水平井井眼轨迹
水平井

水平井无论是定向井,还是水平井,控制井眼轨迹的最终目的都是要按设计要求中靶。
但因水平井的井身剖面特点、目的层靶区的要求等与普通定向井和多目标井不同,在井眼轨迹控制方面具有许多与定向井、多目标井不同的新概念,需要建立一套新的概念和理论体系来作为水平井井眼轨迹控制的理论依据和指导思想。
在长、中半径水平井的井眼轨迹控制模式的形成和验证过程中,针对不断出现的轨迹控制问题,建立了适应于水平井轨迹控制特点的几个新概念。
地质给出的水平井靶区通常是一个在目的层内以设计的水平井眼轨道为轴线的柱状靶,其横截面多为矩形或圆。
可以把这个柱状靶看成是由无数个相互平行的法面平面组成,因此,控制水平井井眼轨迹中靶,与普通定向井、多目标井是个截然不同的新概念,主要体现是: 井眼轨迹中靶时进入的平面是一个法平面(也称目标窗口),但中靶的靶区不是一个平面,而是一个柱状体,因此,不仅要求实钻轨迹点在窗口平面的设计范围内,而且要求点的矢量方向符合设计,使实钻轨迹点在进入目标窗口平面后的每一个点都处于靶柱所限制的范围内。
也就是说,控制水平井井眼轨迹中靶的要素是实钻轨迹在靶柱内的每一点的位置要到位(即入靶点的井斜角、方位角、垂深和位移在设计要求的范围内),也就是我们所讲的矢量中靶。
对一口实钻水平井,从造斜点到目的层入靶点的设计垂深增量和水平位移增量是一定的,如果实钻轨迹点的位置和矢量方向偏离设计轨道,势必改变待钻井眼的垂深增量和位移增量的关系,也直接影响到待钻井眼轨迹的中靶精度。
水平井钻井工程设计中所给定的钻具组合是在一定的理论计算和实践经验的基础上得出的,随着理性认识的深化和实践经验总结,设计的钻具组合钻出实际井眼轨迹与设计轨道曲线的符合程度会不断提高。
但是,由于井下条件的复杂性和多变性,这个符合程度总是相对的。
实钻井眼轨迹点的位置相对于设计轨道曲线总是会提前、或适中、或滞后,点的井斜角大小也可能是超前、适中、或滞后。
实钻轨迹点的位置和点的井斜角大小对待钻井眼轨迹中靶的影响规律是:①实钻轨迹点的位置超前,•相当于缩短了靶前位移。
定向井水平井钻井技术-简介

1. 地面定向法(定向下钻法) Nhomakorabea十字打印法:
1) 事先在每根要使用的钻杆公母接头上, 扁錾打上“十”字钢印;要注意两个钢 印必须处在同一条母线上; 2) 下钻过程中测量每两个单根连接处的钢 印偏差角度,上相对于下顺时针为正, 逆时针为负,进行详细记录;
3) 下完钻后,将所有偏差值相加即得到最 上面钢印与造斜工具面的偏差角度,若 为正说明钢印在工具面的顺时针方向某 角度处,若为负说明钢印在工具面的逆 时针方向某角度处, 。
• (2) 计算水平距离的加权平均值JJ:
n 1
1 1 1 J i ( Li 1 Li 1 ) J1 ( L2 L1 ) J n ( Ln Ln 1 ) 2 2 2 JJ i 2 Ln L1
• (3) 轨迹符合率的计算:
实钻井眼轨迹
靶区
水 平 位 移
N
北
β-方位角 实际轨迹 靶点
β
设计轨道
E东
• 测点的井眼方向和测段的段长
L L2 L1
et cos1 eH sin 1 cos1 eN sin 1 sin 1 eE
• 井眼轨迹的其他参数:
– – – – 垂深(H)、N坐标(N)、E坐标(E) 水平长度(S)和水平位移(A) 平移方位角(β)和视平移(V) 井眼曲率(K)
(4)邻井距离扫描图的绘制
原理:
1) 寻找最近测点
• • 两口井都要有测斜资料。 从基准井出发,寻找基准井上每一个测 点与被扫描井距离最近的测点。
•
由于每个测点在空间的坐标位置是已知
的,所以可以计算基准井上某一点(M) 到被扫描井上每一点的距离,然后进行 比较,找出最近测点。
水平井井眼轨迹控制技术探讨

