最新湘教版九年级数学上册《相似三角形的判定》1教学设计(精品教案)

合集下载

九年级数学上册341相似三角形的判定教案(新版)湘教版

九年级数学上册341相似三角形的判定教案(新版)湘教版

相似三角形的判定教学目标【知识与技能】经历三角形相似的判定定理“两边成比例且夹角相等的两个三角形相似”和“三边成比例的两个三角形相似”的探索及证明过程.【过程与方法】让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题、解决问题的能力.【情感态度】在合作、交流、探讨的学习氛围中,体验学习的快乐,树立学习的信心.【教学重点】掌握判定定理,会运用判定定理判定两个三角形相似.【教学难点】会准确的运用两个三角形相似的条件来判定两个三角形是否相似.教学过程一、情景导入,初步认知问题:(1)相似三角形的定义是什么?三边成比例,三角分别相等的两个三角形相似.(2)判定两个三角形相似,你有哪些方法?方法1:通过定义(不常用);方法2:通过平行线(条件特殊,使用起来有局限性);方法3:判定定理1,两角分别相等的两个三角形相似.【教学说明】引导学生复习学过的知识,承前启后,激发学生学习新知的欲望.二、思考探究,获取新知下面我们来探究还可用哪些条件来判定两个三角形相似.1.我们学习了三角形相似的判定定理1,类似于三角形全等的“SAS”判定方法,你能通过类比的方法猜想到三角形相似的其它判定方法吗?2.任意画△ABC与△A′B′C′,使∠A′=∠A, =k.(1)分别度量∠B′和∠B,∠C′和∠C的大小,它们分别相等吗?(2)分别度量BC和B′C′的长,它们的比等于k吗?(3)改变∠A或k的大小,你的结论相同吗?由此你有什么发现?【教学说明】引导学生画图,并鼓励证明命题归纳结论.【归纳结论】两边成比例且夹角相等的两个三角形相似.3.如图,在△ABC与△DEF中,已知∠C=∠F,AC=3.5cm,BC=2.5cm,DF=2.1cm,EF=1.5cm.求证:△ABC∽△DEF.证明:∵AC=3.5cm,BC=2.5cm,DF=2.1cm,EF=1.5cm,又∵∠C=∠F,∴△ABC∽△DEF.4.我们已经学习了三角形相似的2个判定定理,类似于三角形全等的“SSS”判定方法,你能通过类比的方法猜想三角形相似的其他判定方法吗?5.你能证明你的结论吗?已知:如图,在△A′B′C′和△ABC中,求证:△A′B′C′∽△ABC.【教学说明】引导学生证明.【归纳结论】三边成比例的两个三角形相似.6.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,.求证:△ABC∽△A′B′C′.。

湘教版九年级数学上册第3章图形的相似3.4相似三角形的判定与性质教学设计

湘教版九年级数学上册第3章图形的相似3.4相似三角形的判定与性质教学设计

湘教版九年级数学上册第3章图形的相似3.4相似三角形的判定与性质教学设计一. 教材分析湘教版九年级数学上册第3章图形的相似3.4相似三角形的判定与性质,主要介绍了相似三角形的判定方法和性质。

