焦平面红外探测器应用现状

合集下载

红外焦平面探测器

红外焦平面探测器

红外焦平面探测器介绍红外焦平面探测器(Infrared Focal Plane Array Detector,以下简称IRFPA)是一种用于探测红外辐射的器件,可广泛应用于航天、军事和民用领域。

它能够实时、高效地探测并转换红外辐射能量为电信号,从而实现红外图像的获取和处理。

工作原理IRFPA的工作原理基于红外辐射与物体表面的相互作用。

当红外辐射照射在IRFPA上时,它会导致IRFPA内的感光元件产生电子-空穴对。

感光元件通常由半导体材料制成,如硒化铟(InSb)、硫化镉汞(CdHgTe)等。

这些电子-空穴对随后在感光元件中分离并转换为电信号。

IRFPA的关键组件是焦平面阵列(Focal Plane Array,以下简称FPA),它由大量排列成矩阵的感光元件组成。

每个感光元件都对应于焦平面上的一个像素,因而整个FPA可以同时探测多个红外像素。

这些像素的信号经过放大和处理后,可以生成红外图像。

型号和特性IRFPA的型号和特性各不相同,取决于其应用领域和需求。

以下是一些常见的IRFPA型号和相应的特性:1.分辨率:IRFPA的分辨率指的是其能够探测到的最小单位像素数量。

一般而言,分辨率越高,探测到的红外图像越清晰。

常见的分辨率有320x240、640x480等。

2.帧率:IRFPA的帧率是指其每秒能够获取和处理的红外图像数量。

较高的帧率可以捕捉到快速移动的物体,对于一些动态场景非常重要。

3.波段范围:不同的IRFPA可以探测不同波长范围的红外辐射,如近红外(NIR),短波红外(SWIR),中波红外(MWIR)和长波红外(LWIR)。

选择适当波段范围的IRFPA取决于具体的应用需求。

4.灵敏度:IRFPA的灵敏度是指其能够探测到的最小红外辐射强度。

较高的灵敏度意味着IRFPA可以探测到较微弱的红外辐射,对于一些低信噪比场景非常重要。

应用领域IRFPA在多个领域具有广泛的应用。

以下是一些常见的应用领域:1.热成像:IRFPA可以通过探测物体表面的红外辐射,用于热成像和温度分布检测。

红外探测技术的应用

红外探测技术的应用

红外探测技术的应用摘要:红外探测技术广泛应用于生活与科技的方方面面,不过红外技术的发展也经历了一个比较漫长的过程,从发现到应用,都是一点一丁的积累的。

在这个过程中,红外技术也慢慢改变,极大方便人们的生活。

关键词:红外探测技术;应用;发展趋势一、引言红外辐射是波长介于可见光与微波之间的电磁波辐射,人眼察觉不到。

要察觉这种辐射的存在并测量其强弱,必须把它转变成可以察觉和测量的其他物理量。

一般说来,红外辐射照射物体所引起的任何效应,只要效果可以测量而且足够灵敏,均可用来度量红外辐射的强弱。

现代红外探测器所利用的主要是红外热效应和光电效应。

这些效应的输出大都是电量,或者可用适当的方法转变成电量。

红外探测技术是利用目标辐射的红外线来搜索、探测和跟踪目标的一门高技术。

由于红外探测器环境适应性好、隐蔽性好、抗干扰能力强、能在一定程度上识别伪装目标,且具有设备体积小、重量轻、功耗低等特点,所以在军事,医疗,工程等领域都得到广泛的应用。

