电子自旋共振——近五年的研究与发展

合集下载

电子自旋共振

电子自旋共振

电子自旋共振电子自旋共振(ESR)是一种可以在原子结构中检测到的现象,它是由电子在原子内部动量轴上可观察到的快速旋转移动而产生的。

电子自旋共振以分子自旋共振(MRS)和核磁共振(NMR)形式存在。

这种共振是由电子能级变化所推动的。

电子自旋共振最常用于衡量原子或分子中电子结构变化的能量,并可以提供作为研究实验和模拟的基础。

电子自旋共振的原理电子自旋共振的原理是指电子的自旋磁矩的共振作用与电场的作用之间的相互作用。

当电子磁矩接近某些特定频率(通常与电场频率相关)时,电子受到电场的加速,使其达到自旋共振状态。

电子自旋共振可以被用来测量原子或分子中电子能级变化的能量,通常用于衡量电子磁矩迁移的时间和量。

电子自旋共振的应用电子自旋共振的应用广泛,它可以用于衡量原子或分子中电子能级变化的能量,从而帮助科学家和实验室技术人员更精确地观察和模拟细节。

例如,它可以用于研究介质中有机结构的改变,进而帮助开发新药或材料;它也可以用于研究物质拓扑结构,从而更深入地了解材料性能或拓扑保护;它还可以用于研究各种环境条件下的电子自旋能级变化,从而帮助研究生物的结构。

总之,电子自旋共振可以帮助科学家们更深入地理解原子和分子结构,发现新的、更有效的材料和药物,从而改善人类社会的福祉。

电子自旋共振的将来发展由于电子自旋共振可以用于检测有机物及其他分子的结构,它已经成为科学家研究分子结构和功能的重要手段,而随着纳米科学和技术的发展,电子自旋共振也有可能成为研究纳米材料的重要手段,从而改变人类的生活。

例如,已经有研究通过电子自旋共振来研究肿瘤细胞的结构,以及如何细胞分裂;有研究可以用电子自旋共振来检测抗生素和其他药物在分子水平上的活性;有研究更可以用电子自旋共振来检测纳米粒子的结构和活性,从而发现更具有传感性的纳米材料。

因此,电子自旋共振可以用于研究几乎所有有机或非有机物质的电子结构,以及电子与电场之间的相互作用。

随着科学技术的不断发展,电子自旋共振也将拥有更多的应用,为人类提供更多的帮助,以改善人们的生活。

电子自旋共振(ESR)

电子自旋共振(ESR)

Aliyoshi
直到 1975 年,Ikeya (中文译为:池谷元伺)
在Nature上发表了对日
本 Aliyoshi 洞(秋芳 洞)次生碳酸盐进行的 ESR 测年结果,这是 ESR 测年的首次应用成 功范例,也是首次被用 于地球科学。
随后,这种方法才逐步地应用于地质学、地貌学以及考 古学等各个领域中不同材料的年代测定。在80年代取得 了迅速的发展。
ESE测年基本原理 ——以石英为例
为什么ESR能适用于前面提到的各种材料?
四种不同的“零化”过程:
ESE测年基本原理 ——以石英为例
(1)附加剂量法
采用60Co γ 放射源,对处理好 的样品进行不同附加剂量的辐照 (不用晒退)。用 ESR 谱仪测 量未辐照和辐照后的样品,然后 以辐照剂量为横坐标,以 ESR 信号强度为纵坐标作图,获得剂 量响应曲线。
空穴的形成:类质同象体中离子的置换或晶体生长、相变 和形变过程中由于外界压力、温度及介质成分等外界因素 的影响形成的氧空穴( 空位) 等点缺陷或位错缺陷。
杂质的出现:石英中主要是由于Al3+或Li+、Na+、K+等代 替Si4+进入晶格引起的。。因为Si4+ 的离子半径不大 ( 0. 042 nm) 并且离子化合价较高, 目前为止只发现了Al3+ ( 0. 051 nm) 、Ga3+ ( 0. 062 nm) 、Fe3+ ( 0. 064 nm ) 、Ge4+ ( 0. 053 nm ) 、Ti4+( 0. 064 nm) 和P5+ ( 0. 035 nm) 等离子与 Si4+ 离子发生类质同象替换。其中有些是异价类质同象, 为了保持晶格中电价平衡, 其它的离子如H+ , Li+ , Na+ , K+ , Cu+ 和Ag + 同时进入到石英晶格间成为间隙离子