本节课的内容是学生在学习了相似概念、相似多边形的基础上进行的,是进一步培养学生空间想象能力、逻辑思维能力和解决实际问题能力的重要内容。

二. 学情分析九年级的学生已经掌握了相似的概念和性质,同时具备了一定的空间想象能力和逻辑思维能力。

但学生在学习过程中,对相似三角形的判定与性质的理解和运用还有一定的困难,需要通过本节课的学习,进一步巩固和提高。

三. 教学目标1.理解相似三角形的判定方法。

2.掌握相似三角形的性质。

3.能够运用相似三角形的判定与性质解决实际问题。

4.培养学生的空间想象能力、逻辑思维能力和解决实际问题的能力。

四. 教学重难点1.教学重点:相似三角形的判定方法和性质。

2.教学难点:相似三角形的判定方法的灵活运用。

五. 教学方法1.情境教学法:通过生活实例,引发学生的兴趣,激发学生的思考。

2.小组合作学习法:培养学生团队合作精神,提高学生解决问题的能力。

3.启发式教学法:引导学生主动探究,发现知识,提高学生的逻辑思维能力。

六. 教学准备1.教学课件:制作课件,展示相似三角形的判定与性质的相关知识。

2.教学素材:准备一些生活实例,用于引发学生的思考。

3.学具:准备一些三角形模型,方便学生直观地理解相似三角形的性质。

七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如相似的建筑物、图片等,引发学生的兴趣,引入相似三角形的概念。

2.呈现(10分钟)利用课件呈现相似三角形的判定方法和性质,引导学生直观地理解知识。

同时,教师进行讲解,阐述相似三角形的判定与性质的重要性。

3.操练(10分钟)学生分组进行讨论,通过给出的实例,运用相似三角形的判定与性质进行解答。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)学生独立完成教材中的练习题,检验自己对相似三角形的判定与性质的理解。

九年级数学上册 3.3 相似三角形的性质和判定教案1 湘教版

九年级数学上册 3.3 相似三角形的性质和判定教案1 湘教版

九年级数学上册 3.3 相似三角形的性质和判定教案1 湘教版【教学目标】1.知识与技能:了解三角形相似及相似比的概念,会运用相似三角形的判定定理一判定两个三角形相似;掌握相似三角形周长之比、对应边上高线、中线以及对应角平分线之比都等于相似比。

2.过程与方法:引导学生通过观察以及动手测量实践,体验三角形相似的判定定理一;并在合作的基础上探究相似三角形周长之比、对应边上高线、中线以及对应角平分线之比都等于相似比这一特性。

3.情感态度与价值观:运用类比的方法,让学生体验知识的形成过程,从而增强学习数学的兴趣。

【教学重点难点】重点:三角形相似判定定理一及性质难点:运用三角形相似判定定理一判定两个三角形相似及性质的应用【教法与学法指导】学生自学——合作交流——教师释疑——检测反馈【教学过程】一、创设情境、导入新课(1) 两个三角形全等有哪些判定方法?(2) 全等三角形与相似三角形有怎样的关系?(3) 如图,如果要判定△ABC与△A’B’C’相似,是不是一定需要一一验证所有的对应角和对应边的关系?提示:首先,由三角形全等的SSS判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么能否判定这两个三角形相似呢?带领学生画图探究;二、合作探究、解读交流知识点1:三角形相似判定定理一三角形相似的判定方法1 如果两个三角形的三组对应边的比相等,那么这两个三角形相似. 如图所示:若△ABC 和△A 1B 1C 1三边满足 AB A1B1 = AC A1C1 = BC B1C1 ,那么 这两个三角形相似。

知识点2:相似三角形性质1. 相似三角形的周长之比等于相似比2.相似三角形对应边上的高线、对应边上的中线、对应角的角平分线之比等于相似比三、课堂检测、迁移应用例1.如图,△ABC 中,点D 、E 、F 分别是AB 、BC 、CA 的中点,求证:△ABC ∽△EDF . 例2,已知△ABC 和△A 1B 1C 1的相似比为1.5,若AB,为3,B 1C 1为4,AC 为8,求其余各边的长及各三角形周长。

最新湘教版九年级数学上册《相似三角形的性质1》教学设计(精品教案)

最新湘教版九年级数学上册《相似三角形的性质1》教学设计(精品教案)

