形的性质以及勾股定理,即可得到直线AB与ON 之间的距离.解:如图所示,过B作BE⊥ON于E,由题可得OP平分∠MON,∴∠DOA=∠BOA,∵AB∥DO,∴∠DOA=∠BAO,∴∠BOA=∠BAO,∴BO=BA=6,∵∠NOM=60°,∠BEO=90°,∴∠OBE=30°,∴OE=OB=3,∴BE===,即直线AB与ON之间的距离为,故选:A.10.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.若AC=4,AB=6,则四边形ADCF的面积为()A.12B.24C.6 D.12【分析】证明△AEF≌△DEB,根据全等三角形的性质得到AF=BD,根据三角形的面积公式得到△AFC的面积=△ABD的面积,根据三角形的面积公式计算,得到答案.解:∵AF∥BC,∴∠AFB=∠DBF,在△AEF和△DEB中,,∴△AEF≌△DEB(AAS),∴AF=BD,∵AF∥BC,∴△AFC的面积=△ABD的面积,∴四边形ADCF的面积=△ADC的面积+△AFC的面积=△ADC的面积+△ABD的面积=△ABC的面积=×4×6=12,故选:D.11.如图,半径为R的⊙O的弦AC=BD,且AC⊥BD于E,连结AB、AD,若AD=,则半径R的长为()A.1B.C.D.【分析】由弦AC=BD,可得,,继而可得,然后由圆周角定理,证得∠ABD=∠BAC,即可判定AE=BE;连接OA,OD,由AE=BE,AC⊥BD,可求得∠ABD=45°,继而可得△AOD是等腰直角三角形,则可求得AD=R,可解答.解:∵弦AC=BD,∴,∴,∴∠ABD=∠BAC,∴AE=BE;连接OA,OD,∵AC⊥BD,AE=BE,∴∠ABE=∠BAE=45°,∴∠AOD=2∠ABE=90°,∵OA=OD,∴AD=R,∵AD=,∴R=1,故选:A.12.已知二次函数y=﹣x2+mx+m(m为常数),当﹣2≤x≤4时,y的最大值是15,则m 的值是()A.﹣19或B.6或或﹣10C.﹣19或6D.6或或﹣19【分析】根据题意和二次函数的性质,利用分类讨论的方法可以求得m的值,从而可以解答本题.解:∵二次函数y=﹣x2+mx+m=﹣(x﹣)2++m,∴抛物线的对称轴为x=,∴当<﹣2时,即m<﹣4,∵当﹣2≤x≤4时,y的最大值是15,∴当x=﹣2时,﹣(﹣2)2﹣2m+m=15,得m=﹣19;当﹣24时,即﹣4≤m≤8时,∵当﹣2≤x≤4时,y的最大值是15,∴当x=时,+m=15,得m1=﹣10(舍去),m2=6;当>4时,即m>8,∵当﹣2≤x≤4时,y的最大值是15,∴当x=4时,﹣42+4m+m=15,得m=(舍去);由上可得,m的值是﹣19或6;故选:C.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.化简:(1﹣)÷的结果是.【分析】根据分式的运算法则化简原式即可求出答案.解:原式=•=,故答案为:.14.已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是∠A =∠D或∠ABC=∠DCB或BD=AC(只需填写一个你认为适合的条件).【分析】已知一条公共边和一个角,有角边角或角角边定理,再补充一组对边相等或一组对角相等即可.解:添加∠A=∠D,∠ABC=∠DCB,BD=AC后可分别根据AAS、SAS、SAS判定△ABC≌△ADC.故填∠A=∠D或∠ABC=∠DCB或BD=AC.15.如图所示,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴、y轴分别交于点A、B,且AB=BC,已知△AOB的面积为1,则k的值为4.【分析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB 的面积为1,即可求得k的值.解:设点A的坐标为(﹣a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,∴点C(a,),∴点B的坐标为(0,),∴=1,解得,k=4,故答案为:4.16.关于x的方程x2﹣2(k﹣1)x+k2=0的两个实数根x1、x2满足x1+x2=1﹣x1x2,则k 的值为﹣3.【分析】由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围;再利用根与系数的关系可求得两根之和与两根之积,代入所给等式,则可得到关于k的方程,可求得k的值.解:∵关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1、x2,∴△≥0,即[﹣2(k﹣1)]2﹣4k2≥0,解得k≤;由根与系数关系可得x1+x2=2(k﹣1),x1x2=k2,∵x1+x2=1﹣x1x2,∴2(k﹣1)=1﹣k2,解得k=1或k=﹣3,∵k≤,∴k=﹣3.故答案为:﹣3.17.如图,在矩形纸片ABCD中,AB=4,AD=6,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是2﹣2.【分析】以点E为圆心,AE长度为半径作圆,连接CE,当点A′在线段CE上时,A′C的长取最小值,根据折叠的性质可知A′E=2,在Rt△BCE中利用勾股定理可求出CE的长度,用CE﹣A′E即可求出结论.解:以点E为圆心,AE长度为半径作圆,连接CE,当点A′在线段CE上时,A′C 的长取最小值,如图所示.根据折叠可知:A′E=AE=AB=2,在Rt△BCE中,BE=AB=2,BC=6,∠B=90°,∴CE==2,∴A′C的最小值=CE﹣A′E=2﹣2.故答案为:2﹣2.18.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l 的垂线交y轴于点A2;…按此作法继续下去,则点B2020的坐标为(42020,42020).【分析】先根据题意找出A220的坐标,再根据A2020的坐标与B2020的纵坐标相同即可得出结论.解:∵直线l的解析式为:y=x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴AB=,∵A1B⊥l,∴∠ABA1=60°,∴AA1=3,∴A1(0,4),∴B1(4,4),同理可得B2(16,16),…,∴A2020纵坐标为:42020,∴B2020(42020,42020).故答案为:(42020,42020).三、解答题(共7小题;满分66分)19.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)根据图象直接写出当kx+b>时,x的取值范围.【分析】(1)先把A点坐标代入y=中求出m得到反比例函数解析式,然后利用待定系数法求一次函数解析式;(2)结合函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.解:(1)∵反比例函数y=(m≠0)的图象过点A(3,1),∴m=3×1=3,∴反比例函数的表达式为y=;∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2),∴,解得,∴一次函数的表达式为y=x﹣2;(2)当﹣1<x<0或x>3,kx+b>.20.2020年防控期间,全国各大中小学纷纷开设空中课堂,学生要面对电脑等电子产品上网课.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)该校共有学生800人,请你估计该校对视力保护“非常重视”的学生人数;(3)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护交流,请利用树状图或列表的方法,求恰好抽到一男一女的概率.【分析】(1)用“不重视”人数除以它所占的百分比即可得到调查的总人数,再用总人数减去其它重视程度的人数求出重视的人数,从而补全统计图;(2)用总人数乘以“非常重视”人数所占的百分比即可得出答案;(3)先画树状图展示所有12个等可能的结果数,再找出恰好抽到一男一女的结果数,然后根据概率公式求解.解:(1)本次调查的学生总人数有:16÷20%=80(人);重视的人数有:80﹣4﹣36﹣16=24(人),补图如图:(2)根据题意得:800×=40(人),答:该校对视力保护“非常重视”的学生人有40人;(3)画树状图如下:共有12种可能的结果,恰好抽到一男一女的结果有8个,则P(恰好抽到一男一女的)==.21.图①②分别是某种型号跑步机的实物图与示意图,已知跑步机的手柄AB平行于地面且离地面的高度h约为1.05m,踏板CD与地面DE的夹角∠CDE为10°,支架(线段AC)的长为0.8m,∠ACD为82°.求跑步机踏板CD的长度(精确到0.1m).(参考数据:sin10°=cos80°≈0.17,sin72°=cos18°≈0.95,tan72°≈3.1)【分析】过C点作FG⊥AB于F,交DE于G,根据平行线的性质得到FG⊥DE,求得∠CGE=90°,求得∠GCD=90°﹣10°=80°,解直角三角形即可得到结论.