自旋电子学研究进展磁学会议

自旋电子学研究进展磁学会议
MR=7 %
反铁磁层
钉扎铁磁层
自由铁磁层
S i
FeNi 15 nm
FeNi 15 nm
Cu 2.6 nm
FeMn 15 nm
Ag 2 nm
MR=2.2 %
增加纳米氧化层的自旋阀
Koui.et al和Huai et al 8th.Joint MMM-Intermag Conference2001
Courtesy of NVE
Compassing
Global Position Systems
Vehicle Detection
Navigation
Rotational Displacement
Position Sensing
Current Sensing
Communication Products 通信产品
用第一性原理计算隧道电导和磁电导
小原子是镁,大原子是铁,大原子上的黑球是氧。Fe[100]平行MgO(100)面上的[110]方向。
多数电子和少数电子在费米面 附近态密度完全不同。
结构模型
Mg
1
o
Fe
[010]
[100]
[110]
2
[100]
Fe
MgO
多数电子和少数电子在费米面 附近态密度大体相同。
纳米氧化层
NOL(Nanooxide layer)
∆R/R=15% ( >10% )
-2
0
2
4
6
8
10
12
14
16
-600
-400
-200
0
200
400
600
H ( Oe )
MR ( % )

实验7-2电子自旋共振

实验7-2电子自旋共振

实验7-2 电子自旋共振泡利(Pauli )1924年提出核磁矩和核自旋的概念,解释了光谱的超精细结构。

1925年,乌仑贝克(Uhlenbeck )和哥德斯密特(Goudsmit )提出了电子自旋的概念,解释了光谱的精细结构。

在这些理论的基础上,从1954年开始,逐步形成了一种新的测量技术,即电子自旋共振(Electron Spin Resonance ,ESP )。

电子自旋共振有时也称电子顺磁共振(Electron Paramagnetic Resonance ,EPR )电子自旋共振研究的对象是具有未偶电子的物质。

通过对共振谱线的研究,可以得到未偶电子的状态及其周围环境方面的信息,从而得到有关物质结构和化学性质的知识,因此,电子自旋共振技术在物理、化学、生物、医药等各个领域获得了广泛的应用。

与核磁共振相比,电子自旋共振在技术上更容易实现,目前,在微波段、射频段都有比较成熟的仪器。

电子自旋共振的实现,在很多方面与核磁共振相似,因此,在本实验的介绍中将不再涉及较基础的细节问题,而相关的内容请参阅核磁共振实验。

【实验目的】1、了解电子自旋共振理论。

2、掌握电子自旋共振的实验方法。

3、测定DPPH 自由基中电子的g 因子和共振线宽。

【实验原理】原子中的电子在沿轨道运动的同时具有自旋,其自旋角动量为 () 1+=S S p S (7-2-1)其中S 是电子自旋量子数,2/1=S 。

电子的自旋角动量S p 与自旋磁矩S μ间的关系为 ()⎪⎩⎪⎨⎧+=-=12S S g p m e g B SS e S μμμ (7-2-2) 其中:e m 为电子质量;eB m e 2 =μ,称为玻尔磁子;g 为电子的朗德因子,具体表示为 )1(2)1()1()1(1++++-++=J J S S L L J J g (7-2-3) J 和L 为原子的总角动量量子数和轨道角动量量子数,S L J ±=。