3.4.2相似三角形的性质教学目标【知识与技能】理解掌握相似三角形对应线段(高、中线、角平分线)及相似三角形的面积、周长比与相似比之间的关系.【过程与方法】对性质定理的探究,学生经历观察——猜想——论证——归纳的过程,培养学生主动探究、合作交流的习惯和严谨治学的态度.【情感态度】在学习和探讨的过程中,体验从特殊到一般的认知规律.【教学重点】相似三角形性质的应用.【教学难点】相似三角形性质的应用.教学过程一、情景导入,初步认知1.什么叫相似三角形?相似比指的是什么?2.全等三角形是相似三角形吗?全等三角形的相似比是多少?3.相似三角形的判定方法有哪些?【教学说明】复习相关知识,为本节课的学习做准备.二、思考探究,获取新知1.根据相似三角形的概念可知相似三角形有哪些性质?【归纳结论】相似三角形的基本性质:相似三角形的对应角相等,对应边成比例.2.如图,△ABC和△A′B′C′是两个相似三角形,相似比为k,其中,AD、A′D′分别为BC、B′C′边上的高,那么,AD和A′D′之间有什么关系?证明:∵△ABC∽△A′B′C′,∴∠B=∠B′,又∵AD⊥BC,A′D′⊥B′C′,∴∠ADB=∠A′D′B′=90°,∴△ABD∽△A′B′D′,∴AB︰A′B′=AD︰A′D′=k.你能得到什么结论?【归纳结论】相似三角形对应边上的高的比等于相似比.3.如图,△A′B′C′和△ABC是两个相似三角形,相似比为k,求这两个三角形的角平分线A′D′与AD的比.解:∵△A ′B ′C ′∽△ABC,∴∠B ′=∠B,∠A ′B ′C ′=∠ABC,∵A ′D ′,AD 分别是△A ′B ′C ′与△ABC 的角平分线,∴∠B ′A ′D ′=∠BAD,∴△A ′B ′D ′∽△ABD.(有两个角对应相等的两个三角形相似) ∴A D A B AD AB''''==k 根据上面的探究,你能得到什么结论?【归纳结论】相似三角形对应角平分线的比等于相似比.4.在上图中,如果AD 、A ′D ′分别为BC 、B ′C ′边上的中线,那么,AD 和A ′D ′之间有什么关系?你能证明你的结论吗?【归纳结论】相似三角形对应边上的中线的比等于相似比.5.如图△ABC ∽△A ′B ′C ′,ABA ′B ′=k ,AD 、A ′D ′为高线.(1)这两个相似三角形周长比为多少?(2)这两个相似三角形面积比为多少?分析:(1)由于△ABC ∽△A ′B ′C ′,所以AB ︰A ′B ′=BC ︰B ′C ′=AC ︰A ′C ′=k.由并比的性质可知,(AB+BC+AC) ︰(A′B′+B′C′+A′C′)=k.(2)由题意可知,因为△ABD∽△A′B′D′,所以AB︰A′B′=AD︰A′D′=k.因此可得,△ABC的面积︰△A′B′C′的面积=(AD·BC)︰(A′D′·B′C′)=k2.【归纳总结】相似三角形的周长比等于相似比,面积比等于相似比的平方.【教学说明】通过这两个问题,引导学生通过合情推理,得出结论.学生可以通过合作交流,找出解决问题的方法.三、运用新知,深化理解1.见教材P86例9、P88例11、例12.2.已知△ABC∽△A′B′C′,BD和B′D′是它们的对应中线,且ACA C''=32,B′D′=4,则BD的长为____.分析:因为△ABC∽△A′B′C′,BD和B′D′是它们的对应中线,根据对应中线的比等于相似比,【答案】 63.