解:过C点作FG⊥AB于F,交DE于G,∵AB∥DE,∴FG⊥DE,∴∠CGE=90°,又∵∠CDE=10°,∴∠GCD=90°﹣10°=80°,又∵∠ACD=82°,∴∠ACF=180°﹣∠ACD﹣∠GCD=180°﹣80°﹣82°=18°,∴在Rt△ACF中,CF=AC•cos∠ACF=0.8•cos18°≈0.76(m),则CG=h﹣CF=1.05﹣0.76=0.29(m),∴在Rt△CDG中,CD==≈≈1.7(m),∴跑步机踏板CD的长度约为1.7m.22.如图1,CD是⊙O的直径,且CD过弦AB的中点H,连接BC,过弧AD上一点E作EF∥BC,交BA的延长线于点F,连接CE,其中CE交AB于点G,且FE=FG.(1)求证:EF是⊙O的切线;(2)如图2,连接BE,求证:BE2=BG•BF.【分析】(1)连接OE,由垂径定理可得∠GCH+∠CGH=90°,由等腰三角形的性质可得∠FGE=∠FEG,∠OCE=∠OEC,由直角三角形的性质可得∠FEO=90°,可得结论;(2)通过证明△FEB∽△EGB,可得,可得结论.解:(1)连接OE,∵H是AB的中点,CD是直径,∴CH⊥AB,∴∠GCH+∠CGH=90°,∵FE=FG,∴∠FGE=∠FEG,∵OE=OC∴∠OCE=∠OEC,又∵∠CGH=∠EGF∴∠FEO=∠FEG+∠CEO=∠CGH+∠GCH=90°,∴EF是⊙O的切线;(2)∵CH⊥AB,∴,∴∠CBA=∠CEB,∵EF∥BC,∴∠CBA=∠F,∴∠F=∠CEB,又∵∠FBE=∠EBG,∴△FEB∽△EGB,∴∴BE2=BG•BF.23.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.(1)求A、B两种型号汽车的进货单价;(2)销售过程中发现:A型汽车的每周销售量y A(台)与售价x A(万元/台)满足函数关系y A=﹣x A+18;B型汽车的每周销售量y B(台)与售价x B(万元/台)满足函数关系y B=﹣x B+14.若A型汽车的售价比B型汽车的售价高1万元/台,设每周销售这两种车的总利润为w万元.求当B型号的汽车售价为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?【分析】(1)设B型汽车的进货单价为x万元,根据题意,得关于x的分式方程,解方程并检验即可;(2)设B型号的汽车售价为t万元/台,则A型汽车的售价为(t+1)万元/台,根据题意写出w关于t的函数关系式,由二次函数的性质可得答案.解:(1)设B型汽车的进货单价为x万元,根据题意,得:=,解得x=8,经检验x=8是原分式方程的根.答A、B两种型号汽车的进货单价分别为:10万元、8万元.(2)设B型号的汽车售价为t万元,则A型汽车的售价为(t+1)万元/台,根据题意,得:w=(t+1﹣10)[﹣(t+1)+18]+(t﹣8)(﹣t+14)=﹣2t2+48t﹣265=﹣2(t﹣12)2+23,∵﹣2<0,当t=12时,w有最大值为23.答:A、B两种型号的汽车售价各为13万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是23万元.24.如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.【分析】(1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P,再根据等角的余角相等证明即可;(2)过点P作PD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角边”证明△APD和△P′AE全等,根据全等三角形对应边相等可得AE=DP,从而得证;(3)设CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EP′P相似,根据相似三角形对应边成比例列式求出P′A=AB,然后在Rt△ABP′中,利用勾股定理列式求解即可.【解答】(1)证明:∵AP′是AP旋转得到,∴AP=AP′,∴∠APP′=∠AP′P,∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,又∵∠BPC=∠APP′(对顶角相等),∴∠CBP=∠ABP;(2)证明:如图,过点P作PD⊥AB于D,∵∠CBP=∠ABP,∠C=90°,∴CP=DP,∵P′E⊥AC,∴∠EAP′+∠AP′E=90°,又∵∠PAD+∠EAP′=90°,∴∠PAD=∠AP′E,在△APD和△P′AE中,,∴△APD≌△P′AE(AAS),∴AE=DP,∴AE=CP;(3)解:∵=,∴设CP=3k,PE=2k,则AE=CP=3k,AP′=AP=3k+2k=5k,在Rt△AEP′中,P′E==4k,∵∠C=90°,P′E⊥AC,∴∠CBP+∠BPC=90°,∠EP′P+∠EPP′=90°,∵∠BPC=∠EPP′(对顶角相等),∴∠CBP=∠EP′P,又∵∠CBP=∠ABP,∴∠ABP=∠EP′P,又∵∠BAP′=∠P′EP=90°,∴△ABP′∽△EP′P,∴=,即=,解得P′A=AB,在Rt△ABP′中,AB2+P′A2=BP′2,即AB2+AB2=(5)2,解得AB=10.25.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)若点P为线段OA上方抛物线上的一点,过点P作x轴的垂线,交OA于点Q,求线段PQ长度的最大值.(3)求tan∠OAB的值.(4)在抛物线的对称轴上是否存在一点N,使得△BAN为以AB为腰的等腰三角形,若不存在,请说明理由,若存在,请直接写出点N的坐标.【分析】(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c,可求b和c的值,即可得到抛物线的表达式,根据抛物线的对称轴x=﹣,代入求值即可;(2)求出OA解析式为:y=x,设点P(p,﹣p2+4p),则点Q(p,p),利用参数p 表示PQ的长,由二次函数的性质可求解;(3)过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,由等腰直角三角形的性质求出线段BD和AD的长,即可求解;(4)分点A为顶点和点B为顶点两种情况讨论,由两点距离公式可求解.解:(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c得:,解得:,即抛物线的表达式为:y=﹣x2+4x,它的对称轴为:x=﹣=2;(2)把点A(3,m)代入y=﹣x2+4x得m=﹣32+4×3=3,则点A的坐标为:(3,3),由点O(0,0),A(3,3)得直线OA的解析式为:y=x,设点P(p,﹣p2+4p),则点Q(p,p),PQ=y P﹣y Q=﹣p2+4p﹣p=﹣p2+3p=﹣(p﹣)2+,当p=时,PQ的值最大,最大值为;(3)如图1,过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,∵A(3,3),∴AE=3,OE=3,∴△AOE为等腰直角三角形,∴∠AOE=45°,OA=OE=3,在等腰Rt△BOD中,OB=4,∴OD=BD=2,∴AD=OA﹣OD=3﹣2=,∴tan∠OAB==2;(4)存在,设点N(2,a),若AB=AN,∵点A(3,3),B点(4,0),点N(2,a),∴=,∴a1=0,a2=6,当a2=6时,点P,点A,点B共线,∴a2=6不合题意舍去,∴点N坐标为(2,0)若AB=BN,∵点A(3,3),B点(4,0),点N(2,a),∴=∴a3=,a4=﹣,∴点N坐标为(2,)或(2,﹣),综上所述:点N(2,)或(2,﹣)或(2,0).。
山东省潍坊市青州市2020年九年级中考数学一模试卷(含解析)