对于单电子原子,原子的角动量和磁矩由单个电子决定;对于多电子原子,原子的角动量和磁矩由价电子决定。

物理学中的电子自旋共振技术

物理学中的电子自旋共振技术

物理学中的电子自旋共振技术电子自旋共振技术是一种重要的物理分析技术,广泛应用于材料科学、生命科学、临床医学等领域。

它主要利用样品中的电子自旋与外加磁场作用,探测样品的物理性质或者化学结构。

下面我们将详细介绍电子自旋共振技术的原理、应用和发展趋势。

一、电子自旋共振技术的原理电子自旋共振技术原理是基于电子的本征角动量——自旋而设计的。

自旋是电子的重要量子数,描述了其围绕自身轴线的旋转运动。

在一个外加磁场的作用下,由于安排引起电子自旋围绕磁场方向旋转,此时能量差可以通过微波激发来触发电子从低能级跃迁到高能级,这就是典型的电子自旋共振过程。

根据电子自旋共振技术的原理,我们可以利用磁场和合适的微波激发电子自旋,通过探测不同的信号响应来分析物质的物理化学性质。

例如,通过改变外加磁场的大小、方向或调整微波激发的频率和强度,可以获取样品的各种电子自旋共振信号等。

二、电子自旋共振技术的应用电子自旋共振技术是一种非常重要的物理分析技术,它可以用于材料科学、生命科学、临床医学等领域。

以下是该技术在各个领域的应用举例:1.材料科学电子自旋共振技术可以用于材料科学中的薄膜制备及磁性材料的研究。

如在薄膜制备过程中可以通过电子自旋共振技术来检测薄膜结构的磁性行为。

而在磁性材料方面,电子自旋共振技术可以被用于测量磁性材料中的自旋动力学参数等。

2.生命科学电子自旋共振技术还可以运用在生物体系中,如用于蛋白质的研究。

因为电子自旋可以通过脊髓体系转移而得到活性的吸波信号,这种信号也被称为电子自旋共振信号。

利用电子自旋共振信号,研究人员可以探测和分析蛋白质的化学结构、构象和活性化学行为等。

3.临床医学在临床医学中同样可以应用电子自旋共振技术,这种技术可以利用自旋共振信号来检测生物样品的变化。

例如,该技术可以应用于检测人体组织或细胞中的氧、纯度、淀粉蛋白和糖等物质,还可以通过电子自旋共振技术检测肿瘤等疾病的组织变化。

三、电子自旋共振技术的发展趋势电子自旋共振技术在各个领域都有广泛应用,但是它仍然面临着很多挑战。

电子自旋的研究报告

电子自旋的研究报告

电子自旋的研究报告摘要:本研究报告旨在探讨电子自旋的基本概念、研究方法以及其在物理学和材料科学领域的应用。

通过对电子自旋的理论模型和实验观测的综合分析,我们得出了一些重要结论,并对未来的研究方向提出了建议。

1. 引言电子自旋是描述电子独特属性的一个重要概念,它与电子的轨道运动相对独立。

自旋可以理解为电子围绕自身轴心旋转的运动,它具有两个可能的取向:上自旋和下自旋。

电子自旋的研究对于理解原子、分子和固体材料的性质具有重要意义。

2. 电子自旋的理论模型电子自旋最早由Pauli在1925年引入,他提出了著名的Pauli不相容原理,即同一量子态下的电子自旋不能完全相同。

根据量子力学的描述,电子自旋可以用自旋角动量算符来表示,其取值为±1/2。

电子自旋的量子态由自旋向上和自旋向下的线性组合构成。

3. 电子自旋的实验观测电子自旋的实验观测主要通过磁共振技术实现。

核磁共振(NMR)和电子顺磁共振(EPR)是常用的实验方法,它们通过测量样品在外加磁场下的共振吸收信号来确定电子自旋的性质和行为。

此外,基于自旋电子学的研究也为电子自旋的观测提供了新的途径。

4. 电子自旋的应用电子自旋在物理学和材料科学领域有着广泛的应用。

在量子计算中,电子自旋被用作量子比特的信息载体,其离散的取值使得量子计算具备了高度的稳定性和可控性。

此外,电子自旋还被应用于磁性材料的研究,如磁存储材料和磁传感器。

5. 电子自旋的未来研究方向尽管电子自旋的研究已取得了重要进展,但仍存在许多待解决的问题和挑战。

未来的研究可以从以下几个方面展开:深入理解电子自旋与其他自由度(如轨道、自旋轨道耦合)的相互作用;开发新的实验技术和材料系统,以实现对电子自旋的更精确控制和测量;探索电子自旋在量子信息处理和量子材料中的更广泛应用等。

结论:电子自旋是一个重要的物理学概念,其研究对于理解物质的性质和开发新的应用具有重要意义。

通过深入理解电子自旋的理论模型和实验观测,我们可以进一步拓展其在量子计算和磁性材料等领域的应用。

电子自旋共振和核磁共振

电子自旋共振和核磁共振

电子自旋共振和核磁共振近年来,电子自旋共振(Electron Spin Resonance,ESR)和核磁共振(Nuclear Magnetic Resonance,NMR)技术在科学研究和医学诊断中得到了广泛的应用。

