第二章-纯电动汽车的基本组成和结构

合集下载

第二章电动汽车构造与原理(6-30)

第二章电动汽车构造与原理(6-30)
除了供应汽车驱动行驶所需的电能外,也 是供应汽车上各种辅佐装置的任务电源。 蓄电池在车上装置前需求经过串并联的方式组分解所要求的电压等级,由于
电动机 驱动所需的等级电压往往与辅佐装置的电压要求不分歧,辅佐装置所要求的
普通为 12V或24V的高压电源,而电动机驱动普通要求为高压电源,并且所采用
的电动机类 型不同,其要求的电压等级也不同。为满足该要求,可以用多个12V或
可被大 大简化,较多的是为缩小电动机的输入转矩仅采用一种固定的减速装置。
又由于 电动机可带负载直接起动,即省去了传统内燃机汽车的离合器。由于电动
机可 以容易地完成正反向旋转,所以也无需经过变速器中的倒档齿轮组来完成
倒车。 对电动机在车架上合理规划,即可省去传动轴、万向节等传动链。当采用
轮毂式 电动机分散驱动方式时,又可以省去传统汽车的驱动桥、机械差速器、半
用,数控机床伺服驱动早已对此作了验证,并且调速功用目的(可达l: 20000)远高
于汽车行驶要求。 2〕电动机完成转矩的快速照应性目的要比发起机高出两个数量级,假 定发起机
的静态照应时间是500ms,那么电动机只为5ms。由于按惯例来说,电 气执行的响
应速度都要比机械机构快几个数量级,因此随着计算机电子技术的开展,用 先进的
所以汽车转弯时,前一种采用机械式差速器; 后一种由电控式差速器来完成。异样,它在汽车 上的规划有电动机前置、驱动桥前置(F-F)和电 动机后置、驱动桥后置(R-R)两种驱动形式。 该电动机.驱动桥构成的机电一体化全体式驱动 系统,具有结构更紧凑,传动效率高,重量轻、 体积小,并具有良好的通用性和互换性。
放电时间、放电电流或放电深度等蓄电池形状参数停止检测,并按蓄电池 对环境
温度的要求停止调温控制,经过限流控制防止蓄电池过充、放电,对有关 参数进

新能源汽车技术-第2版-第2章-电动汽车的基本结构和工作原理可修改全文

新能源汽车技术-第2版-第2章-电动汽车的基本结构和工作原理可修改全文
9
2.1. 2 纯电动汽车的结构
除了车身、 底盘等传统内燃机汽车上具备的组成部分, 纯电动汽车还包括由电驱动系统、 蓄电池系统及电控系统组成的 “ 三 大电” 系统和由电制动、 电转向、 电空调组成的 “ 三小电” 系统。 其中, 由驱动电机和控制系统组成的电驱动系统是 纯电动汽车的动力核心, 也是区别于 传统内燃机汽车的最大不同点, 如图 2-3 所示。 (1) ) 电源 蓄电源为电动汽车的驱动电机提供电能。 目前纯电动汽车使用的动力蓄 电池包括磷酸铁锂蓄电池、 锰酸锂蓄电 池、 三元锂离子蓄电池等。 (2) ) 驱动电机 驱动电机的作用是将电源的电能转化为机械能, 通过传动装置或者 直接驱动车轮和工作装置。 (3) ) 电控系统 电动汽车的各个组成部分都需要由控制单元进行管理和控制, 包括 了整车控制器、 蓄电池管理系统及电机控 制器等, 相互之间通过 CAN 总线或其他方式进行 通信,实现整车的驱动行驶。
13
2. 按照动力混合程度分类 混合动力电动汽车按照传统内燃机和电动机动力的混合程度不同, 可分为微度混合型 ( 电动机峰值功率和发动机的额定功 率比不大于 5%)、 轻度混合型 ( 电动机峰值功率和发动机 的额定功率比为 5% ~ 15%)、 中度混合型 ( 电动机峰值功 率和发动机的额定功率比为 15% ~ 40%) 和深度混合型 ( 电动机峰值功率和发动机的额定功率比大于 40%)。 (1)微度混合动力电动汽车 微度混合动力电动汽车也称为起—停混合动力电动汽 车。在微度混合动力电动汽车中, 电动机 仅作为内燃机的起动机或发电机使用, 不为汽车行驶 提供持续动力, 通常是在传统内燃机的起动机上加装传动带驱动起 动机。 如图 2-10 所示, 该 电机为发电/ 起动一体化电动机, 用来控制发动机的起动和停止, 从而取消发动机的怠 速, 降 低了油耗和排放。 一般微度混合技术可以节省油耗 4. 5%。

