内积与正交变换
合集下载
向量的正交规范化

1
2 2
, ,
r 2
2
r1,r r1, r1
r 1
则 1, 2 , , r 两两正交,且与 1,2 , ,r等价.
15
ቤተ መጻሕፍቲ ባይዱ
2)规范化
令
1
1
1
1,
2
1
2
2,
,
r
1
r
r ,
解 cos , 18 1
3 26 2
.
4
练习 1 1 1 1T , 1 1 1 0T , 求, .
9
三、正交向量组 1、正交
当 , 0 ,称α与β正交.
注 ① 若 0 ,则α与任何向量都正交. ② 0.
或 x1 x2 x3 0,
1 0
其基础解系为
1
0 1
,
2
11 .
19
1
1
0
令
1
11
,
2
1
0 1
,
3
2
11
.
1)正交化
1
1
令
1
四、应用举例 例1 证明:Rn 中,勾股定理 x y 2 x 2 y 2 成立
的充要条件是 x, y 正交.
解 x y 2 x y, x y x, x y, y 2 x, y x 2 y 2 2 x, y
所以 x y 2 x 2 y 2成立的充要条件是 x, y 0,
-向量的内积与施密特正交化过程

2
,
, ……
r
r
(r , 1) (1, 1)
1
(r , 2 ) (2, 2)
2
( (r
r , r1) 1, r1)
r
1
(2). 单位化(规范化):取
1
1 1
,2
2 2
,
,r
r r
,
1,2, ,r 是正交规范向量组,且
显然 1,2, ,r 仍与 1,2 , ,r
等价。上述过程称Schmidt(施密特)正交 化过程。(方法)
对于两非零向量
,
当
2
时,称两向量正交。这里显然等价于
(, ) 0 因此可利用内积定义两向量正交。
定义3 若 (, ) 0 称 , 正交,记 , 中只要有一个为零向量,必有 ( , ) 0
又零向量与任何向量看作是正交的,且
。
因此可利用内积定义两向量正交。
定义4 设向量组 1,2 , ,r
例3令
1
2
0
1 2
0
1
A
2
0
1 2
0
0
1
0
2
1
2
0
1
0
2
1 2
验证A为正交矩阵
解:因列向量组为两两正交
的单位向量,故为正交矩阵 。
定义6 设 X ,Y Rn则称线性变换
Y AX 是正交变换。
例4 证明线性变换
x cos x sin y
y
sin
x
cos
y
是正交变换。
解:线性变换的矩阵为
的内积定义为
( , ) T T a1b1 a2b2 anbn
并称定义了内积的向量空间为欧氏空间
向量组的正交性

解 先正交化, 取
1 1 1,1,1,1
2
2
(1,2 ) (1, 1)
1
1,1,0,4 1 1 4 1,1,1,1
1111
0,2,1,3
3
3
(1,3 ) (1, 1)
1
(2 ,3 ) (2, 2)
反例:1 (1,0,1),2 (0,0,1)
四 向量空间的正交基
若1,2 , ,r是向量空间V的一个基,且1,2 ,
,r是两两正交的非零向量组,则称1,2 , ,r是
向量空间V的正交基.
例1 已知三维向量空间中两个向量
1
1 1,
1
2
n
T 2
1
2T 2
2T n
T n
T n
1
nT 2
nTn
1 0
E
0
1
0
0
0
0
(i ,i )
1, (i , j )
0
1
(i j)
b3 a3 c3 .
b1
b2
七、正交矩阵:
1.定义4: 若n阶方阵A满足AT A E(或A1 AT ),则称A为n阶正交矩阵。
2.性质:(i) 若A为n阶正交矩阵 A 1.