在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为()A.8,3 B.8,6 C.4,3 D.4,6分析:根据相似三角形周长比等于相似比,面积比等于相似比的平方可得周长为8,面积为3,所以选A.【答案】 A4.已知△ABC∽△A′B′C′且S△ABC∶S△A′B′C′=1∶2,则AB∶A′B′=_____.分析:根据相似三角形面积的比等于相似比的平方可求AB∶A′B′=1∶2.【答案】1∶25.把一个三角形改做成和它相似的三角形,如果,那么边长应缩小到原来的面积缩小到原来的12_____.,所分析:根据面积比等于相似比的平方可得相似比为22.以边长应缩小到原来的22【答案】226.如图,CD是Rt△ABC的斜边AB上的高.(1)则图中有几对相似三角形;(2)若AD=9 cm,CD=6 cm,求BD;(3)若AB=25 cm,BC=15 cm,求BD.解:(1)∵CD⊥AB,∴∠ADC=∠BDC=∠ACB=90°.在△ADC和△ACB中,∠ADC=∠ACB=90°,∠A=∠A,∴△ADC∽△ACB,同理可知,△CDB∽△ACB.∴△ADC∽△CDB.所以图中有三对相似三角形.7.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF 与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.(1)证明:∵在梯形ABCD中,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,∴△CDF∽△BGF.(2)由(1)知△CDF∽△BGF,又F是BC的中点,∴BF=FC,∴△CDF≌△BGF,∴DF=FG,CD=BG.又∵EF∥CD,AB∥CD,∴EF∥AG,得2EF=AB+BG.∴BG=2EF-AB=2×4-6=2,∴CD=BG=2cm.8.已知△ABC的三边长分别为5、12、13,与其相似的△A′B′C′的最大边长为26,求△A′B′C′的面积S.分析:由△ABC的三边长可以判断出△ABC为直角三角形,又因为△ABC∽△A′B′C′,所以△A′B′C′也是直角三角形,那么由△A′B′C′的最大边长为26,可以求出相似比,从而求出△A′B′C′的两条直角边长,再求得△A′B′C′的面积.解:设△ABC的三边依次为:BC=5,AC=12,AB=13,∵AB2=BC2+AC2,∴∠C=90°.又∵△ABC∽△A′B′C′,∴∠C′=∠C=90°.又BC=5,AC=12,∴B′C′=10,A′C′=24.∴S=12A′C′×B′C′=12×24×10=120.(2)已知:两相似三角形对应高的比为3∶10,且这两个三角形的周长差为560cm,求它们的周长.分析:(1)用同一个字母k表示出x,y,z.再根据已知条件列方程求得k的值,从而进行求解;(2)根据相似三角形周长的比等于对应高的比,求得周长比,再根据周长差进行求解.【教学说明】通过例题的拓展延伸,体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的习惯,提高分析问题和解决问题的能力.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题3.4”中第6、7、9题.教学反思本节的主要内容是导出相似三角形的性质定理,并进行初步运用,让学生经历相似三角形性质探索的过程,提高数学思考、分析和探究活动的能力,体会相似三角形中的变量与不变量,体会其中蕴涵的数学思想.。