简述纯电动汽车的结构组成及工作原理

简述纯电动汽车的结构组成及工作原理

纯电动汽车是一种以电动机为动力源的汽车,它不同于传统汽车所使用的内燃机。

其结构组成及工作原理是现代汽车科技领域一个备受瞩目的话题。

在本文中,我们将从深度和广度的角度全面评估纯电动汽车的结构组成及工作原理,以便读者能更加全面、深刻地了解这一主题。

一、电池系统1. 锂电池组成:锂电池是纯电动汽车的动力源,它由正极、负极、隔膜和电解液组成。

正极一般是由氧化物制成,负极是由石墨制成,隔膜是防止正负极直接接触的薄膜,电解液则是锂离子的传导介质。

2. 充放电原理:电池的充放电原理是纯电动汽车实现能量转换的基础。

在充电时,电池会吸收外部电能将电子转移到正极,使正极富集锂离子;在放电时,电池会释放储存的电能,电子从负极流向正极,使正极的锂离子逐渐流失。

二、电动机系统1. 电动机类型:纯电动汽车的电动机多采用交流异步电动机或永磁同步电动机,其中永磁同步电动机因其高效、可靠性强等特点而被广泛应用。

2. 工作原理:电动机通过电池提供的直流电能,将电能转化为机械能驱动汽车前进。

在工作时,电动机会根据车辆行驶需求,通过控制电流大小和方向来调节转矩和转速,从而实现汽车的加速、减速和行驶控制。

三、能量管理系统1. 控制单元:纯电动汽车的能量管理系统包含控制单元,它负责监控和控制电池、电动机和其它配套设备的工作状态,以保证整车的安全、高效运行。

2. 能量回收:在行驶中,纯电动汽车通过电动机的反向工作,将制动能量转化为电能储存在电池中,实现了能量的回收和再利用。

结语通过上述对纯电动汽车的结构组成及工作原理的全面评估,我们可以更加深入地了解纯电动汽车的核心技术和原理。

纯电动汽车以其环保、经济等优势逐渐成为汽车行业的发展趋势,而对其结构和工作原理的深入理解则对我们更好地把握汽车科技发展方向具有重要意义。

个人观点作为一名汽车科技爱好者,我深信纯电动汽车必将成为未来汽车发展的主流,而对其结构组成及工作原理的深入理解将帮助我们更好地应对环保和能源危机的挑战。

纯电动汽车的基本结构和原理

纯电动汽车的基本结构和原理

纯电动汽车的基本结构和原理纯电动汽车是指完全依靠电力驱动的汽车,它不像混合动力汽车那样同时搭载内燃发动机和电动机,而是完全依靠电池储存的电能来驱动。

纯电动汽车的基本结构和原理是现代汽车工程领域的研究热点之一,它的发展对于减少环境污染、提高能源利用效率具有重要意义。

本文将从纯电动汽车的基本结构和原理两个方面进行介绍。

首先,纯电动汽车的基本结构。

纯电动汽车的基本结构包括电池组、电动机、电控系统、充电系统和动力电池管理系统等几个主要部分。

其中,电池组是纯电动汽车的能量来源,它通常由锂离子电池组成,能够储存大量电能。

电动机是纯电动汽车的动力来源,它将电能转化为机械能,驱动汽车前进。

电控系统则是控制电动机和电池组的工作状态,确保汽车能够稳定、高效地运行。

充电系统用于给电池组充电,将外部电能转化为电池内部的电能。

动力电池管理系统则是对电池组进行监控和管理,确保电池组的安全和稳定性。

其次,纯电动汽车的原理。

纯电动汽车的原理主要是基于电池组和电动机的工作原理。

当纯电动汽车行驶时,电池组会释放储存的电能,通过电控系统将电能传输给电动机。

电动机接收到电能后,会将电能转化为机械能,推动汽车前进。

当电池组的电能消耗完毕时,需要通过充电系统对电池组进行充电,以恢复储存的电能。

动力电池管理系统则负责监控电池组的工作状态,确保电池组的安全和稳定性。

总之,纯电动汽车的基本结构和原理是通过电池组储存电能,通过电动机将电能转化为机械能,从而驱动汽车前进。

纯电动汽车的发展对于环境保护和能源利用具有重要意义,相信随着科技的不断进步,纯电动汽车将会在未来得到更广泛的应用和推广。

简述纯电动汽车的组成结构

简述纯电动汽车的组成结构

简述纯电动汽车的组成结构
纯电动汽车的组成结构主要包括以下几个方面:
1. 电池系统:纯电动汽车的核心就是电池系统,它提供电能给电动机驱动车辆运行。

电池系统主要由电池组、电池管理系统和电池冷却系统组成。

2. 电动机系统:电动机是纯电动汽车的动力源,它将电能转化为机械能驱动车辆。

电动机系统主要包括电动机、变速器和驱动轮等部分。

3. 控制系统:控制系统是纯电动汽车的智能核心,它负责监测和控制电池、电动机等系统的运行。

控制系统可以实现电池的充放电管理、电动机的控制和整车的动力分配等功能。

4. 辅助系统:纯电动汽车还需要一些辅助系统来保证正常运行,如制动系统、悬挂系统、转向系统、空调系统等。

此外,纯电动汽车还包括一些其他的部件,如充电系统、能量回收系统、车身结构等。

充电系统用于给电池充电,能量回收系统可以将制动能量转化为电能储存到电池中,车身结构则是为了保证车辆的安全性和舒适性。

总的来说,纯电动汽车的组成结构相对于传统燃油汽车来说更加简单,同时也更加环保和高效。

纯电动汽车的组成与结构原理

纯电动汽车的组成与结构原理

纯电动汽车的组成与结构原理
五 纯电动汽车的特点
(1)无污染,噪声低 (2)能源效率高、多样化 (3)结构简单,使用维修方便 (4)动力电源使用成本高,续驶里程短
纯电动汽车的组成与结构原理
六 纯电动汽车的重要指标
1.比功率 2.比能量
纯电动汽车的组成与结构原理
1.比功率
比功率(kW/kg)是衡量汽车动力性能的一个综合指标, 具体是指汽车发动机最大功率与汽车总质量之比。一般来讲, 对同类型汽车而言,比功率越大,汽车的动力性越好。
纯电动汽车的组成与结动汽 1
车的 驱动 力
纯电
动汽
2
车的
电动
机转
矩特

纯电动汽车的组成与结构原理
1.纯电动汽车的驱动力
M 使驱动轮与地面间产生 Ft Ft
Ft即为驱动力。所以有
纯电动汽车的组成与结构原理
2. 纯电动汽车的电动机转矩特性
汽车在各种行驶工况下行驶时所需要的转矩和功率是行 驶速度的函数,取决于不同车速行驶时所遇到的行驶阻力。
纯电动汽车的组成与结构原理
2.比能量
比能量指的是单位质量或单位体积的能量。比能量的单位 为W·h/kg或W·h/L。这两种蓄电池的体积是相同的,但是锂二氧化锰蓄电池的比能量是镍镉蓄电池的3.75倍。
新能源汽车技术
谢谢观看!
P M保持不变,则
纯电动汽车的组成与结构原理
四 纯电动汽车驱动系统布置形式
电动汽车的驱动系统是电动汽车的核心部分,其性能 决定着电动汽车运行性能的好坏。电动汽车的驱动系统布 置形式取决于电动机驱动系统的方式。纯电动汽车驱动系 统的布置方案如图3-8所示。
纯电动汽车的组成与结构原理
四 纯电动汽车驱动系统布置形式

纯电动汽车的基本结构和原理

纯电动汽车的基本结构和原理

纯电动汽车的基本结构和原理
纯电动汽车是目前发展趋势的主流之一,它的结构和工作原理十分相似。

纯电动汽车的基本结构包括电动机、电瓶、变速箱、车桥和控制器。

通常,电动机工
作期间,从蓄电池供电。

控制器以及其他部件协同合作,实现tempmaster感知变速和控制。

一般情况下,电动机通过车桥驱动车轮轮胎转动,从而实现汽车行驶。

作为纯电动汽车的核心,电动机是结合了动力电子学、磁电学、固体物理和电磁学等
领域的高新技术产物,它的工作原理类似于汽车的内燃机,但是更为便携式、灵活性更佳。

电动机可以利用直流和交流电源控制转速,助力汽车行驶、加速和转弯等。

电瓶的职责是为电动机提供足够的伺服电能,电瓶中存储的电能通常是大容量的,可
以维持汽车行驶一定距离,通常将电瓶安装在车身底盘或者车辆底部,便于维护和更换。

纯电动汽车桥是连接电动机和车轮的装置,它起到改变和平衡车轮的作用,将电动机
的输出的转矩传输到车轮上,使汽车正常行驶。

控制器是连接电动机与电瓶的设备,它可以通过检测油门踏板控制电动机转速,控制
车辆前后、左右方向,从而使汽车运行更加平稳;此外,它还可以检测电瓶电量,并对电
瓶进行充电和耗电;此外,它还可以检测车辆速度,并采取一定的措施限制最大速度,确
保车辆安全行驶。