(ii) 若A为n阶正交矩阵 AT与A1也是正交矩阵。
(iii) 若A, B为n阶正交矩阵 AB与BA也是正交矩阵。
两个向量正交化公式

两个向量正交化公式
正交化是线性代数中一个重要的概念,指的是将两个向量调整为正交的过程。
通过正交化,我们可以得到一组相互垂直的向量,这对于很多计算问题都是非常有用的。
假设有两个向量a和b,我们需要将它们正交化。
首先,我们需要计算出这两个向量的内积。
内积可以看作是对两个向量的相似度的度量,如果两个向量正交,它们的内积为0。
通过计算内积,我们可以找到一个向量c,它与向量a正交,并且与向量b也正交。
具体的正交化过程如下:
1. 首先,计算向量a和向量b的内积。
内积的计算可以通过将两个向量对应位置上的元素相乘,然后将结果相加得到。
2. 根据内积的计算结果,我们可以得到一个系数k,使得向量 c =
a - kb。
3. 向量c就是我们需要的正交化后的向量。
它与向量a正交,并且与向量b也正交。
通过这个正交化的过程,我们可以得到一组正交的向量,这对于很多应用来说非常重要。
例如,在计算机图形学中,正交化可以用来解决投影问题,使得物体在屏幕上的显示更加清晰。
在信号处理中,正交化可以用来解决信号的分解和重构问题,提高信号的传输效率。
总的来说,正交化是线性代数中一个重要的概念,通过调整向量使其正交,我们可以得到一组相互垂直的向量。
正交化在很多领域都有着广泛的应用,它可以帮助我们解决各种计算问题,并提高计算的效率和准确性。
希望通过本文的介绍,读者能够对正交化有一个更加清晰的理解。
高等代数课件 第八章

由此得 | | , x12 x22 xn2 (5)
( ,) (x1 y1)2 (xn yn )2 (6)
2.标准正交基的性质
设 {1,2} 是 V2 的一个基,但不一定是
正交基。从这个基出发,只要能得出 V2 的一个
正交基 {1, 2}, 问题就解决了,因为将 1和2
再分别除以它们的长度,就得到一个规范正交
注意:(7)和(8)在欧氏空间的不等式(6) 里被统一起来. 因此通常把(6)式称为柯西-施瓦兹不 等式.
三、向量的正交
定义4 欧氏空间的两个向量ξ与η说是正交的,
如果 , 0
定理8.1.2 在一个欧氏空间里,如果向量ξ
与1,2,,r 中每一个正交,那么ξ与 1,2,,r
的任意一个线性组合也正交.
2 a1 2 a1 0,
因而 2 0,
这就得到 V2 的一个正交基 {1, 2}.
3.标准正交基的存在性
定理8.2.2(正交化方法) 设 {1,2 ,,n}
是欧氏空间V的一组线性无关的向量, 那么可以求
出V 的一个正交组 {1, 2,, n}, 使得 k 可以由 1,2,,k 线性表示,k = 1,2,…,m.
由于1,2,,k 线性无关,得 k 0,
又因为假定了 1, 2 ,, k1 两两正交,所以
k ,i
k ,i
k ,i i , i
i , i 0, i 1,2,, k 1
这样,1, 2,, k 也满足定理的要求。
定理8.2.3 任意n(n >0)维欧氏空间一定有正交
基,因而有标准正交基.
例4 在欧氏空间 R3中对基
4) 当 0 时, , 0 这里 ,, 是V的任意向量,a是任意实数,那么
, 叫做向量ξ与η的内积,而V叫做对于 这个内积来说的一个欧氏空间(简称欧氏空间).
( ,) (x1 y1)2 (xn yn )2 (6)
2.标准正交基的性质
设 {1,2} 是 V2 的一个基,但不一定是
正交基。从这个基出发,只要能得出 V2 的一个
正交基 {1, 2}, 问题就解决了,因为将 1和2
再分别除以它们的长度,就得到一个规范正交
注意:(7)和(8)在欧氏空间的不等式(6) 里被统一起来. 因此通常把(6)式称为柯西-施瓦兹不 等式.
三、向量的正交
定义4 欧氏空间的两个向量ξ与η说是正交的,
如果 , 0
定理8.1.2 在一个欧氏空间里,如果向量ξ
与1,2,,r 中每一个正交,那么ξ与 1,2,,r
的任意一个线性组合也正交.
2 a1 2 a1 0,
因而 2 0,
这就得到 V2 的一个正交基 {1, 2}.
3.标准正交基的存在性
定理8.2.2(正交化方法) 设 {1,2 ,,n}
是欧氏空间V的一组线性无关的向量, 那么可以求
出V 的一个正交组 {1, 2,, n}, 使得 k 可以由 1,2,,k 线性表示,k = 1,2,…,m.