2020年山东省潍坊市青州市中考数学一模试卷一.选择题(共12小题)1.在实数﹣、、π、sin60°、中无理数的个数是()A.1B.2C.3D.42.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线3.下列计算正确的是()A.a6+a6=2a12B.2﹣2÷20×23=32C.(﹣ab2)•(﹣2a2b)3=a3b3D.a3•(﹣a)5•a12=﹣a204.如图,已知AB∥CD,则∠α、∠β和∠γ之间的关系为()A.β+γ﹣α=180°B.α+γ=βC.α+β+γ=360°D.α+β﹣2γ=180°5.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变6.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现在一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有x个人,这个物品价格是y 元.则可列方程组为()A.B.C.D.7.如图,⊙O的半径为2,点A为⊙O上一点,半径OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是()A.2B.C.D.18.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.9.如图已知一次函数y=﹣x+b与反比例函数y=的图象有2个公共点,则b的取值范围是()A.b>2B.﹣2<b<2C.b>2或b<﹣2D.b<﹣210.小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:星期日一二三四五六个数11121312其中有三天的个数墨汁覆盖了,但小强己经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是()A.B.C.1D.11.如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是()A.B.C.D.12.表中所列x、y的7对值是二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x1<x2<x3<x4<x5<x6<x7x…x1x2x3x4x5x6x7…y…6m11k11m6…根据表中提供约信息,有以下4个判断:①a<0;②6<m<11;③当x=时,y的值是k;④b2≥4a(c﹣k);其中判断正确的是()A.①②③B.①②④C.①③④D.②③④二.填空题(共5小题)13.若关于x的不等式组有2个整数解,则a的取值范围是.14.如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为.15.如图,矩形ABCD中,AB=8,BC=4,点E在边AB上,点F在边CD上,点G、H 在对角线AC上,若四边形EGFH是菱形,则AE的长是.16.在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,…,点A1,A2,A3,A4,…在直线l上,点C1,C2,C3,C4,…在x轴正半轴上,则B n的坐标是.17.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.在Rt△ABC中,∠ACB=90°,AC=6,BC=8.点D是BC边上一点,连接AD,若△ABD是准互余三角形,则BD的长为.三.解答题(共8小题)18.因式分解:(x﹣y)2+6(y﹣x)+9=.19.已知一元二次方程x2﹣2x+m﹣1=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1,x2是方程的两个实数根,且满足x12+x1x2=1,求m的值.20.某校为了解学生课外阅读情况,就学生每周阅读时间随机调查了部分学生,调查结果按性别整理如下:女生阅读时间人数统计表阅读时间t(小时)人数占女生人数百分比0≤t<0.5420%0.5≤t<1m15%1≤t<1.5525%1.5≤t<26n2≤t<2.5210%根据图表解答下列问题:(1)在女生阅读时间人数统计表中,m=,n=;(2)此次抽样调查中,共抽取了名学生,学生阅读时间的中位数在时间段;(3)从阅读时间在2~2.5小时的5名学生中随机抽取2名学生参加市级阅读活动,恰好抽到男女生各一名的概率是多少?21.遥感兴趣小组在如图所示的情景下,测量无人机的飞行高度,如图,点A,B,C在同一平面内,操控手站在坡度是i=:1,坡面长4m的斜坡BC的底部C处遥控无人机,坡顶B处的无人机以0.3m/s的速度,沿仰角α=38°的方向爬升,25s时到达空中的点A 处,求此时无人机离点C所在地面的高度(结果精确到0.1m,参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78,≈1.41,≈1.73)22.如图,AB是⊙O的直径,C为⊙O上一点,P是半径OB上一动点(不与O,B重合),过点P作射线l⊥AB,分别交弦BC,于D,E两点,过点C的切线交射线1于点F.(1)求证:FC=FD.(2)当E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若=,且AB=30,则OP=.23.某超市销售一种商品,成本价为50元/千克,规定每千克售价不低于成本价,且不高于85元经市场调查,该商品每天的销售量y(千克)与售价x(元/千克)满足一次函数关系,部分数据如表:售价x(元/千克)506070销售量y(千克)12010080(1)求y与x之间的函数表达式.(2)设该商品每天的总利润为W(元),则当售价x定为多少元/千克时,超市每天能获得最大利润?最大利润是多少元?(3)如果超市要获得每天不低于1600元的利润,且符合超市自己的规定,那么该商品的售价x的取值范围是多少?请说明理由.24.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.25.如图,在平面直角坐标系中,直线y=﹣x+4分别与x轴、y轴相交于点B、C,经过点B、C的抛物线y=﹣+bx+c与x轴的另一个交点为A.(1)求出抛物线表达式,并求出点A坐标.(2)已知点D在抛物线上,且横坐标为3,求出△BCD的面积;(3)点P是直线BC上方的抛物线上一动点,过点P作PQ垂直于x轴,垂足为Q.是否存在点P,使得以点A、P、Q为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.在实数﹣、、π、sin60°、中无理数的个数是()A.1B.2C.3D.4【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:是分数,属于有理数;是整数,属于有理数;π是无理数;,是无理数;是整数,属于有理数;∴无理数有π、sin60°共2个.故选:B.2.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:C.3.下列计算正确的是()A.a6+a6=2a12B.2﹣2÷20×23=32C.(﹣ab2)•(﹣2a2b)3=a3b3D.a3•(﹣a)5•a12=﹣a20【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别判断得出答案.【解答】解:A、a6+a6=2a6,故此选项错误;B、2﹣2÷20×23=2,故此选项错误;C、(﹣ab2)•(﹣2a2b)3=(﹣ab2)•(﹣8a6b3)=4a7b5,故此选项错误;D、a3•(﹣a)5•a12=﹣a20,正确.故选:D.4.如图,已知AB∥CD,则∠α、∠β和∠γ之间的关系为()A.β+γ﹣α=180°B.α+γ=βC.α+β+γ=360°D.α+β﹣2γ=180°【分析】此题主要是巧妙构造辅助线,根据平行线的性质,把要探讨的角联系起来.【解答】解:过点E作EF∥AB,则EF∥CD,∴∠γ+∠FEC=180°∠FEA=∠α,∵∠AEF+∠FEC=∠β,∴∠γ+∠β﹣∠AEF=180°,∴γ+β﹣α=180°,故选:A.5.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变【分析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解答】解:如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选:A.6.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现在一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有x个人,这个物品价格是y 元.则可列方程组为()A.B.C.D.【分析】设共有x个人,这个物品价格是y元,根据物品的价格不变列出方程.【解答】解:设共有x个人,这个物品价格是y元,则.故选:A.7.如图,⊙O的半径为2,点A为⊙O上一点,半径OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是()A.2B.C.D.1【分析】由于∠BAC=60°,根据圆周角定理可求∠BOC=120°,又OD⊥BC,根据垂径定理可知∠COD=60°,在Rt△COD中,利用直角三角形30度的性质易求OD.【解答】解:∵∠BAC=60°,∴∠BOC=2∠BAC=120°,∵OD⊥弦BC,OB=OC,∴∠ODC=90°,∠COD=∠BOD=60°,∴∠OCD=30°,∴OD=OC=1,故选:D.8.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.【分析】根据三角形外心的定义,三角形外心为三边的垂直平分线的交点,然后利用基本作图和选项进行判断.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.9.如图已知一次函数y=﹣x+b与反比例函数y=的图象有2个公共点,则b的取值范围是()A.b>2B.