纯电动汽车作为新兴的汽车车型,通过焕然一新的结构和机制,实现了驱动和控制,
可大大提高汽车性能,提升行车安全和便捷,也是未来发展趋势之一。

简述纯电动汽车的结构组成

简述纯电动汽车的结构组成

简述纯电动汽车的结构组成纯电动汽车电动汽车的组成包括:电力驱动及控制系统、驱动力传动等机械系统、完成既定任务的工作装置等。

电力驱动及控制系统是电动汽车的核心,也是区别于内燃机汽车的最大不同点。

电力驱动及控制系统由驱动电动机、电源和电动机的调速控制装置等组成。

电动汽车的其他装置基本与内燃机汽车相同。

电动汽车的驱动电动机提供电能,电动机将电源的电能转化为机械能。

应用最广泛的电源是铅酸蓄电池,但随着电动汽车技术的发展,铅酸蓄电池由于能量低,充电速度慢,寿命短,逐渐被其他蓄电池所取代。

正在发展的电源主要有钠硫电池、镍镉电池、锂电池、燃料电池等,这些新型电源的应用,为电动汽车的发展开辟了广阔的前景。

驱动电动机驱动电动机的作用是将电源的电能转化为机械能,通过传动装置或直接驱动车轮的工作装置。

但直流电动机由于存在换向火花,功率小、效率低,维护保养工作量大;随着电机控制技术的发展,势必逐渐被直流无刷电动机(BLDCM)、开关磁阻电动机(SRM)和交流异步电动机所取代,如无外壳盘式轴向磁场直流串励电动机。

纯电动汽车车电动机调速控制装置是为电动汽车的变速和方向变换等设置的,其作用是控制电动机的电压或电流,完成电动机的驱动转矩和旋转方向的控制。

早期的电动汽车上,直流电动机的调速采用串接电阻或改变电动机磁场线圈的匝数来实现。

因其调速是有级的,且会产生附加的能量消耗或使用电动机的结构复杂,现已很少采用。

应用较广泛的是晶闸管斩波调速,通过均匀地改变电动机的端电压,控制电动机的电流,来实现电动机的无级调速。

在电子电力技术的不断发展中,它也逐渐被其他电力晶体管(入GTO、MOSFET、BTR及IGBT等)斩波调速装置所取代。

从技术的发展来看,伴随着新型驱动电机的应用,电动汽车的调速控制转变为直流逆变技术的应用,将成为必然的趋势。

在驱动电动机的旋向变换控制中,直流电动机依靠接触器改变电枢或磁场的电流方向,实现电动机的旋向变换,这使得电路复杂、可靠性降低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电机与AMT控制系统
传统手动箱动力传动系统 效率匹配曲线
AMT动力传动系统效率匹 配曲线
电机与AT传动
AT传动系统指液力变 矩器加行星齿轮变速 器自动变速系统。
工作原理:通过自动操
纵系统控制与行星齿轮传 动各构件相连接的离合器 和制动器来实现AT的档位 切换。
组成:变矩器、机械式变
速器和电子液压控制系统
制动鼓 电机绕组
PM PM 电机绕组
制动鼓
轮胎 轮辐
车轮 轴承 行星齿轮
编码器 轴承 车轮
轮辐 轮胎
轮毂电机驱动
低速外转子电机:可
轮胎
轮辐
以完全去掉变速装置,
PM
外转子就安装在车轮 制动鼓
电机绕组
车轮
轮缘上,而且电机转
编码器
轴承
速和车轮转速相等,
因而就不需要减速装 轴承
置。但它是以低速电 制动鼓
车轮 电机绕组
机的体积、重量和成
PM
本为代价的。
轮辐 轮胎
四轮轮毂电机驱动
清华研制的四轮独立驱动微型电动轿 车
纯电动汽车的传动装置
电动机的力矩变化范围不能满足电动汽车行 驶性能的要求,因此,在电动机和驱动轮之 间需要安装一个机械减速箱或变速箱。
另一方面,可以使电动机经常保持在高效率 的工作范围内工作,减轻电动机和动力电池 组的负荷。采用一个两档变速箱,即可满足 电动汽车行驶阻力变化范围的要求,同时可 以减轻电动机和动力电池组的负荷,提高工 作效率,而传动装置的结构也不复杂 。
能量管理系统和车辆控制
能量管理单 元
能源
器一起控制再生制动及其能 量的回收,能量管理系统和
能量的燃料 供给单元
电机
辅助电源 温度控制单