本文将介绍这两种技术的原理和应用,并探讨它们在科学研究和医学诊断领域中的重要性。

一、电子自旋共振(ESR)电子自旋共振是一种通过探测物质中未成对电子的自旋转变来研究物质性质的技术。

该技术基于自旋与外加磁场相互作用的原理,当未成对电子在外加磁场的作用下跃迁到激发态时,吸收或发射特定频率的电磁辐射。

通过测量这些共振频率,可以得到有关物质中未成对电子数量、自旋态和环境的信息。

ESR技术的应用非常广泛。

在化学领域,ESR技术可以用于研究自由基、亚稳态分子和配位化合物等的结构和性质。

在生物医学领域,ESR技术可以用于研究生物体内自由基的产生和反应机制,有助于深入理解许多疾病的发生和发展过程。

此外,ESR技术还被应用于材料科学、环境科学和地质学等多个领域。

二、核磁共振(NMR)核磁共振是一种通过探测物质中原子核的磁性来研究物质性质的技术。

该技术基于原子核自旋与外加磁场相互作用的原理,当原子核在外加磁场的作用下跃迁到激发态时,吸收或发射特定频率的电磁辐射。

通过测量这些共振频率,可以得到有关物质中原子核类型、数量和环境的信息。

NMR技术在科学研究和医学诊断中具有重要的地位。

在化学领域,NMR技术广泛应用于化合物结构的鉴定、反应速率的研究和动态过程的观测。

在医学领域,NMR技术被用于核医学成像和磁共振成像(Magnetic Resonance Imaging,MRI),其中MRI成像技术已被广泛应用于临床医学中,能够提供高分辨率的人体内部结构信息,对肿瘤、心血管疾病和神经系统疾病的诊断与治疗起到重要作用。

三、ESR和NMR的联系与区别ESR和NMR技术都是基于共振现象的物理测量技术,它们在原理上有一定的相似性。

电子自旋共振技术的应用研究

电子自旋共振技术的应用研究

电子自旋共振技术的应用研究电子自旋共振技术是一种用于研究材料中电子结构的高精度技术,近年来在材料科学领域中被广泛应用。

本文将介绍电子自旋共振技术的基本原理及其应用研究。

一、电子自旋共振基本原理在物理学领域中,自旋是用来描述电子自身旋转的物理量。

自旋可以用角动量量子数s来表示,常见的有s=1/2、s=1等。

当电子在一定的外场作用下,其自旋将会发生共振,这就是电子自旋共振现象。

电子自旋共振实验中,需要将样品置于磁场中,将电子自旋磁矩与外磁场耦合,利用微波的辐射将电子自旋从基态激发到激发态,测量样品在不同磁场强度下的共振信号,进而得到样品中电子自旋的信息。

这种技术可以用来研究材料的电子结构以及局域电子态等信息。

二、电子自旋共振的应用研究1. 材料物理学研究电子自旋共振技术在材料物理学研究中被广泛应用,可以用来研究材料中的自由基、缺陷、氧化物、磁性材料等。

例如,研究晶体管中的氧空位缺陷可以利用电子自旋共振技术来确定其位置、数量及类型;分析材料的电子结构和能带结构时,可以通过探究其电子自旋共振谱来获取局域电子态信息,进而研究材料内部的电子结构。

2. 生命科学研究电子自旋共振技术在生命科学研究中也有较为广泛的应用,可以用来研究生物分子的结构、作用原理等。

例如,利用电子自旋共振技术可以研究蛋白质的结构变化、疾病诱导的构象变化等;可以分析药物与受体结合时的分子级动态过程。

3. 环境科学研究电子自旋共振技术对于环境科学研究也有很大的应用,可以用来研究环境中的自由基、磁性物质等。

例如,可以通过电子自旋共振技术研究大气中自由基的分布、来源和化学反应过程;还可以用来研究土壤中磁性粒子的来源、大小和组成等。

4. 化学研究电子自旋共振技术在化学研究领域中的应用主要集中在分析化学和有机化学等。

例如,可以利用电子自旋共振技术来分析各式各样的化合物的性质、组成和有机金属反应机理等问题;可以研究分子之间的相互作用以及反应原理。

结语作为一种研究材料中电子结构的高精度技术,电子自旋共振技术在材料科学、生命科学、环境科学和化学等领域中都有广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子自旋共振
——近五年的研究和进展很早就听说过核磁共振,便怀着求知与好奇的心,选了刘老师的磁共振原理。