﹣2<b<2C.b>2或b<﹣2D.b<﹣2【分析】将一次函数解析式代入反比例函数解析式中整理后即可得出关于x的一元二次方程,由两函数图象有两个图象结合根的判别式即可得出关于b的一元二次不等式,解之即可得出b的取值范围.【解答】解:将y=﹣x+b代入y=中,得:﹣x+b=,整理,得:x2﹣bx+1=0.∵一次函数y=﹣x+b与反比例函数y=的图象有2个公共点,∴方程x2﹣bx+1=0有两个不相等的实数根,∴△=(﹣b)2﹣4>0,解得:b<﹣2或b>2.故选:C.10.小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:星期日一二三四五六个数11121312其中有三天的个数墨汁覆盖了,但小强己经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是()A.B.C.1D.【分析】根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论.【解答】解:∵平均数是12,∴这组数据的和=12×7=84,∴被墨汁覆盖三天的数的和=84﹣(11+12+13+12)=36,∵这组数据唯一众数是13,∴被墨汁覆盖的三个数为:10,13,13,∴S2=[(11﹣12)2+(12﹣12)2+(10﹣12)2+(13﹣12)2+(13﹣12)2+(13﹣12)2+(12﹣12)2]=,故选:A.11.如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是()A.B.C.D.【分析】根据题意结合图形,分情况讨论:①0≤x≤2时,根据S△APQ=AQ•AP,列出函数关系式,从而得到函数图象;②2≤x≤4时,根据S△APQ=S正方形ABCD﹣S△CP′Q′﹣S△ABQ′﹣S△AP′D列出函数关系式,从而得到函数图象,再结合四个选项即可得解.【解答】解:①当0≤x≤2时,∵正方形的边长为2cm,∴y=S△APQ=AQ•AP=x2;②当2≤x≤4时,y=S△APQ=S正方形ABCD﹣S△CP′Q′﹣S△ABQ′﹣S△AP′D,=2×2﹣(4﹣x)2﹣×2×(x﹣2)﹣×2×(x﹣2)=﹣x2+2x所以,y与x之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有A选项图象符合.故选:A.12.表中所列x、y的7对值是二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x1<x2<x3<x4<x5<x6<x7x…x1x2x3x4x5x6x7…y…6m11k11m6…根据表中提供约信息,有以下4个判断:①a<0;②6<m<11;③当x=时,y的值是k;④b2≥4a(c﹣k);其中判断正确的是()A.①②③B.①②④C.①③④D.②③④【分析】首先根据x1<x2<x3<x4<x5<x6<x7,其对应的函数值是先增大后减小,可得抛物线开口向下,所以a<0;然后根据函数值是先增大后减小,可得6<m<14<k;最后根据a<0,可得二次函数有最大值,而且二次函数的最大值,所以b2≥4a(c ﹣k),据此判断即可.【解答】解:∵x1<x2<x3<x4<x5<x6<x7,其对应的函数值是先增大后减小,∴抛物线开口向下,∴a<0,①符合题意;∴6<m<11<k,∴6<m<11,②符合题意;根据图表中的数据知,只有当x==x4时,抛物线的顶点坐标纵坐标是k,即y 的值是k,③不符合题意;∵≥k,a<0,∴4ac﹣b2≤4ak,∴b2≥4a(c﹣k),④符合题意.综上,可得判断正确的是:①②④.故选:B.二.填空题(共5小题)13.若关于x的不等式组有2个整数解,则a的取值范围是0≤a<1.【分析】分别解两个不等式,得到两个解集:x>a和x≤2,根据不等式组有2个整数解,得到关于a的取值范围,即可得到答案.【解答】解:解不等式得:x≤2,解不等式得:x>a,∵不等式组有2个整数解,∴不等式组的解集为:a<x≤2,且两个整数解为:2,1,∴0≤a<1,即a的取值范围为:0≤a<1.故答案为:0≤a<1.14.如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为.【分析】利用弧长=圆锥的底面周长这一等量关系可求解.【解答】解:连接AB,过O作OM⊥AB于M,∵∠AOB=120°,OA=OB,∴∠BAO=30°,AM=,∴OA=2,∵=2πr,∴r=故答案是:15.如图,矩形ABCD中,AB=8,BC=4,点E在边AB上,点F在边CD上,点G、H 在对角线AC上,若四边形EGFH是菱形,则AE的长是5.【分析】首先连接EF交AC于O,由矩形ABCD中,四边形EGFH是菱形,易证得△CFO≌△AOE(AAS),即可得OA=OC,然后由勾股定理求得AC的长,继而求得OA 的长,又由△AOE∽△ABC,利用相似三角形的对应边成比例,即可求得答案.【解答】解:连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE(AAS),∴AO=CO,∵AC==4,∴AO=AC=2,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=5.故答案为5.16.在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,…,点A1,A2,A3,A4,…在直线l上,点C1,C2,C3,C4,…在x轴正半轴上,则B n的坐标是(2n﹣1,2n﹣1).【分析】由已知分别求出B1(1,1),B2(3,2),B3(7,4),B4(15,8),…,再求点的坐标特点,可得到B n(2n﹣1,2n﹣1).【解答】解:∵y=x+1与y轴交于点A1,∴A1(0,1),∵正方形OA1B1C1,∴OC1=B1C1=1,∴C1(1,0),B1(1,1),∴A2(1,2),∵正方形C1A2B2C2,∴C1A2=C1C2=2,∴C2(3,0),B2(3,2),同理,C3(7,0),B3(7,4),C4(15,0),B4(15,8),…,∴B n(2n﹣1,2n﹣1),故答案为(2n﹣1,2n﹣1).17.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.在Rt△ABC中,∠ACB=90°,AC=6,BC=8.点D是BC边上一点,连接AD,若△ABD是准互余三角形,则BD的长为5或.【分析】分两种情况画图说明,①根据△ABD是准互余三角形,可以证明AD是∠BAC 的平分线,根据勾股定理即可求出BD的长;②可以根据△ABD是准互余三角形,证明△CAD∽△CBA,对应边成比例即可求出CD的长,进而求出BD的长.【解答】解:∵∠ACB=90°,AC=6,BC=8,∴AB==10.①如图1,∵△ABD是准互余三角形,∴∠B+2∠BAD=90°,∵∠ACB=90°,∴∠B+∠BAC=90°,∴∠BAC=2∠BAD,∴AD是∠BAC的平分线,作DE⊥AB于点E,则DC=DE,AE=AC=6,设DC=DE=x,则BD=8﹣x,BE=AB﹣AE=4,在Rt△BDE中,根据勾股定理,得BD2=DE2+BE2,(8﹣x)2=x2+42,解得x=3,∴BD=BC﹣CD=8﹣3=5;②如图2,∵△ABD是准互余三角形,∴2∠B+∠BAD=90°,∵∠ACB=90°,∴∠B+∠BAD+∠DAC=90°,∴∠DAC=∠B,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴CD=,∴BD=BC﹣CD=8﹣=.综上所述:BD的长为5或.故答案为:5或.三.解答题(共8小题)18.因式分解:(x﹣y)2+6(y﹣x)+9=(x﹣y﹣3)2.【分析】直接利用完全平方公式分解因式得出答案.【解答】解:(x﹣y)2+6(y﹣x)+9=(x﹣y)2﹣6(x﹣y)+9=(x﹣y﹣3)2.故答案为:=(x﹣y﹣3)2.19.已知一元二次方程x2﹣2x+m﹣1=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1,x2是方程的两个实数根,且满足x12+x1x2=1,求m的值.【分析】(1)若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于m 的不等式,求出m的取值范围.(2)x1是方程的实数根,就适合原方程,可得到关于x1与m的等式.再根据根与系数的关系知,x1x2=m﹣1,故可求得x1和m的值.【解答】解:(1)根据题意得△=b2﹣4ac=4﹣4×(m﹣1)>0,解得m<2;(2)∵x1是方程的实数根,∴x12﹣2x1+m﹣1=0 ①∵x1,x2是方程的两个实数根∴x1•x2=m﹣1∵x12+x1x2=1,∴x12+m﹣1=1 ②由①②得x1=0.5,把x=0.5代入原方程得,m=.20.某校为了解学生课外阅读情况,就学生每周阅读时间随机调查了部分学生,调查结果按性别整理如下:女生阅读时间人数统计表阅读时间t(小时)人数占女生人数百分比0≤t<0.5420%0.5≤t<1m15%1≤t<1.5525%1.5≤t<26n2≤t<2.5210%根据图表解答下列问题:(1)在女生阅读时间人数统计表中,m=3,n=30%;(2)此次抽样调查中,共抽取了50名学生,学生阅读时间的中位数在1≤t<1.5时间段;(3)从阅读时间在2~2.5小时的5名学生中随机抽取2名学生参加市级阅读活动,恰好抽到男女生各一名的概率是多少?