车轮 机械传动装置
车轮
功率控制 单元
方向盘
充电器一同控制充电并监测 电源的使用情况
能源子系统
辅助子系统
辅助动力供给系统供给电
动汽车辅助系统不同等级的 电压并提供必要的动力
电动汽车本身除具有再生制动性能外,与内燃机的制动 性能也是相同的。对于电动汽车不存在燃油经济性。电 动汽车的能量供给和消耗,与蓄电池的性能密切相关, 直接影响电动汽车的动力性和续驶里程,同时影响电动 汽车行驶的成本效益,这是研究电动汽车经济性的课题。
牵引电动机的特性
Tp
T
9549 9549
纯电动汽车也具有以下缺点:
(1)低的电池能量密度。 (2)过重的电池组。 (3)有限的续驶里程与汽车动力性能。 (4)电池组昂贵的价格及有限的循环 寿命。 (5)汽车附件的使用受到限制。
二、纯电动汽车基本结构
电动汽车系统可分为三个子系统:
电动机驱动子系统
由车辆控制器、电力电子变换器、电机、机械传动 装置和驱动车轮组成
当用蓄电池与电容器进行混合 时,所选的蓄电池必须能提供 高比能量,因为电容器本身比 蓄电池具有更高的比功率和更 高效回收制动能量的能力
B
P FW P
三、纯电动汽车的性能
电动汽车和传统内燃机汽车的性能既有相同之处又有区别
这两种汽车的转向装置、悬架装置及制动系统基本上也 是相同的。
它们之间的主要差别是采用了不同的动力源。内燃机汽 车是燃油混合气体在内燃机中燃烧作功,从而推动汽车 前进。电动汽车是由蓄电池提供电能,经过驱动系统和 电动机,驱动电动汽车行驶。因此,电动汽车的操纵稳 定性、平顺性及通过性与内燃机汽车完全相同。
燃料电池能提供高的比能量但 不能回收再生制动能量,因此 最好与高比功率且能高效回收 制动能量的蓄电池结合在一起 使用
FC P
B
电动汽车的能源结构形式
B:蓄电池;C: 电容器 FW: 超高速飞轮 P: 功率转换器
B
P CP
超高速飞轮是具有高比功率和高效制 动能量回收能力的储能器。超高速飞 轮与具有两种工作模式(电动机和发 电机)的电机转子相结合,能够将电 能和机械能进行双向转换。所选用的 蓄电池应能提供高比能量。飞轮最好 与无刷交流电机结合使用,在蓄电池 和飞轮之间加一个AC/DC转换器。
电机与AMT控制系统
驾 加速信号
驶 制动信号 整车控
员 ……
制器
电机
电机控 制器
AMT 车轮
AMT控 制器
CAN Bus 250K
电机——AMT控制系统组成
电机与AMT控制系统
换挡过程中电机工作模式及控制策略 换挡过程 电机工作模式 控制策略
换挡前 转矩模式
根据踏板信号输出目标力矩
摘空挡 自由模式
效率高、没有尾气污染、噪声很低、行驶平稳、乘 坐舒适、安全性好及驾驶简单轻便、可使用多种能源、 机械结构多样化等。
2)电动汽车的特点
纯电动汽车和燃油汽车相比的优点
(1)不消耗石油资源,纯电动汽车在运行中不排 放废气,噪声也比内燃机汽车低。 (2)纯电动车具有比内燃机汽车高得多的能量转 换效率。 (3)纯电动汽车运行中消耗的电能可由多种能源 转化。 (4)纯电动汽车可以充分利用夜间电网低谷为电 池充电,避免了电能的浪费。 (5)纯电动汽车能够实现更好的控制性能,包括 运动控制、舒适性、故障诊断等,同时可以更容 易地实现智能化交通管理。
能源子系统
由能源、能量管理单元和能量的燃料供给单元构成
辅助子系统
由功率控制单元、车内气候控制单元和辅助电源组 成
纯电动汽车的结构
车辆控制器发出相应的控 制动
电动机驱动子系统
制指令来控制电力电子变换 踏板
器的功率装置的通断
车辆控制器
电力电子 变换器
加速踏板
功率转换器的功能是调节