由于1,2,,k 线性无关,得 k 0,
又因为假定了 1, 2 ,, k1 两两正交,所以
k ,i
k ,i
k ,i i , i
i , i 0, i 1,2,, k 1
这样,1, 2,, k 也满足定理的要求。
定理8.2.3 任意n(n >0)维欧氏空间一定有正交
基,因而有标准正交基.
例4 在欧氏空间 R3中对基
4) 当 0 时, , 0 这里 ,, 是V的任意向量,a是任意实数,那么
, 叫做向量ξ与η的内积,而V叫做对于 这个内积来说的一个欧氏空间(简称欧氏空间).
第二章内积空间

y1 n n 则 (α , β ) = ∑∑ xi y j (α i ,α j ) = (x1 , x2 ,L , xn )A y2 = x H Ay M i =1 j =1 y n
定理4:设 ε1 , ε 2 ,L, ε n 与 η1 ,η 2 ,L,η n 为n维酉空间V的基,它们 定理4 维酉空间V的基, 的度量矩阵为A和B,,C是 ε1 , ε 2 ,L, ε n 到 η1 ,η 2 ,L,η n 的过渡 的度量矩阵为A ,,C
(α ,α )
.
∀α ≠ 0 ∈ V ,
称
α α
为α 的规范化单位向量
定义 α , β 的距离为 d (α , β ) = α − β 2、向量长度的性质
(1) α ≥ 0, 当且仅当 α = 0时等式成立; 时等式成立; (2) kα = k α ;
引理(Chauchy不等式) 引理(Chauchy不等式)设V是酉(欧氏)空间, ∀α , β ∈ V , 不等式 是酉(欧氏)空间, 向量的长度满足 证明: 证明:
y1 n n y2 (α , β ) = ∑∑ xi y j (α i ,α j ) = (x1 , x2 ,L, xn )A = xT Ay M i =1 j =1 y n
则
即抽象的向量的内积可通过他们在基下的坐标及度量矩阵 的双线性函数来计算。 的双线性函数来计算。 定理2:设 ε1 , ε 2 ,L, ε n 与 η1 ,η 2 ,L,η n 为n维欧氏空间V的基,它们 定理2 维欧氏空间V的基, 的度量矩阵为A ,,C 的度量矩阵为A和B,,C是 ε1 , ε 2 ,L, ε n 到 η1 ,η 2 ,L,η n 的过渡 证明详见P26-27) (证明详见 ) 矩阵,则 B = C AC 矩阵, 即同一欧氏空间不同基的度量矩阵是相合矩阵。 欧氏空间不同基的度量矩阵是相合矩阵 即同一欧氏空间不同基的度量矩阵是相合矩阵。
定理4:设 ε1 , ε 2 ,L, ε n 与 η1 ,η 2 ,L,η n 为n维酉空间V的基,它们 定理4 维酉空间V的基, 的度量矩阵为A和B,,C是 ε1 , ε 2 ,L, ε n 到 η1 ,η 2 ,L,η n 的过渡 的度量矩阵为A ,,C
(α ,α )
.
∀α ≠ 0 ∈ V ,
称
α α
为α 的规范化单位向量
定义 α , β 的距离为 d (α , β ) = α − β 2、向量长度的性质
(1) α ≥ 0, 当且仅当 α = 0时等式成立; 时等式成立; (2) kα = k α ;
引理(Chauchy不等式) 引理(Chauchy不等式)设V是酉(欧氏)空间, ∀α , β ∈ V , 不等式 是酉(欧氏)空间, 向量的长度满足 证明: 证明:
y1 n n y2 (α , β ) = ∑∑ xi y j (α i ,α j ) = (x1 , x2 ,L, xn )A = xT Ay M i =1 j =1 y n
则
即抽象的向量的内积可通过他们在基下的坐标及度量矩阵 的双线性函数来计算。 的双线性函数来计算。 定理2:设 ε1 , ε 2 ,L, ε n 与 η1 ,η 2 ,L,η n 为n维欧氏空间V的基,它们 定理2 维欧氏空间V的基, 的度量矩阵为A ,,C 的度量矩阵为A和B,,C是 ε1 , ε 2 ,L, ε n 到 η1 ,η 2 ,L,η n 的过渡 证明详见P26-27) (证明详见 ) 矩阵,则 B = C AC 矩阵, 即同一欧氏空间不同基的度量矩阵是相合矩阵。 欧氏空间不同基的度量矩阵是相合矩阵 即同一欧氏空间不同基的度量矩阵是相合矩阵。
向量的内积长度和正交性

1. 定义2 令 || x || [ x, x] x12 x22 xn2 , 称 || x || 为 n 维向量 x 旳长度 (或范数). 向量旳长度具有下述性质:
(1) 非负性: 当 x = 时, || x ||= 0;当 x 时, || x || 0. (2) 齐次性: || x ||= |||| x || ;
(2) [ x, y ]= [ x, y];
(3) [x+y, z ]= [ x, z]+ [ y, z];
(4) 当 x = 时, [ x, x ]= 0; 当 x 时, [ x, x ] 0.