当然要真正的了解磁共振原理,要从各种相关的方面与相关的领域入手,才能体会到磁共振原理的真正含义以及将来的发展与应用。

所以,我先从探讨与磁共振原理相关的电子自旋共振,初步了解并浅谈电子自旋共振近五年的进展与研究。

首先我们先了解什么电子自旋共振以及现象。

电子自旋共振(E SR),过去常称为电子顺磁共振(EPR),是属于自旋1/2粒子的电子在静磁场下的磁共振现象,类似静磁场下自旋1/2原子核有核磁共振之现象,又因利用到电子的顺磁性,故称电子顺磁共振。

电子自旋共振成像(Electron Spin Resonance Imaging, ESRI)是基于ESR技术和CT扫描成像技术的一种影像化显示和测量样品中自由基或顺磁物种的分布及其变化过程的无损检测技术。

常规ESR只能测定自由基的的种类和浓度,但是不能测定自由基的空间分布。

ESRI技术在物理学、化学、半导体学、地质学、考古学、生物学和医学等许多科研领域有着巨大的应用前景,特别是在生物学和医学中的应用价值和潜力更十分引人注目。

研究活细胞和活体组织产生自由基及天然抗氧化剂在细胞和心脏或脑中与NO和氧自由基作用的空间分布和反应动力学,给出体内自由基分布图和各种疾病的关系,这对从整体概念研究自由基在细胞和活体组织损伤作用机理有重要理论意义。

大致了解完后电子自旋共振以及其成像特点,我们可能会想到核磁共振,那么我们探讨电子自旋共振和核磁共振有何相关的联系以及他们的异同点。

电子自旋共振虽然原理类似于核磁共振,但由于电子质量远轻于原子核,而有强度大许多的磁矩。

以氢核(质子)为例,电子磁矩强度是质子的659.59倍。

因此对于电子,磁共振所在的拉莫频率通常需要透过减弱主磁场强度来使之降低。

但即使如此,拉莫频率通常所在波段仍比核磁共振拉莫频率所在的射频范围还要高——微波,因而有穿透力以及对带有水分子的样品有加热可能的潜在问题,在进行人体造影时则需要改变策略。

举例而言,0.3 特斯拉的主磁场下,电子共振频率发上在8.41 吉赫,而对于常用的核磁共振核种——质子而言,在这样强度的磁场下,其共振频率为12.77 兆赫。

ESR成像原理。

常规ESR测量时,样品整体处于均匀磁场中.当满足ESR条件,即hν=gβH时,产生ESR共振吸收,测得的ESR 信号.在ESR成像时,在主磁场上迭加梯度磁场,因此样品整体处在非均匀磁场中,于是样品中不同空间位臵产生共振时的主磁场不同,即信号发生位移.采集的ESR信号经过数据处理、图像重建后,即可得到样品中自由基或自旋密度的空间位臵分布图,也就是三维顺磁共振系统。

对于电子自旋共振的研究,我们利用ESR的技术特点,在多个领域进行了应用和发展,其中包括固态物理,辨识与定量自由基分子(即带有不成对电子的分子)。

化学,用以侦测反应路径。

生物医学领域,用在标记生物性自旋探子等,我们取几个重点来探
究。

1、电子自旋共振谱技术
最早证明脂双层中脂的流动性实验是本世纪60年代Harden McConnell和O.Hayes Griffith用电子自旋共振技术获得的。