二、红外探测的发展历史发展过程:1800 年, 英国人赫婿尔用水银温度计发现红外辐射。

1821 年, 塞贝克发现温差电效应, 之后把热电偶、热电堆用于红外探测器。

1859 年, 基尔霍夫提出有关物体热辐射吸收与发射关系的定律。

1879~1884年, 斯特番•玻尔兹曼提出了有关绝对黑体总辐射能量与其绝对温度之间关系的定律。

1893 年, 维恩推出黑体分布的峰值与其温度之间关系的位移定律。

1900 年, 普朗克发表能量子模型和黑体辐射定律, 导出黑体光谱辐射出射度随温度和波长变化的关系式。

上述这些工作为红外技术的发展奠定了坚实的理论基础。

在1910~1920 年的10 年中, 出现了探测舰船、飞机、炮兵阵地和冰山等目标的红外装置, 发展了通信、保安、红外测温等设备。

二战期间, 出现了红外变像管、光子探测器等, 开创了夜视技术。

1952~1953 年, 美国研制出世界上最早的热像仪,1956 年长波热像仪问世, 随后, 1964 年美国TI 公司研制的热像仪成功地用在越南战场上。

焦平面APD探测器的国内外技术现状和发展趋势

焦平面APD探测器的国内外技术现状和发展趋势

红外焦平面探测器的国内外技术现状和发展趋势一、焦平面APD探测器的背景及特点焦平面APD探测器主要是由:APD阵列和读出电路(ROIC)两部分组成,其中APD是核心元件。

1、APD雪崩光电二极管(APD)是一种具有内部增益的半导体光电转换器件,具有量子响应度高、响应速度快、线性响应特性好等特点,在可见光波段和近红外波段的量子效率可达90%以上,增益在10~100倍,新型APD材料的最大增益可达200倍,有很好的微弱信号探测能力。

2、APD阵列的分类按照APD的工作的区间可将其分为:Geiger-modeAPD(反向偏压超过击穿电压)和线性模式APD(偏压低于击穿电压)两种。

(1)Geiger-modeAPD阵列的特点优点:1)极高的探测灵敏度,单个光子即可触发雪崩效应,可实现单光子探测;2)GM-APD输出信号在100ps量级,即有高的时间分辨率,进而有较高的距离分辨率,厘米量级;3)较高的探测效率,采用单脉冲焦平面阵列成像方式;4)较低的功耗,体积小,集成度高;5)GM-APD输出为饱和电流,可以直接进行数字处理,读出电路(ROIC)不需要前置放大器和模拟处理模块,即更简单的ROIC。

缺点:1)存在死时间效应:GM-APD饱和后需要一定时间才能恢复原来状态,为使其可以连续正常工作需要采用淬火电路对雪崩进行抑制。

2)GM-APD有极高的灵敏度,其最噪声因素更加敏感,通道之间串扰更严重。

(2)线性模式APD阵列的特点优点:1)光子探测率高,可达90%以上;2)有较小的通道串扰效应;3)具有多目标探测能力;4)可获取回波信号的强度信息;5)相比于GM-APD,LM-APD对遮蔽目标有更好的探测能力。

缺点:1)灵敏度低于GM-APD;(现今已经研制出有单光子灵敏度的LM-APD)2)读出电路的复杂度大于GM-APD(需对输入信号进行放大、滤波、高速采样、阈值比较、存储等操作)。

(其信号测量包括强度和时间测量两部分)按照基底半导体材料APD可分为:SiAPD、GeAPD、InGaAsAPD、HgCdTeAPD。

红外探测器

红外探测器

红外探测器1 红外探测器应用发展红外探测器由于诸多特点在军用和民用领域都取得了广泛的应用,红外探测器在红外系统中起着至关重要的作用。

简述国内外红外探测器部分最新的研究成果和动态,关于红外成像技术发展,讨论红红外探测器应用中的一些新技术、发展重点和难点,对以后一段时期内的红外探测器发展及其市场前景进行展望。

2 红外探测器应用背景红外探测器具有作用距离远、抗干扰性好、穿透烟尘雾霾能力强、可全天候、全天时工作等优点,在军用和民用领域都得到了极为广泛的应用。

在军事上,包括对军事目标的搜索、观瞄、侦察、探测、识别与跟踪;对远、中、近程军事目标的监视、告警、预警与跟踪;红外探测器的精确制导;武器平台的驾驶、导航;探测隐身武器系统,进行光电对抗等。

在民用领域,在工业、遥感、医学、消费电子、测试计量和科学研究等许多方面也得到广泛应用。

目前国外红外成像器件已发展到了智能灵巧型的第四代,在光电材料、生产工艺及系统应用等方面都取得了丰硕的成果,但是国内红外相关技术研究与生产起步较晚,并且受工业基础制约,发展远滞后于国外,而市场需求却持续强劲,无论在军用还是民用领域都有巨大的发展空间。