施瓦茨(Schwarz)不等式: [ x, y ]2 [ x, x ] [ y, y].
二、向量旳长度及性质
(1) A1 AT ; (2) AAT E;
3 A的列向量是两两正交的 单位向量;
4 A的行向量是两两正交的 单位向量.
设1 , 2 ,, r是向量空间V的一个基,要求V
的一个规范正交基 ,就是要找一组两两正交 的单
位向量e1 ,e2 ,,er ,使e1 ,e2 ,,er与1 , 2 ,, r等 价,这样一个问题,称为 把1,2 ,,r 这个基规
范正交化 .
下面简介施密特正交化措施(Gram-Schmidt orthogonalization’s method )
例如
1, 3
1 , 3
1
T
,
3
1 ,0, 2
1 2
,0
T
,
若
,
则
1
||
||
为单位向量.
若 ,
1 || ||
称为把向量 单位化.
例如 (1,2,3)T , 单位化得 : 1 (1,2,3)T .
(1) 非负性: 当 x = 时, || x ||= 0;当 x 时, || x || 0. (2) 齐次性: || x ||= |||| x || ;
(2) [ x, y ]= [ x, y];
(3) [x+y, z ]= [ x, z]+ [ y, z];
(4) 当 x = 时, [ x, x ]= 0; 当 x 时, [ x, x ] 0.
施瓦茨(Schwarz)不等式: [ x, y ]2 [ x, x ] [ y, y].
二、向量旳长度及性质
(1) A1 AT ; (2) AAT E;
3 A的列向量是两两正交的 单位向量;
4 A的行向量是两两正交的 单位向量.
设1 , 2 ,, r是向量空间V的一个基,要求V
的一个规范正交基 ,就是要找一组两两正交 的单
位向量e1 ,e2 ,,er ,使e1 ,e2 ,,er与1 , 2 ,, r等 价,这样一个问题,称为 把1,2 ,,r 这个基规
范正交化 .
下面简介施密特正交化措施(Gram-Schmidt orthogonalization’s method )
例如
1, 3
1 , 3
1
T
,
3
1 ,0, 2
1 2
,0
T
,
若
,
则
1
||
||
为单位向量.
若 ,
1 || ||
称为把向量 单位化.
例如 (1,2,3)T , 单位化得 : 1 (1,2,3)T .