他们先标记非膜脂肪,然后让这种脂分别处于室温和零下65℃去检测共振谱,同时将标记的脂插入到细胞膜中再检测共振谱。

证明膜脂流动性的一种方法。

在该技术中将一个含有不配对的电子基团(通常是硝基氧基团)加到磷脂的脂肪酸尾端,这就是所谓的自旋标记(spin-label )。

当将这种脂暴露于外加磁场时,由于不配对电子基团的存在,它能够自旋产生顺磁场信号,这种共振能够被仪器检测获得共振谱。

如果被标记的脂位于脂双层,根据共振谱就可以判断膜脂的流动性。

2、电子自旋共振测年法
与其他测年法相比,其优点显而易见。

①测年范围广,从几千年到几百万年,几乎覆盖了整个第四纪地质年代;但主要用于几十万年的范围。

②测定对象广泛,洞穴的碳酸盐沉积物、软体动物贝壳、珊瑚、古脊椎动物和古人类骨骼、牙齿等都可认为测试样品。

③测试条件简单,测试信号受周围环境影响小,而且样品可反复使用。

④是一种非破坏性的分析方法,对样品不存在损伤。

ESR 测年目前缺乏深入系统的研究,而且主要用于地质方面,还有许多需要完善的地方。

它依赖于铀的加入模式,样品含铀量、
α辐照有效系数等一系列因素,尚需进一步研究。

特别是对于接近或早于100 万年的样品,样品埋藏期间ESR 信号的衰退可能会导致ESR 年龄偏低。

中国科学院动物研究所昆虫分类实验室陈铁梅等专家指出,对于老样品,在未做衰退校正前,早期铀加入ESR 模式年龄只能看成是真实年龄的上限。

ESR和古地磁结合,有时可得出较可靠的年龄值;ESR 与铀系测年可互补互检。

3、2-甲基1,4-萘醌激发三重态与核酸反应的电子自旋共振自旋消减法研究
应用电子自旋共振(Electron spin resonance,ESR)自旋消减法,研究了内源性光敏剂2-甲基-1,4萘醌(VK3)的激发三重态(^3VK3^*)与核酸及其组分的反应性顺序,得到。

VK3^*与四个核苷及四个单核苷酸的反应性顺序为Gua〉Ade〉Cyt〉Thy,dGMP〉dAMP〉dCMP〉TMP。

结果与早前采用激光光解瞬态吸收光谱研究^3VK3^*氧化DNA,测得的DNA及其组分阳离子自由基生成速率常数、核苷及核苷酸的氧化还原电位排序相一致。

对^3VK3^*与几种富含鸟嘌呤(G)的寡聚核苷酸:端粒DNA 重复序列、端粒酶RNA亚基模版及其L6-P6发夹序列反应的ESR 自旋消减法研究结果表明,其反应性大小与寡聚物中鸟嘌呤含量正相关,其中与端粒DNA的反应性最强。

4、电子自旋共振(ESR)法测定猪血浆蛋白水解物抗氧化活性
将猪血浆蛋白(4% 浓度,W/W)用碱性蛋白酶水解0.5~5h。

分别用FRAP 法和电子自旋共振(ESR)法测定水解物的还原能力和
自由基清除能力。

结果显示,水解物的还原能力随着水解度(DH)的增大而显著增强(p <0.05),并且水解物对DPPH 自由基、羟基自由基以及超氧自由基的清除能力随着水解时间的延长和蛋白浓度的增大而显著增强(p <0.05)。

尽管未水解的猪血浆蛋白也有一定的抗氧化活性,但远远低于水解物的抗氧化活性(p <0.05)。

此外,猪血浆蛋白碱性蛋白酶水解物的抗氧化活性和自由基清除能力与水解度(DH)和蛋白浓度密切相关。

由于猪血浆蛋白水解物具有一定的抗氧化活性和自由基清除能力,所以可以作为一种有效的抗氧化剂而应用于食品工业中。

5、电子自旋共振技术在评价啤酒新鲜度中的应用
利用电子自旋共振技术(ESR)测定强化实验时啤酒中产生的自由基,其拐点Lag time表达了啤酒的内源抗氧化活力EAP,从而预测啤酒的新鲜度。

在对市售啤酒的测定中,将该法测定结果与专家品评结果作相关性分析,相关系数达到0.48,显示有较好的相关性,该指标可用于评价啤酒的新鲜程度以及预测啤酒的货架保质期。

随着电子自旋振动这一技术的研究越来越深入,应用到的领域越来越广泛,这一技术的发展让我们震惊,让我们惊喜,让我们期待。

它是我们进行科学研究学习,生活应用,工业检测甚至历史研究都有重要的地位。

因此,我希望今后能用自己的专业涉及到电子自旋共振这一领域的研究,加快其的发展与应用,让这一技术更好地为我们服务。

电子自旋共振——近五年的研究和进展。

相关文档
最新文档