1 井身轨迹控制常规的水平井都由直井段、增斜段和水平段3部分组成。
由直井段末端的造斜段(kop)到钻至靶窗的增斜井段,这一控制过程为着陆控制;在靶体内钻水平段这一控制过程称为水平控制。
水平井的垂直段与常规直井及定向井的直井段控制没有根本区别。
水平井井眼轨道控制的突出特点集中体现在着陆控制和水平控制,设计到一些新的概念指标和特殊的控制方法。
1.1 水平井井眼轨道控制技术的特点水平井钻井技术是定向井技术的延伸和发展。
水平井的井眼轨道控制技术与定向井相比有类似之处,但也有显著差异,体现了水平井轨道控制的突出技术特征。
1.1.1中靶要求高定向井的靶区为目的层上的一个圆形,通称靶圆,靶圆中心称为靶心。
靶心是井身设计轨道中靶的理论位置,而靶圆是考虑到因误差而造成的实钻轨道中靶的允差范围。
一般来说,定向井的目的层越深,其靶圆半径也越大。
例如一口井垂深为1800-2100m的定向井,其靶圆半径通为30-45m,如上所述,水平井的靶体是一个以矩形靶窗为前端面的呈水平或近似水平放置的长方体或与之接近的几何体(拟柱体,棱台等)。
靶窗的高度与油层状况有关,宽度一般是高度的5倍,水平井长度则和水平井的增斜段曲率半径类型有关。
例如,对厚油层,其靶窗高度可达20m,但对薄油层,该高度可小到4m甚至更小。
按我国对石油水平井的规定,水平段井斜角应在86°以上,长、中、短半径3类水平井的水平段长度一般分别不得小于500m,300m,60m 。
很显然,水平井的目标(靶体)比定向井的目标(靶圆)要求苛刻,前者是立体(三维),后者是平面(二维),因此中靶要求更高。
对于水平井来说,井眼轨道进入目标窗口(靶窗)还不够,还要防止在钻水平段的过程中钻头穿出靶体造成脱靶,而对定向井来说,只要保证钻入靶圆即为成功。
1.1.2控制难度大由于上述定向井和水平井的目标性质与要求对比可知,水平井轨道控制难度大于定向井。
而且,由于常规定向井的最大井斜角一般在60°以内,不存在因目的层的地质误差造成脱靶的问题。
5钻井工程理论与技术_第5章井眼轨道设计与轨迹控制

4.校正平均角法
校正平均角法假设测段形状为一条圆柱螺线。 如图5—11所示,圆柱螺线在水平投影图上是圆
弧。圆柱螺线在圆柱面展平平面上也是圆弧, 即垂直剖面图是圆弧。根据这个假设推导的计 算方法,称为“圆柱螺线法”。这是我国著名 学者郑基英教授首先提出的。这种方法与美国 人提出的“曲率半径法”的公式表达不同,但 计算结果是完全相同的。
(7)在一个测段内,井斜方位角的变化的绝 对值不得超过180 °。在具体计算时,还
要特别注意平均井斜方位角Φc的计算方 法。
三、轨迹计算的方法
1.轨迹计算的顺序 轨迹计算的最终要求是算出每个测点的坐标值。
D1=Do+∆D1 Lp1=Lpo+∆Lp1 N1=No+∆N1 E1=Eo+∆E1 第0测点已知,即:Do=Dmo,Lpo=0,No=0, Eo=0。
(三)随钻随测
二、对测斜计算数据的规定
我国钻井行业标准对测斜计算数据有以下规定。
(1)测点编号:测斜时虽然是自下而上进行的,测点编
号却是规定自上而下进行,第一个井斜角不等于零的测 点作为第一测点,向下类推编号。每个测点的参数皆以 该点编号作为下标符号。
(2)测段编号:也是自上而下编号。且规定第i一1点与
多点测斜仪:即一次下井可记录井眼轨迹上多个井深处的井斜参 数:井斜角和井斜方位角。多点测斜仪的下入,在裸眼井中用 电缆送入到井底,然后在上提过程中每隔一定长度进行静止测 量,并将数据用照相的办法记录在胶片上,提出后进行冲洗阅 读。多点测斜仪也可在起钻前从钻柱内投入到靠近钻头处,然 后在起钻过程中利用每起一个立柱静止卸扣的时间进行测量和 记录。
水平井水平段轨迹控制课件