九年级数学上册《相似三角形的判定》教案、教学设计

九年级数学上册《相似三角形的判定》教案、教学设计
-定期组织课外活动,如数学竞赛、研究性学习等,激发学生的学习热情和创造力。
四、教学内容与过程
(一)导入新课,500字
1.教学活动设计:以生活中的实例作为导入,例如,展示一组相似的图形,如不同大小的三角形装饰品,并提出问题:“你们观察这些图形,它们之间有什么共同之处?”通过引导学生观察和思考,激发学生对相似三角形的兴趣。
1.教学策略:
-采用直观演示与抽象讲解相结合的方式,通过动态几何软件或实物模型,让学生直观感受相似三角形的形成和性质。
-引导学生通过自主探索、小组讨论等形式,发现并理解相似三角形的判定条件。
-设计层次分明的练习题,从基础到提高,逐步深化学生对知识点的掌握。
2.教学过程:
-导入新课:通过生活实例或几何图形,引发学生对相似三角形的好奇心,激发学习兴趣。
-小组展示:每组选取一道典型问题,进行解题思路和答案的展示,培养学生表达能力和逻辑思维能力。
4.家庭作业:
-布置适量的课后作业,涵盖相似三角形的判定方法和性质应用,要求学生在规定时间内完成,家长签字确认。
-鼓励学生在完成作业过程中,遇到问题主动向同学和老师请教,培养自主学习和解决问题的能力。
5.作业评价:
-对学生的作业进行及时批改,给予反馈,关注学生在作业中反映出的薄弱环节,进行针对性辅导。
-开展优秀作业展示活动,激发学生的学习积极性,营造良好的学习氛围。
2.学生在运用相似三角形的判定方法时,可能会出现混淆和错误,教师应针对这一问题进行针对性的讲解和练习。
3.学生的空间想象能力和逻辑思维能力存在差异,教师应充分关注这一点,设计不同难度的教学活动,使每位学生都能得到提高。
4.学生在小组合作学习中,沟通能力和团队协作能力有待提高,教师应引导学生积极参与讨论,学会倾听他人意见。