3 红外探测器现状分析从第一代红外探测器至今已有40余年历史,按照其特点可分为四代:第一代(1970s-80s)主要是以单元、多元器件进行光机串/并扫描成像;第二代(1990s-2000s)是以4×288为代表的扫描型焦平面;第三代是凝视型焦平面;目前正在发展的可称为第四代,以大面阵、高分辨率、多波段、智能灵巧型系统级芯片为主要特点,具有高性能数字信号处理功能,甚至具备单片多波段融合探测与识别能力。

在红外探测器发展过程中,新材料、新工艺、新器件、新方法不断涌现,按工作环境可分为致冷型和非致冷型两大类。

3.1 高性能致冷型红外探测器此类器件需要在低温下(77K)工作,相比非致冷器件成像质量优异、探测灵敏度高,通常又可分为传统型和量子阱焦平面探测器。

红外检测发展现状及未来趋势分析

红外检测发展现状及未来趋势分析

红外检测发展现状及未来趋势分析引言:红外检测是一种基于红外辐射原理的非接触式检测技术,已经广泛应用于军事、医学、工业、安防等领域。

本文通过分析红外检测的现状及未来趋势,将对该技术的发展做出预测。

一、红外检测的现状1. 红外检测技术的应用领域红外检测技术已在军事领域得到广泛应用,包括导弹制导、夜视设备、无人机目标识别等。

同时,医学领域也使用红外检测技术进行疾病诊断,如乳腺癌早期诊断、体温检测等。

此外,工业应用上的红外检测主要用于辐射计算、材料表征、热成像等。

2. 红外检测技术的发展瓶颈尽管红外检测技术在多个领域表现出良好的应用前景,但仍面临一些挑战。

例如,高分辨率红外成像系统的制造成本较高,导致其在大规模工业应用中存在一定局限性。

另外,红外图像去噪和图像增强算法仍需要进一步改进,以提高图像质量和准确性。

3. 红外检测技术的发展趋势红外检测技术未来的发展趋势将主要聚焦于以下几个方面:- 制造成本下降:随着红外检测技术的进一步发展,制造成本预计将逐渐降低,从而推动该技术在广泛领域的应用。

- 分辨率改进:随着红外检测传感器的不断改进,高分辨率红外图像的产生将成为可能,提高图像质量和清晰度。

- 数据处理技术的突破:通过改进红外图像处理算法和人工智能技术,能够进一步提高红外图像分析的准确性和效率。

- 模块化设计:红外检测设备的模块化设计将使其更加灵活和易于维护,降低维修成本。

二、红外检测的未来趋势1. 军事应用领域红外检测技术在军事领域的应用将进一步扩展。

高分辨率红外传感器的发展将为导弹制导、目标识别等提供更精准的数据。

此外,隐形技术也将得到进一步的提升,使得军事装备的隐蔽性能得到增强。

2. 医学应用领域红外检测技术在医学领域的应用将更加广泛。

随着红外成像设备的进一步普及,乳腺癌早期检测等疾病预防工作将变得更加容易。

同时,红外热成像技术在病理诊断中的应用也将得到加强。

3. 工业应用领域红外检测技术在工业领域的应用前景广阔。

焦平面APD探测器的国内外技术现状和发展趋势

焦平面APD探测器的国内外技术现状和发展趋势

红外焦平面探测器的国内外技术现状和发展趋势一、焦平面APD探测器的背景及特点焦平面APD探测器主要是由:APD阵列和读出电路(ROIC)两部分组成,其中APD是核心元件。

1、APD雪崩光电二极管(APD)是一种具有内部增益的半导体光电转换器件,具有量子响应度高、响应速度快、线性响应特性好等特点,在可见光波段和近红外波段的量子效率可达90%以上,增益在10~100倍,新型APD材料的最大增益可达200倍,有很好的微弱信号探测能力。