应用范围扩大
随着技术的进步和应用的不断扩 大,水平井的应用范围越来越广 泛,已经成为石油、天然气和矿 产开发中的重要技术手段之一。
02 水平井轨迹控制技术
CHAPTER
水平井轨迹控制的基本原理
01
水平井轨迹控制的基本原理是通 过钻具组合的设计和钻进参数的 优化,实现对井眼轨迹的精确控 制。
产数据等。
控制优化
03
根据预测模型,优化控制参数如水平段位置、钻井液排量等,
实现水平段轨迹的精确控制。
基于优化算法的智能控制策略
优化算法控制策略
利用遗传算法、粒子群算法等优 化算法,寻找最优的控制参数组
合。
遗传算法
通过模拟生物进化过程,寻找最优 解。在水平井轨迹控制中,可应用 于寻找最优的钻井液排量、水平段 位置等参数组合。
基于人工智能的自适应控制的水平井轨迹控制实例
基于人工智能的自适应控制是一种新兴的控制方法,通过机器学习等技术对系统进行学习和 自适应。在水平井轨迹控制中,可以使用人工智能技术对地下井眼模型进行学习和自适应, 并制定相应的控制策略。
基于人工智能的自适应控制的优势在于能够自适应地处理复杂的非线性系统,并具有较好的 泛化性能。此外,人工智能技术可以处理大量的数据,并通过数据挖掘等技术提取出有用的 信息。
要点三
测量与导向系统
测量与导向系统是实现水平井轨迹控 制的关键技术之一。目前,该领域仍 存在一些技术瓶颈,如测量精度不高 、导向稳定性不足等。这些问题的解 决需要进一步研究和改进测量与导向 系统技术。
06 结论与展望
CHAPTER
主要结论
水平井水平段轨迹控制技术的发 展趋势是高效、精准、智能化。
• 水平井轨迹控制需要解决防斜打直问题,确保井眼 轨迹的垂直性和稳定性。
第6讲 水平井井眼轨迹控制技术

2. 工具造斜能力误差
» 因受地层、工具面摆放不到位、送钻不均匀及理 论计算误差等影响,工具造斜能力不能准确预测;
3. 轨迹预测误差
» 由于MWD离钻头有一定的距离引起的。
6.2 水平井找油方案
1. 导眼法
» 先打一导眼WD,探知油顶位置和油层厚度, 然后回填至合适高度增斜中靶。
W C
D
A
B
6.2 水平井找油方案
避免、减少井下复杂情况并可在一定程度上加以解除。
» 具体考虑:
• • • 使用“倒装钻柱” ; 为了防止卡钻事故,一般在套管内的钻柱中装震击器; 校核钻机提升能力,并对钻柱强度进行详细校核。
6.4 水平井着陆控制
着陆控制是指从直井段的造斜点开始钻至 油层内的靶窗这一过程。其技术要点有:
1. 工具造斜率的选择“略高勿低”;
第6讲 水平井井眼轨迹控制技术
• 6.1 轨迹控制过程中的误差来源
• 6.2 水平井找油方案 • 6.3 水平井底部钻具组合及钻柱设计 • 6.4 水平井着陆控制 • 6.5 水平井水平段控制
6.1 轨迹控制过程中的误差来源
1. 地质误差
» 地质靶点垂深的误差对水平井着陆控制造成很大 困难,当这种误差较大或在薄油层中钻水平井时 问题更为突出;
2. 应变法
» 以一定的稳斜角探油顶,探知油顶后,直接增 斜中靶,通过稳斜段长短对靶点垂深的补偿作 用消除地质靶点的不确定性
可能油顶位置1 可能油顶位置2 可能油顶位置3
d
opt
t
6.3 水平井底部钻具组合及钻柱设计
1. 底部钻具组合设计
» 水平井底部钻具组合设计的首要原则是造斜率原 则,保证设计组合的造斜率达到设计轨道要求并
涪陵页岩气田三维水平井井眼的轨迹控制技术

控制工作中,工作人员可以结合偏移距离变化和靶前位移变化,控制难度比较大。
1.3 三维眼井摩阻扭矩较大在三维水平井斜井段,需要适当的增斜和扭方位,在下钻和滑动钻钻进过程中,钻具很容易发生屈曲问题,钻具接触井壁之后会产生较大的摩阻扭矩,产生严重的托压问题,不利于向钻头传递钻压,降低了钻井速度,延长了定向钻的周期。