湘教版数学九年级上册《3.4.1相似三角形的判定》教学设计

湘教版数学九年级上册《3.4.1相似三角形的判定》教学设计

湘教版数学九年级上册《3.4.1相似三角形的判定》教学设计一. 教材分析湘教版数学九年级上册《3.4.1相似三角形的判定》是本册教材中的重要内容,主要让学生掌握相似三角形的判定方法。

本节课的内容是在学生已经掌握了三角形的基本性质和判定方法的基础上进行授课的。

教材通过例题和练习题的形式,帮助学生理解和掌握相似三角形的判定方法,并能够运用到实际问题中。

二. 学情分析九年级的学生已经具备了一定的数学基础,对三角形的基本性质和判定方法有一定的了解。

但是,学生对相似三角形的判定方法的理解和运用还需要加强。

因此,在教学过程中,需要通过例题和练习题的讲解和训练,帮助学生理解和掌握相似三角形的判定方法。

三. 教学目标1.让学生掌握相似三角形的判定方法。

2.培养学生运用相似三角形的判定方法解决实际问题的能力。

3.培养学生合作学习的意识和能力。

四. 教学重难点1.教学重点:相似三角形的判定方法。

2.教学难点:相似三角形的判定方法的运用。

五. 教学方法1.情境教学法:通过生活实例引入相似三角形的判定,激发学生的学习兴趣。

2.例题教学法:通过典型例题的讲解,让学生理解和掌握相似三角形的判定方法。

3.练习法:通过练习题的训练,巩固学生对相似三角形判定方法的理解。

4.小组合作学习:让学生在小组内讨论和分享学习心得,培养学生的合作能力。

六. 教学准备1.教学PPT:制作教学PPT,展示相似三角形的判定方法和例题。

2.练习题:准备一些练习题,用于巩固学生的学习效果。

3.教学黑板:准备教学黑板,用于板书和展示解题过程。

七. 教学过程1.导入(5分钟)利用生活实例,如相似的图形、图片等,引导学生思考什么是相似三角形,引出相似三角形的判定方法。

2.呈现(10分钟)通过PPT展示相似三角形的判定方法,引导学生观察和思考,让学生理解和掌握判定方法。

3.操练(10分钟)让学生独立完成一些类似的例题,教师进行讲解和指导,帮助学生巩固对相似三角形判定方法的理解。

【湘教版九年级数学上册教案】3.4相似三角形的判定与性质第1课时

【湘教版九年级数学上册教案】3.4相似三角形的判定与性质第1课时

3.4相似三角形的判断与性质第 1课时教课目标1.理解并掌握判断三角形相似的预备定理.2.掌握相似三角形的判断,进一步发展合情推理能力和初步的逻辑推理能力.教课重难点【教课要点】判断三角形相似的预备定理的推导与应用.【教课难点】判断三角形相似的预备定理的推导.课前准备无教课过程教课活动教课设计企图师生活动步骤【课堂引入】在△ ABC中, D 为 AB 的中点,如图 3-4- 10,过点 D 作 DE∥ BC交 AC于点 E,那么△ ADE与△ ABC的边对应成比率吗?对应角相等吗?△ADE与△ ABC相似吗?利用熟习的三角形活动中位线定理,研究一:判断三角形相似的创建预备定理,领悟由情境特别到一般的推理导入方法 .新课图 3-4- 10【研究】判断三角形相似的预备定理(1) 在情形导入的基础上,指引学生连续思虑:在△ABC中,D 为 AB上任意一点,如图 3- 4- 11 所示.过点D作 BC的活动平行线交 AC于点 E,那么△ ADE与△ ABC相似吗?二:层层递进,指引学(2) 假如点 D, E 分别在 AB, AC 的延长线上呢?在AB, AC实践生思想向深度和广的反向延长线上呢?度进军 .研究归纳:平行于三角形一边的直线与其余两边( 或两边的延长交流线 ) 订交,截得的三角形与原三角形相似.新知【应用举例】例 1 如图 3- 4- 12,在平行四边形ABCD中, DE交 BC于点 F,交 AB的延长线于点 E.重申:(1) 书写两(1)请写出图中相似的三角形;个三角形相似时要活动(2)请由此中的一对相似三角形写出相应的比率式;注意极点的对应关三:(3)请说明 AE·BF 与 AD·BE 能否相等?系,严格按要求书开放讲评策略:学生分组谈论、交流,教师巡视指导,而后请三写,养成慎重的学训练位学生板书答案.教师对学生的答案进行评论,给出正确答习习惯; (2) 灵巧运表现案: (1) △ EBF∽△ EAD,△ CDF∽△ BEF,△ EAD∽△ DCF.(2)用定理,掌握定理应用EB EF BF的实质,抓住平行举一例:在△ EBF∽△ EAD 中,有==,还有两种情线这一线索,问题EA ED AD形鼓舞学生自行解答. (3) 由 (2) 可得 AE· BF= AD· BE.就会水到渠成 .图 3-4- 12【拓展提高】例 2如图3-4-13,已知四边形ABCD是平行四边形.(1) 求证:△ MEF∽△ MBA;学习的最后目的是(2) 若 AF, BE 分别是∠ DAB,∠ CBA的均分线,求证:DF=为了应用,经过应EC.用练习,提高学生的解题能力 .图 3-4- 13【当堂训练】当堂检测,及时1.教材P78 练习中的T1, T2. 2.教材P89 习题 3.4反响学习成效 .中的 T1.【知识网络】活动四:课堂纲要挈领,要点总结突出 .反思【教课反思】① [ 讲课流程反思 ]从熟习的定理出发指引学生思虑,推导判断三角形相似的预反思,更进一步提高 .备定理,吻合学生的认知规律.② [ 解说成效反思 ]经过在置疑导入的基础上又一步步地变式提高,把问题的各种可能性都考虑到,说明判断三角形相似的预备定理的广泛性,让学生亲身感觉到自己是学习的主人,为学生今后获得知识、研究发现和创立打下了优异的基础.③[ 师生互动反思 ]___________________________________________________ ___________________________________________④[ 习题反思 ]___________________________________________________ ___________________________________________。