【分析】(1)由0≤t<0.5时间段的人数及其所占百分比可得女生人数,再根据百分比的意义求解可得;(2)将男女生人数相加可得总人数,再根据中位数的概念求解可得;(3)利用列举法求得所有结果的个数,然后利用概率公式即可求解.【解答】解:(1)女生总人数为4÷20%=20(人),∴m=20×15%=3,n=×100%=30%,故答案为:3,30%;(2)学生总人数为20+6+5+12+4+3=50(人),这组数据的中位数是第25、26个数据的平均数,而第25、26个数据均落在1≤t<1.5范围内,∴学生阅读时间的中位数在1≤t<1.5时间段,故答案为:50,1≤t<1.5;(3)学习时间在2~2.5小时的有女生2人,男生3人.共有20种可能情况,则恰好抽到男女各一名的概率是=.21.遥感兴趣小组在如图所示的情景下,测量无人机的飞行高度,如图,点A,B,C在同一平面内,操控手站在坡度是i=:1,坡面长4m的斜坡BC的底部C处遥控无人机,坡顶B处的无人机以0.3m/s的速度,沿仰角α=38°的方向爬升,25s时到达空中的点A 处,求此时无人机离点C所在地面的高度(结果精确到0.1m,参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78,≈1.41,≈1.73)【分析】过B点作BD⊥CD,过A点作AE⊥CD于E,交FB的延长线于G,根据坡度的定义求出BD,可求EG,根据正弦的定义求出AG,再根据线段的和差关系计算即可求解.【解答】解:过B点作BD⊥CD,过A点作AE⊥CD于E,交FB的延长线于G,∵i=:1,BC=4m,∴BD=2m,∴EG=2m,∵AB=0.3×25=7.5m,在Rt△AGB中,AG=AB•sin38°≈4.65(m)∴AE=AG+GE≈2+4.65≈8.1(m).故此时无人机离点C所在地面的高度大约为8.1m.22.如图,AB是⊙O的直径,C为⊙O上一点,P是半径OB上一动点(不与O,B重合),过点P作射线l⊥AB,分别交弦BC,于D,E两点,过点C的切线交射线1于点F.(1)求证:FC=FD.(2)当E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若=,且AB=30,则OP=9.【分析】(1)连接OC,根据切线的性质得出OC⊥CF以及∠OBC=∠OCB得∠FCD=∠FDC,可证得结论;(2)①如图2,连接OC,OE,BE,CE,可证△BOE,△OCE均为等边三角形,可得OB=BE=CE=OC,可得结论;②设AC=3k,BC=4k(k>0),由勾股定理可求k=6,可得AC=18,BC=24,由面积法可求PE,由勾股定理可求OP的长.【解答】证明:(1)连接OC,(1)证明:连接OC∵CF是⊙O的切线,∴OC⊥CF,∴∠OCF=90°,∴∠OCB+∠DCF=90°,∵OC=OB,∴∠OCB=∠OBC,∵PD⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∴∠BDP=∠DCF,∵∠BDP=∠CDF,∴∠DCF=∠CDF,∴FC=FD;(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC,∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②∵,∴设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=302,解得k=6,∴AC=18,BC=24,∵点E是的中点,∴OE⊥BC,BH=CH=12,∴S△OBE=OE×BH=OB×PE,即15×12=15PE,解得:PE=12,由勾股定理得OP===9.故答案为:9.23.某超市销售一种商品,成本价为50元/千克,规定每千克售价不低于成本价,且不高于85元经市场调查,该商品每天的销售量y(千克)与售价x(元/千克)满足一次函数关系,部分数据如表:售价x(元/千克)506070销售量y(千克)12010080(1)求y与x之间的函数表达式.(2)设该商品每天的总利润为W(元),则当售价x定为多少元/千克时,超市每天能获得最大利润?最大利润是多少元?(3)如果超市要获得每天不低于1600元的利润,且符合超市自己的规定,那么该商品的售价x的取值范围是多少?请说明理由.【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.(3)求得W=1600时x的值,再根据二次函数的性质求得W≥1600时x的取值范围,继而根据“每千克售价不低于成本且不高于85元”得出答案.【解答】解:(1)设y=kx+b,将(50,120)、(60,100)代入,得:,解得:,∴y=﹣2x+220 (50≤x≤85);(2)W=(x﹣50)(﹣2x+220)=﹣2x2+320x﹣11000=﹣2(x﹣80)2+1800,∴当x=80时,W取得最大值为1800元,答:售价为80元时获得最大利润,最大利润是1800元.(3)当W=1600时,得:﹣2x2+320x﹣11000=1600,解得:x=70或x=90,∵该抛物线的开口向下,∴当70≤x≤90时,W≥16000,又∵每千克售价不低于成本,且不高于85元,即50≤x≤85,∴该商品每千克售价的取值范围是70≤x≤85.24.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是PM=PN,位置关系是PM⊥PN;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1:先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2:先判断出BD最大时,△PMN 的面积最大,而BD最大是AB+AD=14,即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=.25.如图,在平面直角坐标系中,直线y=﹣x+4分别与x轴、y轴相交于点B、C,经过点B、C的抛物线y=﹣+bx+c与x轴的另一个交点为A.(1)求出抛物线表达式,并求出点A坐标.(2)已知点D在抛物线上,且横坐标为3,求出△BCD的面积;(3)点P是直线BC上方的抛物线上一动点,过点P作PQ垂直于x轴,垂足为Q.是否存在点P,使得以点A、P、Q为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)求出B(6,0),C(0,4)并代入y=﹣+bx+c,即可求出解析式;(2)求出D(3,8),过点D作y轴的垂线交于点E,过点B作BF⊥DE交ED的延长线于点F;则E(0,8),F(6,8),所以S△BCD=S梯形ECBF﹣S△CDE﹣S△BFD=(EC+BF)×OB﹣×EC×ED﹣×DF×BF,再由所求点确定各边长即可求面积;(3)点A、P、Q为顶点的三角形与△BOC相似有两种情况:①△P AQ∽△CBO时,由=,则=,求出m;②△P AQ∽△BCO时,=,则有=,求出m.【解答】解:(1)由已知可求B(6,0),C(0,4),将点B(6,0),C(0,4)代入y=﹣+bx+c,则有,解得,∴y=﹣x2+x+4,令y=0,则﹣x2+x+4=0,解得x=﹣1或x=6,∴A(﹣1,0);(2)∵点D在抛物线上,且横坐标为3,∴D(3,8),过点D作y轴的垂线交于点E,过点B作BF⊥DE交ED的延长线于点F;∴E(0,8),F(6,8),∴S△BCD=S梯形ECBF﹣S△CDE﹣S△BFD=(EC+BF)×OB﹣×EC×ED﹣×DF×BF =×(4+8)×6﹣×4×3﹣×3×8=36﹣6﹣12=18;(3)设P(m,﹣m2+m+4),∵PQ垂直于x轴,∴Q(m,0),且∠PQO=90°,∵∠COB=90°,∴点A、P、Q为顶点的三角形与△BOC相似有两种情况:①△P AQ∽△CBO时,==,∴=,解得m=5或m=﹣1,∵点P是直线BC上方的抛物线上,∴0≤m≤6,∴m=5,∴P(5,4);②△P AQ∽△BCO时,==,∴=,解得m=﹣1或m=,∵点P是直线BC上方的抛物线上,∴0≤m≤6,∴m=,∴P(,);综上所述:P(5,4)或P(,)时,点A、P、Q为顶点的三角形与△BOC相似.。
2020年潍坊市九年级数学一模测试卷(含答案)

2020年九年级阶段性学情诊断(一)
数学试题参考答案
2020.05
一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请
把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0 分.)
DCCBA BDBAD AC
二、填空题(本大题共6小题,共18分. 只要求填写最后结果,每小题填对得3分.)