由于上孔的扭转方向增加了全角度变化率和摩擦扭矩,定向工具面无法放置在正确位置,在同一位置反复升降钻具,增加了定向钻进的难度,延长了定向钻进的钻进周期[1]。
2 涪陵页岩气田三维水平井井眼轨迹控制技术思路采用原有的井眼轨迹设计模式,不利于实现三维水平井优化和快速定向钻井。
其工作目标是使摩擦力矩最小。
在实际工作中,有必要对原始井眼轨迹类型进行优化,改进轨迹参数,优化三维井眼轨迹设计技术,以提高定向钻井速度。
因为三维井眼轨迹控制工作具有较大的难度,为了保障钻井的安全性,提高现场定向施工的便利性,需要利用精细控制措施,严格控制井段井眼轨迹,优化涪陵页岩气田三维水平井井眼轨迹控制技术,降低整体施工难度。
面临三维井眼摩阻扭矩较大的问题,工作人员可以利用降摩减扭工具,避免发生托压问题,利用三维井眼降摩减阻技术,高效控制三维井眼轨迹。
要想优化三维井眼轨道,工作人员需要合理选择三维井眼轨道,把握入窗时机,提高施工现场的操作性。
利用预目标位移,尽可能调整倾斜点,缩短稳定段长度,有效缩短钻进周期。
为了降低整体工作量,要在稳斜段改变方位。
结合降摩减扭的工作理念,优化轨道全角的变化率,控制稳斜段的井斜角[3]。
在实际应用中,将三维水平井轨迹分为六段。
在纠偏井段的井眼内设置二维增斜段,以保证增斜效果。
在稳斜边变方位井段,施工人员需要全力扭方位,有效减少工作量。
在边增斜边调整方位井段,应合理调整调整工具面,合理调整方位角。
在着陆段利用增斜入窗,合理调整参数。
3 涪陵页岩气田三维水平井井眼轨迹控制关键技术三维水平井偏移距比较大,同时也会增加变方位工作量,在大斜度井段调整方位难度较大,定向钻工作周期比较长,井眼轨迹缺乏圆滑性,将会影响到后续井下作业的安全性。
北布扎奇水平井井眼轨迹控制工艺——以NB6165-2H水平井为例

西部 探矿工 程
.
8 5
O 5 5 船
O
5 3 9 2
驵
∞
∞ ∞ ∞
趴
北 布 扎 奇 水 平 井 井 眼 轨 迹 控 制 工 艺 以 NB 5 H 水 平 井 为 例 6 6 —2 1
— —
陈水新 , 因平 , 蒋 马宗军
( 西部钻探 定 向井技 术服 务公 司 , 新疆 克拉玛依 84 0) 3 00
* 收稿 日期 :0 11—2 2 1 —22
第一作者简介 : 陈水 新(9 4) 男( 17 一 , 汉族 )湖北天门人 , , 工程 师。 现从事定 向井钻井技术服务工作。
8 6
西部探 矿 工程
21 0 2年第 8期
斜能力高于设计造斜率 , 有利于对轨迹 的调整, 二开完 钻前 轨迹 点位置 超前予设 计线 , 超前 量要满 足三 开轨迹 控制要求 。三开选用』 10 m1 7。 2 2m . 5单弯螺杆钻具 , 『 从 前期 水平井 施工 看 , 螺杆 造 斜 率 为 ( 1~ 1。/0 该 1。 3)3m, 预计 三开 以单 圆弧 方 式 人靶 , 造斜 率 1。3 m, 靶 点 2/0 入 选择在 上靶 窗 顶点 , 靶井 斜 在 8 。 右 , 入 水 平 段 人 2左 进 以后 , 在靶 区范 围 内把 井斜 调整 到 设计 范 围 , 靶井 斜 人 不可选 择过 小 , 则会在 调整井斜 过 程 中实 钻轨迹 线穿 否 出下靶 框 , 10 2mm25单弯螺 杆钻具 作 为救急螺 杆 。 .。 3 3 2 二 开造斜段 (3  ̄ 4 4 .. 2 0 ,3 m) 选 用 如 下 钻 具 组 合 : 2 2 2 mm 牙 轮 钻 头 + 2. 5 』 12 m单 弯螺杆 钻具 (. 5) 2 7r 『 a 17。 + 12 7 mm 单 流 阀 十 M W D+ 1 9 5 mm 无 磁 钻 铤 ×1根 + 1 7 2mm 斜 坡 钻 杆× 1 2根 + j 1 7 2 2 mm 斜 坡 加 重 钻 杆 × 1 『 1根 十 19 5mm随钻 震 击 器 + 17 2mm 斜 坡 加 重 钻 杆 ×3 根 + 1 7 斜坡钻 杆 +13 方钻 杆 。 2 mm 3mm 钻井参 数 : 压 4 t排量 2 ̄3 I s 钻 ~8, 8 2 。 / 早 扭方位 , 井斜较 小 的时候 方位 到 位 。实 钻井 眼轨 迹尽量控制在设 计线 附近 之上运 行 , 离太 大 会造 成全 偏 角变化率过大 , 容易 引起后 期作 业 通井 、 下技 套 困难 , 也 增加 了轨迹控 制难 度 。轨迹偏上 时 , 造斜率应 小于设 计 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水平井井眼轨迹控制技术水平井井眼轨迹控制工艺技术是水平井钻井中的关键,是将水平井钻井理论、钻井工具仪器和施工作业紧密结合在一起的综合技术,是水平井钻井技术中的难点,原因是影响井眼轨迹因素很多,水平井井眼轨迹的主要难点是:1.工具造斜能力的不确定性,不同的区块、不同的地层,工具造斜能力相差较大2.江苏油田为小断块油藏,油层薄,区块小,一方面对靶区要求高,另一方面增加了目的层垂深的不确定性。
3.测量系统信息滞后,井底预测困难。
根据以上技术难点,需要解决三个技术关键:1、提高工具造斜率的预测精度。
2、必须准确探明油层顶层深度,为入窗和轨迹控制提供可靠依据。
3、做好已钻井眼和待钻井眼的预测,提高井眼轨迹预测精度。
动力钻具选择一、影响弯壳体动力钻具造斜能力的主要因素影响弯壳体动力钻具的造斜能力的主要因素有造斜能力钻具结构因素和地层因素及操作因素三大类。
其中主要的是结构因素,其次是地层因素。
(一)动力钻具结构因素影响1.弯壳体角度对工具造斜率的影响单双弯体弯角是影响造斜工具造斜能力的主要因素。
在井径一定情况下,弯壳体的弯角对造斜率的影响很大,随着弯壳体角度的增大,造斜率呈非线性急剧增大。
2.弯壳体近钻头稳定器对工具造斜率的影响。
弯壳体近钻头稳定器的有无,对工具造斜率影响很大。
如Φ165mm1°15′有近钻头稳定器平均造斜率达到30°/100米,无近钻头稳定器平均造斜率仅为20°/100米左右,相差近50%。
如陈3平3井使1°30′Φ172mm不带稳定器单弯螺杆平均造斜率为25°/100米,井身轨迹控制要求,复合钻进后,滑动钻进,造斜率仅为16-20°/100米。
3.改变近钻头稳定器到下弯肘点之距离对工具造斜率的影响通过移动下稳定器位置可以改变近钻头稳定器至下肘点之距离。
上移近钻头稳定器可大大提高工具的造斜能力,并且在井径扩大程度较大的情况下,造斜能力的上升幅度比井径扩大较小时要大。
(二)松散地层对工具造斜率的影响据分析可知,下部钻具组合的造斜能力主要取决于钻头侧向力,而钻头侧向力来源于近钻头稳定器和其他支点的支承作用。
一般来说,井壁对工具的支承作用增加,工具的造斜能力增加。
在胶结松散的地层中钻进时,由于井壁的支承作用减弱,稳定器将会吃入地层,相当于减少了稳定器的外径或增大了井径,从而导致工具造斜能力下降。
因此,软地层工具造斜率偏低。
(三)钻井操作时对工具造斜率的影响1.滑动与转动对工具造斜率。
当井眼轨迹处于连续滑动,由于井眼曲率对工具造斜率的影响,井眼轨迹顺着自然方向前进,因而表现出工具造斜率变大,同理,当井眼轨迹处于连续转动后,滑动钻进,工具造斜率偏低。
当井眼轨迹处于连续滑动后,转动钻进时井眼轨迹会顺着滑动趋势漂移一点。
2.因起钻、下钻(包括短起下钻)和循环时工具造斜率。
起钻、下钻、循环时对工具造斜率影响比较大,其主要原因是起钻、下钻、循环时井眼变大,导致工具造斜能力下降。