电机和电源之间的功率流
Pp
Nn Pp
n
n Nn n Nn
牵引电动机的特性
效率 功率/kW 转矩/Nm
100
150
800
700
120
90
600
500 90
80 400
60
300
70
200 30
100 60
转矩 功率 效率
0
0
0
1000
2000
3000
4000
5000
6000
转速/r/min
牵引电动机的效率特性
电动汽车的驱动力
M GB D
b)无离合器需求的单档传动装置
借助于电动机在大范围转速变化中所具有的恒功率特性,可用固定档 的齿轮传动装置替代多档变速箱,并缩减了对离合器的需要。减小机 械传动装置的尺寸和重量,且不需要换挡,简化驱动系的控制。
纯电动汽车的结构形式
M FG D
c)固定档的传动装置和差速器的集成
纯电动汽车的结构形式
CVT 机械式无级变速器: 采用传动带和工作直径 可变的主从动轮相配合 来传递动力,可以实现 传动比的连续改变,从 而得到传动系与发动机 工况的最佳匹配。
主动带轮 固定锥盘
从动带轮 可动锥盘 从动带轮油缸
主动带轮 可动锥盘
主动带轮油缸
从动带轮 固定锥盘
电机与CVT传动
优点: 1.结构简单,体积小,零件少; 2. 它的工作速比范围宽,容易形成理 想的匹配; 3. 具有较高的传送效率,功率损失少, 经济性高。 缺点: 传动带容易损坏,无法承受较大的载 荷等。 应用在小排量、低功率的汽车上。
BP
两种不同的蓄电池,其中一 种能提供高比能量,另外一 种提供高比功率
所选用的蓄电池应该能 提供足够高的比能量和 比功率
B
P B
电动汽车的能源结构形式
B:蓄电池; FC: 燃料电池 P: 功率转换器 R: 重整器
R FC P
B
带小型重整器的电动汽车的结构 简图,燃料电池所需的氢气由重 整器随车产生
电机与AMT传动
传统车AMT系统组成 自动离合器 齿轮式机械变速器 电子控制系统
电机与AMT传动
控制单元输入:
驾驶员意图——加速踏板, 制动踏板,档位的选择;
汽车的工作状态——发动机 转速、节气门开度、车速等。
控制单元根据换挡规律、 离合器控制规律、发动机 节气门自适应调节规律产 生的输出,对节气门开度、 离合器、换挡操作三者进 行综合控制,有效配合。
FG M
M FG
e)配置两个独立电动机和固 定档传动装置的直接驱动
纯电动汽车的结构形式
M
M
f)两个分离的轮式驱动形式
轮毂电机驱动
如果将驱动电机直接安装在车轮上, 可以缩短甚至可以去掉电机与车轮 之间的机械传递装置
高速内转子电机 低速外转子电机
轮毂电机驱动
高速内转子电机: 必须装固定速比 的减速器来降低 车速。
电机与DSG传动
DSG的换挡速度要比AT或AMT还快。既有像 手动档一样的直接输出,又省去了手动档进 退档动作所需的时间,动力响应极快,机械 转换效率高。
优点:动力传输连贯,效率较高
缺点:结构复杂,制造成本较高
电机与DSG传动
大众汽车六档DSG视频文件
变速箱特性比较
电动汽车的能源结构形式
B:蓄电池; P: 功率转换器
FG M
M FG
d)两个独立的电动机和带有驱动轴的固定档传动装置 差速器被两个牵引电动机所替代。双侧独立驱动,转向 则通过控制两个电机以不同的转速运转来实现。
纯电动汽车的结构形式
电机安装在车轮内— —轮式驱动。一个薄 型的行星齿轮组可用 以降低电机转速,增 大转矩。
该薄型行星齿轮组具 有高减速比,以及输 入输出轴纵向配置的 优点。
奥运纯电动客车构型
纯电动汽车的结构形式
C
M
M
GB D
M GB D
FG D
FG
M
FG
M
M
M
FG
相关文档
最新文档