13. a
a−3
14. ∠A=∠D(答案不唯一) 15. 4 16. -3
17. 2√10-2 18.(42020√3,42020)
三、解答题(共7小题,满分66分)
19.(本题满分8分)
解:(1)∵反比例函数y=(m≠0)的图象过点A(3,1),
∴1=,
∴m=3.---------------------------------------------1分
∴反比例函数的表达式为y=.-------------------------2分
∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2),
∴,
解得:,---------------------------------------------3分
∴一次函数的表达式为y=x﹣2;-------------------------------------4分
(2)-1﹤x﹤0或x﹥3 ----------------------------8分(每种情况各占2分)20.(本题满分8分)
解:(1)本次调查的学生总人数有:16÷20%=80(人);------------1分
重视的人数有:80﹣4﹣36﹣16=24(人),
补图如图:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年山东省潍坊市青州市中考数学一模试卷一.选择题(共12小题)1.在实数﹣、、π、sin60°、中无理数的个数是()A.1B.2C.3D.42.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线3.下列计算正确的是()A.a6+a6=2a12B.2﹣2÷20×23=32C.(﹣ab2)•(﹣2a2b)3=a3b3D.a3•(﹣a)5•a12=﹣a204.如图,已知AB∥CD,则∠α、∠β和∠γ之间的关系为()A.β+γ﹣α=180°B.α+γ=βC.α+β+γ=360°D.α+β﹣2γ=180°5.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变6.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现在一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有x个人,这个物品价格是y 元.则可列方程组为()A.B.C.D.7.如图,⊙O的半径为2,点A为⊙O上一点,半径OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是()A.2B.C.D.18.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.9.如图已知一次函数y=﹣x+b与反比例函数y=的图象有2个公共点,则b的取值范围是()A.b>2B.﹣2<b<2C.b>2或b<﹣2D.b<﹣210.小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:星期日一二三四五六个数11121312其中有三天的个数墨汁覆盖了,但小强己经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是()A.B.C.1D.11.如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是()A.B.C.D.12.表中所列x、y的7对值是二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x1<x2<x3<x4<x5<x6<x7x…x1x2x3x4x5x6x7…y…6m11k11m6…根据表中提供约信息,有以下4个判断:①a<0;②6<m<11;③当x=时,y的值是k;④b2≥4a(c﹣k);其中判断正确的是()A.①②③B.①②④C.①③④D.②③④二.填空题(共5小题)13.若关于x的不等式组有2个整数解,则a的取值范围是.14.如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为.15.如图,矩形ABCD中,AB=8,BC=4,点E在边AB上,点F在边CD上,点G、H 在对角线AC上,若四边形EGFH是菱形,则AE的长是.16.在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,…,点A1,A2,A3,A4,…在直线l上,点C1,C2,C3,C4,…在x轴正半轴上,则B n的坐标是.17.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.在Rt△ABC中,∠ACB=90°,AC=6,BC=8.点D是BC边上一点,连接AD,若△ABD是准互余三角形,则BD的长为.三.解答题(共8小题)18.因式分解:(x﹣y)2+6(y﹣x)+9=.19.已知一元二次方程x2﹣2x+m﹣1=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1,x2是方程的两个实数根,且满足x12+x1x2=1,求m的值.20.某校为了解学生课外阅读情况,就学生每周阅读时间随机调查了部分学生,调查结果按性别整理如下:女生阅读时间人数统计表阅读时间t(小时)人数占女生人数百分比0≤t<0.5420%0.5≤t<1m15%1≤t<1.5525%1.5≤t<26n2≤t<2.5210%根据图表解答下列问题:(1)在女生阅读时间人数统计表中,m=,n=;(2)此次抽样调查中,共抽取了名学生,学生阅读时间的中位数在时间段;(3)从阅读时间在2~2.5小时的5名学生中随机抽取2名学生参加市级阅读活动,恰好抽到男女生各一名的概率是多少?21.遥感兴趣小组在如图所示的情景下,测量无人机的飞行高度,如图,点A,B,C在同一平面内,操控手站在坡度是i=:1,坡面长4m的斜坡BC的底部C处遥控无人机,坡顶B处的无人机以0.3m/s的速度,沿仰角α=38°的方向爬升,25s时到达空中的点A 处,求此时无人机离点C所在地面的高度(结果精确到0.1m,参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78,≈1.41,≈1.73)22.如图,AB是⊙O的直径,C为⊙O上一点,P是半径OB上一动点(不与O,B重合),过点P作射线l⊥AB,分别交弦BC,于D,E两点,过点C的切线交射线1于点F.(1)求证:FC=FD.(2)当E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若=,且AB=30,则OP=.23.某超市销售一种商品,成本价为50元/千克,规定每千克售价不低于成本价,且不高于85元经市场调查,该商品每天的销售量y(千克)与售价x(元/千克)满足一次函数关系,部分数据如表:售价x(元/千克)506070销售量y(千克)12010080(1)求y与x之间的函数表达式.(2)设该商品每天的总利润为W(元),则当售价x定为多少元/千克时,超市每天能获得最大利润?最大利润是多少元?(3)如果超市要获得每天不低于1600元的利润,且符合超市自己的规定,那么该商品的售价x的取值范围是多少?请说明理由.24.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.25.如图,在平面直角坐标系中,直线y=﹣x+4分别与x轴、y轴相交于点B、C,经过点B、C的抛物线y=﹣+bx+c与x轴的另一个交点为A.(1)求出抛物线表达式,并求出点A坐标.(2)已知点D在抛物线上,且横坐标为3,求出△BCD的面积;(3)点P是直线BC上方的抛物线上一动点,过点P作PQ垂直于x轴,垂足为Q.是否存在点P,使得以点A、P、Q为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.在实数﹣、、π、sin60°、中无理数的个数是()A.1B.2C.3D.4【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:是分数,属于有理数;是整数,属于有理数;π是无理数;,是无理数;是整数,属于有理数;∴无理数有π、sin60°共2个.故选:B.2.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:C.3.下列计算正确的是()A.a6+a6=2a12B.2﹣2÷20×23=32C.(﹣ab2)•(﹣2a2b)3=a3b3D.a3•(﹣a)5•a12=﹣a20【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别判断得出答案.【解答】解:A、a6+a6=2a6,故此选项错误;B、2﹣2÷20×23=2,故此选项错误;C、(﹣ab2)•(﹣2a2b)3=(﹣ab2)•(﹣8a6b3)=4a7b5,故此选项错误;D、a3•(﹣a)5•a12=﹣a20,正确.故选:D.4.如图,已知AB∥CD,则∠α、∠β和∠γ之间的关系为()A.β+γ﹣α=180°B.α+γ=βC.α+β+γ=360°D.α+β﹣2γ=180°【分析】此题主要是巧妙构造辅助线,根据平行线的性质,把要探讨的角联系起来.【解答】解:过点E作EF∥AB,则EF∥CD,∴∠γ+∠FEC=180°∠FEA=∠α,∵∠AEF+∠FEC=∠β,∴∠γ+∠β﹣∠AEF=180°,∴γ+β﹣α=180°,故选:A.5.