2、APD阵列的分类按照APD的工作的区间可将其分为:Geiger-modeAPD(反向偏压超过击穿电压)和线性模式APD(偏压低于击穿电压)两种。

(1)Geiger-modeAPD阵列的特点优点:1)极高的探测灵敏度,单个光子即可触发雪崩效应,可实现单光子探测;2)GM-APD输出信号在100ps量级,即有高的时间分辨率,进而有较高的距离分辨率,厘米量级;3)较高的探测效率,采用单脉冲焦平面阵列成像方式;4)较低的功耗,体积小,集成度高;5)GM-APD输出为饱和电流,可以直接进行数字处理,读出电路(ROIC)不需要前置放大器和模拟处理模块,即更简单的ROIC。

缺点:1)存在死时间效应:GM-APD饱和后需要一定时间才能恢复原来状态,为使其可以连续正常工作需要采用淬火电路对雪崩进行抑制。

2)GM-APD有极高的灵敏度,其最噪声因素更加敏感,通道之间串扰更严重。

(2)线性模式APD阵列的特点优点:1)光子探测率高,可达90%以上;2)有较小的通道串扰效应;3)具有多目标探测能力;4)可获取回波信号的强度信息;5)相比于GM-APD,LM-APD对遮蔽目标有更好的探测能力。

缺点:1)灵敏度低于GM-APD;(现今已经研制出有单光子灵敏度的LM-APD)2)读出电路的复杂度大于GM-APD(需对输入信号进行放大、滤波、高速采样、阈值比较、存储等操作)。

(其信号测量包括强度和时间测量两部分)按照基底半导体材料APD可分为:SiAPD、GeAPD、InGaAsAPD、HgCdTeAPD。

焦平面APD探测器地国内外技术现状和发展趋势

焦平面APD探测器地国内外技术现状和发展趋势

红外焦平面探测器的国内外技术现状和发展趋势一、焦平面APD探测器的背景及特点焦平面APD探测器主要是由:APD阵列和读出电路(ROIC)两部分组成,其中APD是核心元件。

1、APD雪崩光电二极管(APD)是一种具有内部增益的半导体光电转换器件,具有量子响应度高、响应速度快、线性响应特性好等特点,在可见光波段和近红外波段的量子效率可达90%以上,增益在10~100倍,新型APD材料的最大增益可达200 倍,有很好的微弱信号探测能力。

2、APD阵列的分类按照APD的工作的区间可将其分为:Geiger-mode APD(反向偏压超过击穿电压)和线性模式APD(偏压低于击穿电压)两种。

(1)Geiger-mode APD阵列的特点优点:1)极高的探测灵敏度,单个光子即可触发雪崩效应,可实现单光子探测;2)GM-APD输出信号在100ps量级,即有高的时间分辨率,进而有较高的距离分辨率,厘米量级;3)较高的探测效率,采用单脉冲焦平面阵列成像方式;4)较低的功耗,体积小,集成度高;5)GM-APD输出为饱和电流,可以直接进行数字处理,读出电路(ROIC)不需要前置放大器和模拟处理模块,即更简单的ROIC。

缺点:1)存在死时间效应:GM-APD饱和后需要一定时间才能恢复原来状态,为使其可以连续正常工作需要采用淬火电路对雪崩进行抑制。

2)GM-APD有极高的灵敏度,其最噪声因素更加敏感,通道之间串扰更严重。

(2)线性模式APD阵列的特点优点:1)光子探测率高,可达90%以上;2)有较小的通道串扰效应;3)具有多目标探测能力;4)可获取回波信号的强度信息;5)相比于GM-APD,LM-APD对遮蔽目标有更好的探测能力。

缺点:1)灵敏度低于GM-APD;(现今已经研制出有单光子灵敏度的LM-APD)2)读出电路的复杂度大于GM-APD(需对输入信号进行放大、滤波、高速采样、阈值比较、存储等操作)。

(其信号测量包括强度和时间测量两部分)按照基底半导体材料APD可分为: Si APD、Ge APD、InGaAs APD、HgCdTe APD。

红外探测技术的现状与发展趋势_赵江

红外探测技术的现状与发展趋势_赵江

总第157期2007年第1期 舰船电子工程Ship E l ectronic Eng i nee ri ngV o.l27N o.132红外探测技术的现状与发展趋势*赵 江(东北电子技术研究所 锦州 121000)摘 要 介绍红外探测技术的发展历程以及装备的研制、改进情况,指出在现代战争中发展红外探测技术的优势和重要性,重点探讨几种红外探测技术的性能及其特点;最后分析红外探测技术的未来发展趋势。