九年级数学上册《相似三角形判定定理一》教案、教学设计

九年级数学上册《相似三角形判定定理一》教案、教学设计
2.学生在推理和证明过程中的困难,引导他们运用已学的知识和方法,逐步解决问题。
3.学生的个体差异,针对不同学生的需求,提供适当的学习指导和支持。
4.学生在合作学习中的参与度,鼓励他们积极发言,分享自己的想法和观点。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-理解并掌握相似三角形的判定定理一。
1.判断题:给出几个相似三角形的判定题目,让学生判断其是否符合判定定理一。
2.填空题:给出几个相似三角形的图形,要求学生填写相似比。
3.计算题:运用相似三角形的判定定理一解决实际问题。
学生在完成练习题的过程中,教师巡回指导,针对学生的错误给予及时纠正和解答。
(五)总结归纳
在总结归纳环节,首先让学生回顾本节课所学的相似三角形的判定定理一,然后提问:
-尝试证明相似三角形的另一个判定定理:如果两个三角形的一个角相等,且对应边成比例,那么这两个三角形相似。
3.实践应用题:
-结合所学知识,设计一道与相似三角形判定定理一相关的实际问题,要求至少包含两个已知量和两个未知量。
-将设计的问题及解答过程写下来,与同学们分享,共同讨论。
4.研究性学习题:
-以小组为单位,选择一个研究方向,如相似三角形在实际建筑中的应用、相似三角形在艺术作品中的体现等,进行资料收集和整理。
1.请举例说明相似三角形在实际生活中的应用。
2.如何运用相似三角形的判定定理一解决以下问题:(给出几个具体问题)
3.相似三角形判定定理一的证明过程中,有哪些关键步骤?
要求学生在讨论过程中,充分发表自己的观点,互相学习,共同解决问题。教师在旁边观察学生的讨论情况,适时给予指导。
(四)课堂练习
在课堂练习环节,设计以下练习题:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时相似三角形的判定(2)
教学目标
【知识与技能】
经历三角形相似的判定定理“两边成比例且夹角相等的两个三角形相似”和“三边成比例的两个三角形相似”的探索及证明过程.
【过程与方法】
让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题、解决问题的能力.
【情感态度】
在合作、交流、探讨的学习氛围中,体验学习的快乐,树立学习的信心.
【教学重点】
掌握判定定理,会运用判定定理判定两个三角形相似.
【教学难点】
会准确的运用两个三角形相似的条件来判定两个三角形是否相似.
教学过程
一、情景导入,初步认知
问题:(1)相似三角形的定义是什么?
三边成比例,三角分别相等的两个三角形相似.
(2) 判定两个三角形相似,你有哪些方法?
方法1:通过定义 (不常用);
方法2:通过平行线(条件特殊,使用起来有局限性); 方法3:判定定理1, 两角分别相等的两个三角形相似.
【教学说明】引导学生复习学过的知识,承前启后,激发学生学习新知的欲望.
二、思考探究,获取新知
下面我们来探究还可用哪些条件来判定两个三角形相似.
1.我们学习了三角形相似的判定定理1,类似于三角形全等的“SAS ”判定方法,你能通过类比的方法猜想到三角形相似的其它判定方法吗?
2.任意画△ABC 与△A ′B ′C ′,使∠A ′=∠A ,
AB AC A B A C =''''
=k.
(1)分别度量∠B ′和∠B ,∠C ′和∠C 的大小,它们分别相等吗?
(2)分别度量BC 和B ′C ′的长,它们的比等于k 吗?
(3)改变∠A 或k 的大小,你的结论相同吗?由此你有什么发现?
【教学说明】引导学生画图,并鼓励证明命题归纳结论.
【归纳结论】两边成比例且夹角相等的两个三角形相似.
3.如图,在△ABC 与△DEF 中,已知∠C=∠
F,AC=3.5cm,BC=2.5cm,DF=2.1cm,EF=1.5cm.求证:△ABC∽△DEF.
证明:∵AC=3.5cm,BC=2.5cm,DF=2.1cm,
EF=1.5cm,
又∵∠C=∠F,
∴△ABC∽△DEF.
4.我们已经学习了三角形相似的2个判定定理,类似于三角形全等的“SSS”判定方法,你能通过类比的方法猜想三角形相似的其他判定方法吗?
5.你能证明你的结论吗?
已知:如图,在△A′B′C′和△ABC中,
求证:△A′B′C′∽△ABC.