如陈3平3井在1921.86m处循环短起下钻。
短起下钻前工具造斜率为26°/100米,短起下钻后,工具造斜率为21°/100米,由于该井选择的单弯螺杆为不带稳定器工具造斜率基本上一定,下步造斜率要求不低于22°/100米,因此我们提前考虑短起下钻对工具造斜率的影响,从而保证了该井一只钻头一根螺杆钻完造斜井段。
二、工具造斜率的计算由于动力钻具造斜率理论上精确地分析计算十分复杂,且影响弯壳体动力钻具的造斜能力的最主要因素是钻具结构因素,以简单的几何分析方法计算预测工具的造斜能力仍很有实用意义。
几何分析计算单弯动力钻具造斜率方法是先求出单弯动力钻具弯点至其上本体与井壁的切点距离,然后根据三点共圆的原理,选择上切点、下稳定器和钻头三个点作为确定圆弧的三个点。
同时考虑稳定器外径大小,从而计算出圆弧曲率。
选上切点,下稳定器和钻头作为确定圆的三个点:单弯马达造斜率计算图选上切点为坐标原点,确定上切点、下稳定器及钻头三点的坐标为:X2=0y1=0X2=(L1-L0)Sinry2=L2+(L1-L0)Cosrx3=L1Sinry3=L2+L1Cosr下稳定器是单弯本体上的欠尺寸稳定器,和井壁之间有间隙,为了考虑这个间隙的影响X2=(L1-L0)Sinr-δCosry2=L2+(L1-L0)Cosr+δSinr根据江苏油田的地层特点优选导向马达如下:德州产Φ172mm导向马达Φ172mm×1°45′不带稳定器的马达造斜率为25°-30°/100米,Φ172mm×1°30′不带稳定器的马达造斜率为20°-25°/100米,Φ172mm×1°15′不带稳定器的马达造斜率为15°-20°/100米。
大港产Φ172mm导向马达Φ172mm×1°45′不带稳定器的马达造斜率为20°-25°/100米,Φ172mm×1°30′不带稳定器的马达造斜率为15°-20°/100米,Φ172mm×1°15′不带稳定器的马达造斜率为6°-15°/100米。
Φ165mm导向马达Φ165mm×1°15′带稳定器的马达造斜率初始造斜率为20°-25°/100米随着井斜的增加,造斜率逐步增大,最高达45°/100米。
Φ165mm×1°30′带稳定器的马达造斜率为25°-30°/100米,随着井斜的增加,造斜率逐步增大,最高达50°/100米。
稳 斜 探 顶水平井轨迹总体控制方案实际上就是轨道控制人员在拿到井身剖面设计轨道图之后,综合考虑工具,测量仪器、油层顶部可能误差等多种因素,对井身剖面设计轨迹进行细化、补充、修改和落实后形成的一种实施方案。
水平井轨迹总体控制方案采用应变法控制方案,即以稳斜井段来探测油层顶垂深,然后以设计好的造斜率增斜着陆入窗。
应变法的特点:1、应变法的造斜率K 值是根据工具造斜能力,油层几何参数确定,一般不作变动,即无论油层顶垂深误差是正是负,只要探知油层顶位置后,接着便以固定的造斜率K 着陆入窗。
2、油层顶位置不确定带来的影响是靠稳斜段补偿和消除。
在距离油层顶设计值一定高度即开始稳斜钻进,直至探知油层顶。
水平井应变方案:1、进入角αc 的确定:设工具造斜率K ,由于要求在目的层顶界面以下1~2米着陆,其计算公式如下:2=5730/K (Sin αm -Sin αc )2、水平位移提前量的确定:充分估计油层提前出现的最大垂深误差值△H 1,在此“警戒线”,即规定钻达这一深度时要保证井斜角,达到预定的进入角αc ,然后稳斜钻进探油层顶。
充分估计油层顶滞后出现的最大垂深误差值△H 2,以进入角αc ,稳斜钻进直至探油层顶。
水平位移提前量△S=(△H 1+△H 2)tg αc +K (Cos αc -Cos αm )这样保证了靶前位移水平小于设计靶前位移,从而保证水平井水平段段长达到甲方要求根据水平位移提前量和进入角αc ,求造斜井段的造斜率K c 。