关键词 红外探测技术;关键技术;应用中图分类号 TN9721 引言红外探测技术,国外现已发展到第四代,主要采用扫描焦平面4N或6N阵列的第二代前视红外系统。

扫描焦平面阵列(FPA)是碲镉汞多元线列并联扫描技术的进一步发展。

它不仅增加线列单元数量,且增加线列(行)数,形成串并扫描,同时采用多级时间延迟和积分(TDI)技术把串联扫描同一行单元的光电信号依次延迟并相加。

它采用阻抗低的光伏型碲镉汞材料,与硅电荷耦合器电路低耗耦合。

碲镉汞多元焦平面阵列与硅电荷耦合器中间由铟柱连接形成夹层结构,从而制成混成双片焦平面阵列红外探测器。

本文就国外红外探测技术现状与发展趋势,作进一步的研究和探讨[1]。

2 发展现状目前,美国、法国、德国、英国等已经研制出48 4、288 4、480 4、和960 4元光伏型碲镉汞扫描焦平面阵列,美国主张在第二代前视红外中采用480 4元,欧洲则采用288 4元。

扫描焦平面阵列已经成熟并列入RAH-66 曼奇 升机等计划,开始在第二代前视红外以及红外成像导弹寻的器和红外搜索跟踪系统中应用。

其分辨率较第一代前视红外增加了50%~60%,探测距离更远,在恶劣气象条件下的工作也更有效[2]。

扫描焦平面阵列的优点在于降低了噪声等效温差(NETD)和最小可分辨温差(MRTD),因而使前视红外的探测距离增大了50%甚至一倍。

但是,它的探测单元数量仍然不够多,满足不了全视场成像的要求,属于扫描线列与凝视焦平面阵列之间的过渡型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焦平面红外探测器应用现状
0 引言
红外探测器广泛应用于军事、科学、工农业生产和医疗卫生等各个领域,尤其在军事领域,红外探测器在精确制导、瞄准系统、侦察夜视等方面具有不可替代的作用。

近年来,红外探测器的需求不断增加。

据美国相关公司市场调研分析师预测,全球军用红外探测器需求额有望在2020年达到163.5亿美元,复合年均增长率为7.71%。

红外探测器按探测机理可分为热探测器和光子探测器,按其工作中载流子类型可以分为多数载流子器件和少数载流子器件两大类,按照探测器是否需要致冷,分为致冷型探测器和非致冷型探测器。

非致冷探测器目前主要是非晶硅和氧化钒探测器,致冷型探测器主要包括碲镉汞三元化合物、量子阱红外光探测器Ⅱ类超晶格等。

在过去的几十年里,大量的新型材料、新颖器件不断涌现,红外光电探测器完成了第一代的单元、多元光导器件向第二代红外焦平面器件的跨越,目前正朝着以大规模、高分辨力、多波段、高集成、轻型化和低成本为特征的第三代红外焦平面技术的方向发展。

1 焦平面红外探测器应用现状
热探测器的应用早于光子探测器。

热探测器包括热释电探测器、温差电偶探测器、电阻测辐射热计等。

热探测器具有宽谱响应、室温工作的优点,但是它响应时间较慢、高频时探测率低,目前主要应用于民用领域。

光子探测器是基于光电效应制备的探测器,通过配备致冷系统,具有高量子效率、高灵敏度、低噪声等效温差、快速响应等优点。

在军事领域,光子探测器占据主导地位。

常用的光子探测器有碲镉汞(HgCdTe)、InAs / InGaSb Ⅱ类超晶格、GaAs / AlGaAs量子阱等。

近年来量子点红外光探测器也引起广泛关注,量子点红外光探测器在理论上具有很多优点,但实际制备的量子点红外光探测器与理论预测的还是有一定差距。

表1对几种常用的光子型焦平面红外探测器进行了比较。

在精确制导领域,主流制导方式有红外制导和雷达制导,这两种方式各有优势,在某些特定的场合,红外制导更是显示出其不可替代性。

与雷达制导的主动探测相比,红外探测是。

相关文档
最新文档