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变【分析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解答】解:如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选:A.6.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现在一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有x个人,这个物品价格是y 元.则可列方程组为()A.B.C.D.【分析】设共有x个人,这个物品价格是y元,根据物品的价格不变列出方程.【解答】解:设共有x个人,这个物品价格是y元,则.故选:A.7.如图,⊙O的半径为2,点A为⊙O上一点,半径OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是()A.2B.C.D.1【分析】由于∠BAC=60°,根据圆周角定理可求∠BOC=120°,又OD⊥BC,根据垂径定理可知∠COD=60°,在Rt△COD中,利用直角三角形30度的性质易求OD.【解答】解:∵∠BAC=60°,∴∠BOC=2∠BAC=120°,∵OD⊥弦BC,OB=OC,∴∠ODC=90°,∠COD=∠BOD=60°,∴∠OCD=30°,∴OD=OC=1,故选:D.8.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.【分析】根据三角形外心的定义,三角形外心为三边的垂直平分线的交点,然后利用基本作图和选项进行判断.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.9.如图已知一次函数y=﹣x+b与反比例函数y=的图象有2个公共点,则b的取值范围是()A.b>2B.﹣2<b<2C.b>2或b<﹣2D.b<﹣2【分析】将一次函数解析式代入反比例函数解析式中整理后即可得出关于x的一元二次方程,由两函数图象有两个图象结合根的判别式即可得出关于b的一元二次不等式,解之即可得出b的取值范围.【解答】解:将y=﹣x+b代入y=中,得:﹣x+b=,整理,得:x2﹣bx+1=0.∵一次函数y=﹣x+b与反比例函数y=的图象有2个公共点,∴方程x2﹣bx+1=0有两个不相等的实数根,∴△=(﹣b)2﹣4>0,解得:b<﹣2或b>2.故选:C.10.小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:星期日一二三四五六个数11121312其中有三天的个数墨汁覆盖了,但小强己经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是()A.B.C.1D.【分析】根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论.【解答】解:∵平均数是12,∴这组数据的和=12×7=84,∴被墨汁覆盖三天的数的和=84﹣(11+12+13+12)=36,∵这组数据唯一众数是13,∴被墨汁覆盖的三个数为:10,13,13,∴S2=[(11﹣12)2+(12﹣12)2+(10﹣12)2+(13﹣12)2+(13﹣12)2+(13﹣12)2+(12﹣12)2]=,故选:A.11.如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是()A.B.C.D.【分析】根据题意结合图形,分情况讨论:①0≤x≤2时,根据S△APQ=AQ•AP,列出函数关系式,从而得到函数图象;②2≤x≤4时,根据S△APQ=S正方形ABCD﹣S△CP′Q′﹣S△ABQ′﹣S△AP′D列出函数关系式,从而得到函数图象,再结合四个选项即可得解.【解答】解:①当0≤x≤2时,∵正方形的边长为2cm,∴y=S△APQ=AQ•AP=x2;②当2≤x≤4时,y=S△APQ=S正方形ABCD﹣S△CP′Q′﹣S△ABQ′﹣S△AP′D,=2×2﹣(4﹣x)2﹣×2×(x﹣2)﹣×2×(x﹣2)=﹣x2+2x所以,y与x之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有A选项图象符合.故选:A.12.表中所列x、y的7对值是二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x1<x2<x3<x4<x5<x6<x7x…x1x2x3x4x5x6x7…y…6m11k11m6…根据表中提供约信息,有以下4个判断:①a<0;②6<m<11;③当x=时,y的值是k;④b2≥4a(c﹣k);其中判断正确的是()A.①②③B.①②④C.①③④D.②③④【分析】首先根据x1<x2<x3<x4<x5<x6<x7,其对应的函数值是先增大后减小,可得抛物线开口向下,所以a<0;然后根据函数值是先增大后减小,可得6<m<14<k;最后根据a<0,可得二次函数有最大值,而且二次函数的最大值,所以b2≥4a(c ﹣k),据此判断即可.【解答】解:∵x1<x2<x3<x4<x5<x6<x7,其对应的函数值是先增大后减小,∴抛物线开口向下,∴a<0,①符合题意;∴6<m<11<k,∴6<m<11,②符合题意;根据图表中的数据知,只有当x==x4时,抛物线的顶点坐标纵坐标是k,即y 的值是k,③不符合题意;∵≥k,a<0,∴4ac﹣b2≤4ak,∴b2≥4a(c﹣k),④符合题意.综上,可得判断正确的是:①②④.故选:B.二.填空题(共5小题)13.若关于x的不等式组有2个整数解,则a的取值范围是0≤a<1.【分析】分别解两个不等式,得到两个解集:x>a和x≤2,根据不等式组有2个整数解,得到关于a的取值范围,即可得到答案.【解答】解:解不等式得:x≤2,解不等式得:x>a,∵不等式组有2个整数解,∴不等式组的解集为:a<x≤2,且两个整数解为:2,1,∴0≤a<1,即a的取值范围为:0≤a<1.故答案为:0≤a<1.14.如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为.【分析】利用弧长=圆锥的底面周长这一等量关系可求解.【解答】解:连接AB,过O作OM⊥AB于M,∵∠AOB=120°,OA=OB,∴∠BAO=30°,AM=,∴OA=2,∵=2πr,∴r=故答案是:15.如图,矩形ABCD中,AB=8,BC=4,点E在边AB上,点F在边CD上,点G、H 在对角线AC上,若四边形EGFH是菱形,则AE的长是5.【分析】首先连接EF交AC于O,由矩形ABCD中,四边形EGFH是菱形,易证得△CFO≌△AOE(AAS),即可得OA=OC,然后由勾股定理求得AC的长,继而求得OA 的长,又由△AOE∽△ABC,利用相似三角形的对应边成比例,即可求得答案.【解答】解:连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE(AAS),∴AO=CO,∵AC==4,∴AO=AC=2,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=5.故答案为5.16.在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,…,点A1,A2,A3,A4,…在直线l上,点C1,C2,C3,C4,…在x轴正半轴上,则B n的坐标是(2n﹣1,2n﹣1).【分析】由已知分别求出B1(1,1),B2(3,2),B3(7,4),B4(15,8),…,再求点的坐标特点,可得到B n(2n﹣1,2n﹣1).【解答】解:∵y=x+1与y轴交于点A1,∴A1(0,1),∵正方形OA1B1C1,∴OC1=B1C1=1,∴C1(1,0),B1(1,1),∴A2(1,2),∵正方形C1A2B2C2,∴C1A2=C1C2=2,∴C2(3,0),B2(3,2),同理,C3(7,0),B3(7,4),C4(15,0),B4(15,8),…,∴B n(2n﹣1,2n﹣1),故答案为(2n﹣1,2n﹣1).17.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.在Rt△ABC中,∠ACB=90°,AC=6,BC=8.点D是BC边上一点,连接AD,若△ABD是准互余三角形,则BD的长为5或.【分析】分两种情况画图说明,①根据△ABD是准互余三角形,可以证明AD是∠BAC 的平分线,根据勾股定理即可求出BD的长;②可以根据△ABD是准互余三角形,证明△CAD∽△CBA,对应边成比例即可求出CD的长,进而求出BD的长.【解答】解:∵∠ACB=90°,AC=6,BC=8,∴AB==10.①如图1,∵△ABD是准互余三角形,∴∠B+2∠BAD=90°,∵∠ACB=90°,∴∠B+∠BAC=90°,∴∠BAC=2∠BAD,∴AD是∠BAC的平分线,作DE⊥AB于点E,则DC=DE,AE=AC=6,设DC=DE=x,则BD=8﹣x,BE=AB﹣AE=4,在Rt△BDE中,根据勾股定理,得BD2=DE2+BE2,(8﹣x)2=x2+42,解得x=3,∴BD=BC﹣CD=8﹣3=5;②如图2,∵△ABD是准互余三角形,∴2∠B+∠BAD=90°,∵∠ACB=90°,∴∠B+∠BAD+∠DAC=90°,∴∠DAC=∠B,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴CD=,∴BD=BC﹣CD=8﹣=.综上所述:BD的长为5或.故答案为:5或.三.解答题(共8小题)18.因式分解:(x﹣y)2+6(y﹣x)+9=(x﹣y﹣3)2.【分析】直接利用完全平方公式分解因式得出答案.【解答】解:(x﹣y)2+6(y﹣x)+9=(x﹣y)2﹣6(x﹣y)+9=(x﹣y﹣3)2.故答案为:=(x﹣y﹣3)2.19.