S-ΔS=5730/K c (Cos0°-Cos αc )K c =S S c Cos ∆--)1(5730α水平井油层提前量出现的最大误差垂深一般考虑1~2米,油层滞后出现最大误差垂深为1~2米。
水平井待钻井眼设计待钻井眼设计是水平井轨迹控制技术的重要组成部分。
待钻井眼设计与所钻地层岩性、钻前设计剖面、造斜工具性能、随钻测量工具类型有着密切关系。
由于工具实际造斜率极不稳定,并且大多数小于理论造斜率10%~40%,以及小断块油藏,油层多变性,油层的不确定性更大,因此十分需要待钻井眼设计为施工提供科学依据。
一、待钻井眼设计基本原则与思路待钻井眼设计是在水平井钻进过程中对钻前井身剖面的一种修正设计,它不但遵循钻前井身剖面设计原则,而且还有其自身的约束条件和设计原则。
待钻井眼设计的宗旨即是设计出一条结合实际情况,切实可行的最优剖面。
(一)待钻井眼设计基本原则1.根据地层造斜特征选择造斜工具的原则待钻井眼设计,需要考虑地层岩性及胶结程度对工具造斜能力的影响程度。
2.在分析评价工具造斜能力的基础上确定造斜率的原则进行待钻井眼设计时,需要根据钻具组合造斜能力的分析,评价确定出工具的造斜率,并在此基础上,确定出给施工留有一定余地的待钻井眼设计造斜率。
3.待钻井眼设计轨迹必须满足目标点参数的原则待钻井眼设计需要满足目标点(设计剖面线上的任一点、靶点或人为给定点)的空间几何参数。
4.设计剖面与待钻剖面的空间几何关系确定的原则待钻井眼设计剖面与钻前井身设计剖面的相对位置要有定量的几何关系,以便为施工者提供直观的数据,为制定施工措施及优选钻井轨迹提供依据。
5.能进行三维空间待钻设计的原则。
6.待钻井眼设计剖面应是最优剖面的原则。
(二)待钻井眼设计基本思路1.实钻井眼轨迹的描述根据实钻井眼的测量参数:测深、井斜、方位,求得实钻井眼的坐标参数。
2.分析、评价工具的造斜能力根据实钻井眼的测量参数及钻井参数,结合已钻地层和待钻地层特性,分析和评价已钻和待钻地层的造斜特性及现有造斜工具的造斜能力。
3.预测井底参数根据实钻测量参数,结合最后一测点到钻头处的地层特性、钻进参数和工具的造斜能力,预测出井底井身轨迹参数。
4.选择待钻井眼设计方法根据钻头处的井身参数和实钻轨迹参数建立实钻轨迹与设计剖面之间的定量空间几何关系,或实钻轨迹与给定点之间的最小距离,选择待钻井眼设计方法并为待钻井眼设计提供依据。
5.进行待钻设计根据施工要求选定待钻井眼设计方法之后即进行待钻井眼设计。
将待钻设计轨迹与钻前设计轨迹进行比较,求得两者空间定量几何关系,以检验待钻设计轨迹是否符合要求和达到优化。
(三)、待钻井眼计算一、实钻垂直剖面待钻井眼计算实钻垂直剖面待钻井眼计算图窗口高度为A 1A 2、B 1B 2计算:PA 2 PA PA 1所需造斜率根据工具造斜率采用特殊井井身轨迹计算软件选择是稳一增入窗,还是增一稳入窗。
二、实钻水平投影计算实钻水平投影计算图计算出φPA 2、φPA 1、φPB 1、φPB 2从小到大排列,选出中间的两方位值φ1、φ2以中间两方位值作为许用范围若φP 不在(φ1、φ2)内,则考虑扭方位,方位扭转角为: △φc = p φφφ-+221水平井井眼轨迹控制工艺技术水平井井身轨迹控制工艺技术分为三部分:即直井段、着陆段、水平段的轨迹控制。
一、直井段的控制水平井直井段的防斜打快比常规定向井更为重要,尤其是小靶前位移的水平井,直井段井身质量的好坏直接关系到水平井能否快速顺利完成,若直井段一旦打斜,产生的位移过大,势必使下部井眼轨迹控制的调整工作量增大,使施工难度大幅度增加,小靶前位移的水平井若直井段水平位移正向过大,造成造斜工具造斜率达不到填侧钻。