【教学说明】引导学生证明.
【归纳结论】三边成比例的两个三角形相似.
6.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′
=90°,AB AC
=.求证:△ABC∽△A′B′C′.
A B A C
''''
分析:已知两边成比例,只需证明三边成比例就可以证明两个三角形相似.可以利用勾股定理来证明.
【教学说明】用已学过的知识解题,并通过解题巩固对判定定理的理解.
三、运用新知,深化理解
1.见教材P82例6、P84例8.
2.如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.
解:(1)△ADE∽△ABC,两角相等;
(2)△ADE∽△ACB,两角相等;
(3)△CDE∽△CAB,两角相等;(4)△EAB∽△ECD,两边成比例且夹角相等;(5)△ABD∽△ACB,两边成比例且夹角相等;(6)△ABD∽△ACB,两边成比例且夹角相等.
3.在△ABC和△A′B′C′中,已知下列条件成立,判断这两个三角形是否相似,并说明理由.
(1)AB=5,AC=3,∠A=45°,
A′B′=10,A′C′=6,∠A′=45°;
(2)∠A=38°,∠C=97°,
∠A′=38°,∠B′=45°;
(3)AB=2 ,BC=2,AC=10,
A′B′=2, B′C′=1 ,A′C′=5.
解:(1)SAS,相似;
(2)AA,相似;
(3)SSS,相似.
4.如图,BC与DE相交于点O.问
(1)当∠B 满足什么条件时,△ABC∽△ADE?
(2)当AC∶AE 满足什么条件时,△ABC∽△ADE ?
(学生小组合作交流、讨论,教师巡视引导.)
解:(1)∵∠A=∠A ,
∴当∠B=∠D时,△ABC∽△ADE.
(2)∵∠A=∠A ,
∴当AC∶AE=AB∶AD时,
△ABC∽△ADE.
5.如图,在等腰直角三角形ABC中,顶点为C,∠MCN=45°,试说明△BCM∽△ANC.
解:∵△ACB是等腰直角三角形,
∴∠A=∠B=45°.
又∵∠MCN=45°,
∠CNA=∠B+∠BCN=45°+∠BCN,
∠MCB=∠MCN+∠NCB=45°+∠BCN.
∴∠CNA=∠MCB,
在△BCM和△ANC中,
∠A=∠B
∠CNA=∠MCB,
∴△BCM∽△ANC.
6.如图,已知△ABC、△DEB均为等腰直角三角形,∠ACB=∠EDB=90°,点E在边AC上,CB、ED交于点F.
证明:△ABE∽△CBD.
证明:∵△ABC、△DEB均为等腰直角三角形,
∴∠DBE=∠CBA=45°,
∴∠DBE-∠CBE=∠CBA-∠CBE.
即∠ABE=∠CBD,又EB AB
==2,
BD BC
∴△ABE∽△CBD.
7.在平行四边形ABCD中,M,N为对角线BD上两点,连接AM交BC于E,连接EN并延长交AD于F.
试说明△AMD∽△EMB.
解:∵ABCD是平行四边形,
∴AD∥BC,∠ADB=∠DBC,
∠MAD=∠MEB,
∴△MAD∽△MEB.
8.如图,已知△ABD∽△ACE,求证:△ABC∽△ADE.
分析:由于△ABD∽△ACE,则∠BAD=∠CAE,因此∠BAC=∠DAE,如果再进一步证明ABAD=ACAE,
则问题得证.
证明:∵△ABD∽△ACE,
∴∠BAD=∠CAE.
又∵∠BAC=∠BAD+∠DAC,
∠DAE=∠DAC+∠CAE,
∴∠BAC=∠DAE.
∵△ABD∽△ACE,∴AB AC
=.
AD AE
在△ABC和△ADE中,
∵∠BAC=∠DAE,A AB AC
=,
AD AE
∴△ABC∽△ADE.
【教学说明】通过练习,使学生能够综合运用相似三角形的判定定理解决问题.
四、师生互动、课堂小结
先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.
课后作业
布置作业:教材“习题3.4”中第1、3、4 题.
教学反思
相似三角形的判定主要介绍了四种方法,从练习的结果来看,不是很理想,绝大部分学生对定理的应用不是很熟练,特别对于"两边对应成比例且夹角相等"不能灵活运用,夹角也不能准确找到.我想问题的主要原因在于学生对图形的认知不深,对定理的理解不透,一味死记结论.不能理解每个量所表示的含义.我想在下一阶段中应培养他们认识图形的能力,合情推理的能力,争取这方面有所提高.。

相关文档
最新文档