第6讲向量的内积与正交化

ATA = E 则称 A 为正交矩阵,简称正交阵。 对正交阵 A 按列自然分块,则有
可得: 定理:方阵 A 为正交阵的充分必要条件是 A 的列(行)向量都 是单位向量,且两两正交。
正交矩阵有如下性质: 1) 若 A 为正交矩阵,则 |A|=1 或 |A|= -1; 2) A为正交矩阵,则 AT=A-1 也为正交矩阵; 3) 若A,B为同阶正交矩阵,则 AB 也为正交矩阵。 定义:若 P 为正交矩阵,则线性变换 y = Px 称为正交变换。 性质:正交变换保持线段长度不变。 设 y=Px 为正交变换,则有 由于任意两点的距离均不变,从而正交变换不改变图形的形状, 这是正交变换的优良特性。
(1) (x,y) = (y, x); (2) (kx, y) = k (x, y); (3) (x+y, z) = (x, z)+(y,z); (4) (x, x)≥0,当且仅当 x=0 时, (x,x)=0。 内积还满足施瓦茨(Schwarz)不等式
定义:定义向量
的长度(范数, 模)为
向量的长度具有下述性质: (1) 非负性:当 x≠0 时,|| x ||>0;当 x=0 时,||x||=0; (2) 齐次性: ||k x || = |k| ||x||; (3) 施瓦茨不等式:|(x,y)| ≤ ||x|| ||y||; (4) 三角不等式:||x+y|| ≤ ||x|| + ||y||。
正交的
;
,即得 n 个两两正交的
若现已有线性无关的向量组
,也可以构
建一个与之等价的且两两正交的向量组:
以上过程称为施密特(Schimidt)正交化过程。 进一步,可将 单位化(规范化),
对施密特正交化过程,应注意向量组 等价,其中 t=1,…, r
可得: 定理:方阵 A 为正交阵的充分必要条件是 A 的列(行)向量都 是单位向量,且两两正交。
正交矩阵有如下性质: 1) 若 A 为正交矩阵,则 |A|=1 或 |A|= -1; 2) A为正交矩阵,则 AT=A-1 也为正交矩阵; 3) 若A,B为同阶正交矩阵,则 AB 也为正交矩阵。 定义:若 P 为正交矩阵,则线性变换 y = Px 称为正交变换。 性质:正交变换保持线段长度不变。 设 y=Px 为正交变换,则有 由于任意两点的距离均不变,从而正交变换不改变图形的形状, 这是正交变换的优良特性。
(1) (x,y) = (y, x); (2) (kx, y) = k (x, y); (3) (x+y, z) = (x, z)+(y,z); (4) (x, x)≥0,当且仅当 x=0 时, (x,x)=0。 内积还满足施瓦茨(Schwarz)不等式
定义:定义向量
的长度(范数, 模)为
向量的长度具有下述性质: (1) 非负性:当 x≠0 时,|| x ||>0;当 x=0 时,||x||=0; (2) 齐次性: ||k x || = |k| ||x||; (3) 施瓦茨不等式:|(x,y)| ≤ ||x|| ||y||; (4) 三角不等式:||x+y|| ≤ ||x|| + ||y||。
正交的
;
,即得 n 个两两正交的
若现已有线性无关的向量组
,也可以构
建一个与之等价的且两两正交的向量组:
以上过程称为施密特(Schimidt)正交化过程。 进一步,可将 单位化(规范化),
对施密特正交化过程,应注意向量组 等价,其中 t=1,…, r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,ar , b1
] ]
b1
[b2 [b2
, ,
ar b2
] ]
b2
[br1 ,ar ] [br1 ,br1 ]
br
1
那么b1 , ,br两两正交,且b1 , ,br与a1 , ar等价.
(2)单位化,取
e1
b1 b1
,
e2
b2 b2
,
, er
br br
,
那么 e1 ,e2 , ,er为V的一个规范正交基 .
1 2
,
1 2
,
1 2
,
1 2
e2
b2 b2
1 0,2,1,3
14
0,
2 , 14
1 , 14
3 14
e3
b3 b3
1 6
1,1,2,0
1, 6
1 6
,
2 6
,0
1 1 4
例3
设
a1
2
,a2
3
,
a
3
1
,
试用施密
1 1 0
特正交化过程把这组向量规范正交化.
价,这样一个问题,称为 把1,2 , ,r 这个基规
范正交化 .
若a1 ,a2 , ,ar为向量空间V的一个基,
(1)正交化,取 b1 a1 ,
b2
a2
b1 , a2 b1 , b1
b1
,
b3
a3
[b1 ,a3 [b1 ,b1
] ]
b1
[b2 [b2
, ,
a3 b2
] ]
b2
br
ar
[b1 [b1
非零向量,则1,2, ,r线性无关.
证明 设有 1,2 , ,r 使 11 22 r 0
以a1T 左乘上式两端,得 11T1 0 由 1 0 1T1 1 2 0, 从而有1 0 .
同理可得2 r 0. 故1,2 , ,r线性无关.
4 向量空间的正交基
若1,2 , ,r是向量空间V的一个基,且1,2 ,
3. 三角不等式 x y x y .
单位向量及n维向量间的夹角
1 当 x 1时,称 x为单位向量 .
2当 x 0, y 0时, arccos x, y
xy 称为n维向量x与y的夹角 .
例 求向量 1,2,2,3与 3,1,5,1的夹角.