已知一元二次方程x2﹣2x+m﹣1=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1,x2是方程的两个实数根,且满足x12+x1x2=1,求m的值.【分析】(1)若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于m 的不等式,求出m的取值范围.(2)x1是方程的实数根,就适合原方程,可得到关于x1与m的等式.再根据根与系数的关系知,x1x2=m﹣1,故可求得x1和m的值.【解答】解:(1)根据题意得△=b2﹣4ac=4﹣4×(m﹣1)>0,解得m<2;(2)∵x1是方程的实数根,∴x12﹣2x1+m﹣1=0 ①∵x1,x2是方程的两个实数根∴x1•x2=m﹣1∵x12+x1x2=1,∴x12+m﹣1=1 ②由①②得x1=0.5,把x=0.5代入原方程得,m=.20.某校为了解学生课外阅读情况,就学生每周阅读时间随机调查了部分学生,调查结果按性别整理如下:女生阅读时间人数统计表阅读时间t(小时)人数占女生人数百分比0≤t<0.5420%0.5≤t<1m15%1≤t<1.5525%1.5≤t<26n2≤t<2.5210%根据图表解答下列问题:(1)在女生阅读时间人数统计表中,m=3,n=30%;(2)此次抽样调查中,共抽取了50名学生,学生阅读时间的中位数在1≤t<1.5时间段;(3)从阅读时间在2~2.5小时的5名学生中随机抽取2名学生参加市级阅读活动,恰好抽到男女生各一名的概率是多少?【分析】(1)由0≤t<0.5时间段的人数及其所占百分比可得女生人数,再根据百分比的意义求解可得;(2)将男女生人数相加可得总人数,再根据中位数的概念求解可得;(3)利用列举法求得所有结果的个数,然后利用概率公式即可求解.【解答】解:(1)女生总人数为4÷20%=20(人),∴m=20×15%=3,n=×100%=30%,故答案为:3,30%;(2)学生总人数为20+6+5+12+4+3=50(人),这组数据的中位数是第25、26个数据的平均数,而第25、26个数据均落在1≤t<1.5范围内,∴学生阅读时间的中位数在1≤t<1.5时间段,故答案为:50,1≤t<1.5;(3)学习时间在2~2.5小时的有女生2人,男生3人.共有20种可能情况,则恰好抽到男女各一名的概率是=.21.遥感兴趣小组在如图所示的情景下,测量无人机的飞行高度,如图,点A,B,C在同一平面内,操控手站在坡度是i=:1,坡面长4m的斜坡BC的底部C处遥控无人机,坡顶B处的无人机以0.3m/s的速度,沿仰角α=38°的方向爬升,25s时到达空中的点A 处,求此时无人机离点C所在地面的高度(结果精确到0.1m,参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78,≈1.41,≈1.73)【分析】过B点作BD⊥CD,过A点作AE⊥CD于E,交FB的延长线于G,根据坡度的定义求出BD,可求EG,根据正弦的定义求出AG,再根据线段的和差关系计算即可求解.【解答】解:过B点作BD⊥CD,过A点作AE⊥CD于E,交FB的延长线于G,∵i=:1,BC=4m,∴BD=2m,∴EG=2m,∵AB=0.3×25=7.5m,在Rt△AGB中,AG=AB•sin38°≈4.65(m)∴AE=AG+GE≈2+4.65≈8.1(m).故此时无人机离点C所在地面的高度大约为8.1m.22.如图,AB是⊙O的直径,C为⊙O上一点,P是半径OB上一动点(不与O,B重合),过点P作射线l⊥AB,分别交弦BC,于D,E两点,过点C的切线交射线1于点F.(1)求证:FC=FD.(2)当E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若=,且AB=30,则OP=9.【分析】(1)连接OC,根据切线的性质得出OC⊥CF以及∠OBC=∠OCB得∠FCD=∠FDC,可证得结论;(2)①如图2,连接OC,OE,BE,CE,可证△BOE,△OCE均为等边三角形,可得OB=BE=CE=OC,可得结论;②设AC=3k,BC=4k(k>0),由勾股定理可求k=6,可得AC=18,BC=24,由面积法可求PE,由勾股定理可求OP的长.【解答】证明:(1)连接OC,(1)证明:连接OC∵CF是⊙O的切线,∴OC⊥CF,∴∠OCF=90°,∴∠OCB+∠DCF=90°,∵OC=OB,∴∠OCB=∠OBC,∵PD⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∴∠BDP=∠DCF,∵∠BDP=∠CDF,∴∠DCF=∠CDF,∴FC=FD;(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC,∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②∵,∴设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=302,解得k=6,∴AC=18,BC=24,∵点E是的中点,∴OE⊥BC,BH=CH=12,∴S△OBE=OE×BH=OB×PE,即15×12=15PE,解得:PE=12,由勾股定理得OP===9.故答案为:9.23.某超市销售一种商品,成本价为50元/千克,规定每千克售价不低于成本价,且不高于85元经市场调查,该商品每天的销售量y(千克)与售价x(元/千克)满足一次函数关系,部分数据如表:售价x(元/千克)506070销售量y(千克)12010080(1)求y与x之间的函数表达式.(2)设该商品每天的总利润为W(元),则当售价x定为多少元/千克时,超市每天能获得最大利润?最大利润是多少元?(3)如果超市要获得每天不低于1600元的利润,且符合超市自己的规定,那么该商品的售价x的取值范围是多少?请说明理由.【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.(3)求得W=1600时x的值,再根据二次函数的性质求得W≥1600时x的取值范围,继而根据“每千克售价不低于成本且不高于85元”得出答案.【解答】解:(1)设y=kx+b,将(50,120)、(60,100)代入,得:,解得:,∴y=﹣2x+220 (50≤x≤85);(2)W=(x﹣50)(﹣2x+220)=﹣2x2+320x﹣11000=﹣2(x﹣80)2+1800,∴当x=80时,W取得最大值为1800元,答:售价为80元时获得最大利润,最大利润是1800元.(3)当W=1600时,得:﹣2x2+320x﹣11000=1600,解得:x=70或x=90,∵该抛物线的开口向下,∴当70≤x≤90时,W≥16000,又∵每千克售价不低于成本,且不高于85元,即50≤x≤85,∴该商品每千克售价的取值范围是70≤x≤85.24.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是PM=PN,位置关系是PM⊥PN;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1:先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2:先判断出BD最大时,△PMN 的面积最大,而BD最大是AB+AD=14,即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=.25.如图,在平面直角坐标系中,直线y=﹣x+4分别与x轴、y轴相交于点B、C,经过点B、C的抛物线y=﹣+bx+c与x轴的另一个交点为A.(1)求出抛物线表达式,并求出点A坐标.(2)已知点D在抛物线上,且横坐标为3,求出△BCD的面积;(3)点P是直线BC上方的抛物线上一动点,过点P作PQ垂直于x轴,垂足为Q.是否存在点P,使得以点A、P、Q为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)求出B(6,0),C(0,4)并代入y=﹣+bx+c,即可求出解析式;(2)求出D(3,8),过点D作y轴的垂线交于点E,过点B作BF⊥DE交ED的延长线于点F;则E(0,8),F(6,8),所以S△BCD=S梯形ECBF﹣S△CDE﹣S△BFD=(EC+BF)×OB﹣×EC×ED﹣×DF×BF,再由所求点确定各边长即可求面积;(3)点A、P、Q为顶点的三角形与△BOC相似有两种情况:①△P AQ∽△CBO时,由=,则=,求出m;②△P AQ∽△BCO时,=,则有=,求出m.【解答】解:(1)由已知可求B(6,0),C(0,4),将点B(6,0),C(0,4)代入y=﹣+bx+c,则有,解得,∴y=﹣x2+x+4,令y=0,则﹣x2+x+4=0,解得x=﹣1或x=6,∴A(﹣1,0);(2)∵点D在抛物线上,且横坐标为3,∴D(3,8),过点D作y轴的垂线交于点E,过点B作BF⊥DE交ED的延长线于点F;∴E(0,8),F(6,8),∴S△BCD=S梯形ECBF﹣S△CDE﹣S△BFD=(EC+BF)×OB﹣×EC×ED﹣×DF×BF =×(4+8)×6﹣×4×3﹣×3×8=36﹣6﹣12=18;(3)设P(m,﹣m2+m+4),∵PQ垂直于x轴,∴Q(m,0),且∠PQO=90°,∵∠COB=90°,∴点A、P、Q为顶点的三角形与△BOC相似有两种情况:①△P AQ∽△CBO时,==,∴=,解得m=5或m=﹣1,∵点P是直线BC上方的抛物线上,∴0≤m≤6,∴m=5,∴P(5,4);②△P AQ∽△BCO时,==,∴=,解得m=﹣1或m=,∵点P是直线BC上方的抛物线上,∴0≤m≤6,∴m=,∴P(,);综上所述:P(5,4)或P(,)时,点A、P、Q为顶点的三角形与△BOC相似.。