解
cos
18 2 3 26 2
,
是两
r
两正交
的非
零向量组,
则
称
1
,
2
,
,
是
r
向量空间V的正交基.
例1 已知三维向量空间中两个向量
1
1 1,
1
1
2 2
1
正交,试求 3 使1 ,2 ,3构成三维空间的一个正交
基.
解 设3 x1, x2 , x3 T 0,且分别与1,2正交.
则有 [1 , 3 ] [ 2 , 3 ] 0
上述由线性无关向量组a1 , ,ar构造出正交 向量组b1 , ,br的过程,称为施密特正交化过程 . 例2 用施密特正交化方法,将向量组
a1 (1,1,1,1),a2 (1,1,0,4),a3 (3,5,1,1) 正交规范化.
解 先正交化,取
b1 a1 1,1,1,1
b2
a2
b1,a2 b1 , b1
.
4
三、正交向量组的概念及求法
1 正交的概念 当[ x, y] 0时, 称向量x与y 正交. 由定义知,若 x 0,则 x 与任何向量都正交.
2 正交向量组的概念 若一非零向量组中的向量两两正交,则称该向
量组为正交向量组.
3 正交向量组的性质
定理1
若n维向量1,
2,
,
是一组两两正交的
r
b1
1,1,0,4
1
1
4
1,1,1,1 0,2,1,3
1111
b3
a3
[b1 ,a3 [b1 ,b1
] ]
b1
[b2 [b2
,a3 , b2
] ]
b2
3,5,1,1 8 1,1,1,1 140,2,1,3 1,1,2,0
4
14
再单位化,得规范正交向量组如下
e1
b1 b1
1 2
1,1,1,1
解
取 b1 b2
a1;
a2
[a2
,
b1]
2
b1
b1
1 3 1
4
6
1 2 1
5
3
1 1 ; 1
b3
a3
[a3
,
b1]
2
b1
[a3
,
b2]
2
b2
b1
b2
பைடு நூலகம்
4 1 0
1
3
1 2 1
5
3
1 1 1
1 2 0.
1
再把它们单位化,取
即
[[21,,33
] ]
x1 x1
x2 x3 0 2x2 x3 0
解之得 x1 x3 , x2 0.
若令 x3 1,则有
x1 1
3 x2 0
x3 1
由上可知1 ,2 ,3构成三维空间的一个正交基.
5 规范正交基
定义3 设n维向量 e1, e2 , , er是向量空间 V (V
说明
1 nn 4 维向量的内积是3维向量数量积
的推广,但是没有3维向量直观的几何意义.
2 内积是向量的一种运算,如果x, y都是列 向量,内积可用矩阵记号表示为 :
x, y xT y.
内积的运算性质
其中 x, y, z为n维向量,为实数 : (1) x, y y, x; (2) x, y x, y; (3) x y, z x, z y, z;
Rn )的一个基,如果e1, e2 , , er两两正交且都是单位 向量,则称e1, e2 , , er是V的一个规范正交基. 例如
1 2 1 2 0 0
e1
1
0 0
2 ,e2
1 0 0
2 ,e3
1
0 2 ,e4
1
0 2
.
1 2
1 2
1 2 1 2 0 0
e1
1
0 0
2
, e2
1 0 0
2 ,e3
1
0 2 ,e4
1
0 2
.
1 2 1 2
由于
[ei ,e j ] 0, [ei ,e j ] 1,
i j且i, j 1,2,3,4. i j且i, j 1,2,3,4.
所以 e1 ,e2 ,e3 ,e4为R4的一个规范正交基.
(4)[ x, x] 0,且当x 0时有[ x, x] 0.
二、向量的长度及性质
定义2 令
x x, x x12 x22 xn2 , 称 x 为n维向量 x的长度或范数 .
向量的长度具有下述性质: 1. 非负性 当 x 0时, x 0;当 x 0时, x 0;
2. 齐次性 x x ;
同理可知
1 0 0 0
1
00,
2
10,
3
10,
4
0 0
.
0
0
0
1
也为R4的一个规范正交基.
6 求规范正交基的方法
设1 , 2 , , r是向量空间V的一个基,要求V
的一个规范正交基,就是要找一组两两正交的单
位向量e1 ,e2 , ,er ,使e1 ,e2 , ,er与1 , 2 , , r等