七年级升八年级数学暑期辅导材料
七升八数学暑假衔接教材可打印人教版

七升八数学暑假衔接教材可打印人教版一、引言随着暑假的来临,学生们即将步入七升八的关键阶段。
为了更好地迎接新学期的挑战,提前做好准备是十分必要的。
今天,我们要为大家介绍一套针对七升八数学的暑假衔接教材——人教版。
这套教材旨在帮助同学们巩固已有知识,提升能力,并为新学期做好充分的准备。
二、教材内容概述1.知识点回顾人教版暑假衔接教材以我国现行数学课程标准为依据,紧密结合人教版教材内容,对七年级数学知识点进行梳理和回顾。
通过系统的讲解和练习,使同学们在暑假期间对所学知识进行巩固,为新学期的学习打下坚实基础。
2.能力提升教材在知识点回顾的基础上,针对七升八的数学要求,设计了相应的能力提升环节。
这部分内容注重培养同学们的解题技巧和方法,提高分析问题和解决问题的能力。
3.暑假作业设计为了保证同学们在暑假期间的学习效果,教材精心设计了丰富的作业题。
这些题目涵盖了七年级数学的主要知识点,难易程度适中,既有助于同学们巩固所学,又能激发他们学习兴趣。
三、人教版教材特点1.贴近大纲人教版教材严格遵循我国教育部颁布的数学课程大纲,确保同学们在学习过程中能够全面、系统地掌握知识点。
2.模块化设计教材采用模块化设计,将不同知识点进行有机整合,有利于同学们形成知识体系,提高学习效率。
3.例题丰富教材配备丰富多样的例题,既有基础题型,也有提高题型。
同学们可以通过学习这些例题,加深对知识点的理解,培养解题能力。
四、打印注意事项1.纸张选择为了保证打印效果,建议使用A4纸进行打印。
纸张质量较好,便于长时间保存。
2.打印质量在打印过程中,请确保打印质量。
字体清晰、图片清晰,以便同学们阅读和学习。
3.装订方法打印完成后,建议采用线装或胶装的方式将教材装订起来,以便于同学们随时翻阅。
五、总结与建议人教版七升八数学暑假衔接教材是一套具有较高实用价值的教材。
同学们可以通过学习这套教材,巩固七年级数学知识,提高学习能力,为八年级的学习做好充分准备。
(已经整理)七升八暑期数学辅导(全集)

第一讲 与三角形有关的线段 【2 】常识点1.三角形的概念☑ 不在一条直线上的三条线段首尾按序相接构成的图形叫做三角形.构成三角形的线段叫做三角形的边,相邻双方所构成的角叫做三角形的内角,简称角,相邻双方的公共端点是三角形的极点. ☑ 三角形的表示办法三角形用符号“△”表示,极点是A,B,C 的三角形,记作“△ABC ” 三角形ABC 用符号表示为△ABC.三角形ABC 的极点C 所对的边AB 可用c 表示,极点B 所对的边AC 可用b 表示,极点A 所对的边BC 可用a表示.常识点2.三角形的三边关系【探讨】随意率性画一个△ABC,假设有一只小虫要从B 点动身,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?☑ 三角形的双方之和大于第三边,可用字母表示为a+b >c,b+c >a,a+c >b拓展:a+b >c,根据不等式的性质得c-b <a,即双方之差小于第三边. 即a-b <c <a+b (三角形的随意率性一边小于另二边和,大于另二边差)【演习1】一个三角形的双方长分离为3cm 和7cm,则此三角形的第三边的长可能是( ) A .3cmB .4cmC .7cmD .11cm【演习2】有下列长度的三条线段可否构成三角形?为什么? (1)3,5,8; (2)5,6,10; (3)5,6,7. (4)5,6,12【辨析】有三条线段a.b.c,a+b >c,扎西以为:这三条线段能构成三角形.你赞成扎西的意见吗?为什么? 【例1】用一条长为18㎝的细绳围成一个等腰三角形. (1)假如腰长是底边的2倍,那么各边的长是若干? (2)能围成有一边长为4㎝的等腰三角形吗?为什么? 【演习】1.三角形三边为3,5,3-4a,则a 的规模是.2.三角形双方长分离为25cm 和10cm,第三条边与个中一边的长相等,则第三边长为.3.等腰三角形的周长为14,个中一边长为3,则腰长为4.一个三角形周长为27cm,三边长比为2∶3∶4,则最长边比最短边长.5.等腰三角形双方为5cm 和12cm,则周长为.6.已知:等腰三角形的底边长为6cm,那么其腰长的规模是________.abc(1)CBA7.已知:一个三角形双方分离为4和7,则第三边上的中线的规模是_________. 8.下列前提中能构成三角形的是( )A.5cm, 7cm, 13cmB.3cm, 5cm, 9cmC.6cm, 9cm, 14cmD.5cm, 6cm, 11cm 9.等腰三角形的周长为16,且边长为整数,则腰与底边分离为( ) A.5,6 B.6,4 C.7,2 D.以上三种情形都有可能 11.一个三角形双方分离为3和7,第三边为偶数,第三边长为( ) A.4,6 B.4,6,8 C.6,8 D.6,8,10 11.△ABC 中,a=6x,b=8x,c=28,则x 的取值规模是( ) A.2<x <14 B.x >2 C.x <14 D.7<x <14 12.指出下列每组线段可否构成三角形图形(1)a=5,b=4,c=3 (2)a=7,b=2,c=4(3)a=6,b=6,c=12 (4)a=5,b=5,c=6 13.已知等腰三角形的双方长分离为11cm 和5cm,求它的周长.14.已知等腰三角形的底边长为8cm,一腰的中线把三角形的周长分为两部分,个中一部分比另一部分长2cm,求这个三角形的腰长.15.已知等腰三角形一边长为24cm,腰长是底边的2倍.求这个三角形的周长.16.如图,求证:AB+BC+CD+DA>AC+BD常识点3 三角形的三条主要线段三角形的高(1)界说:从三角形的一个极点向它的对边地点的直线画垂线,极点和垂足间的线段叫做三角形的高(简称三角形的高) (2)高的论述办法 ①AD 是△ABC 的高 ②AD ⊥BC,垂足为D③点D 在BC 上,且∠BDA=∠CDA=90度 【演习】画出①.②.③三个△ABC 各边的高,并解释是哪条边的高.①②③AB 边上的高是线段____ AB 边上的高是线段____ AB 边上的高是线段____ BC 边上的高是_________ BC边上的高是_________ BC 边上的高是_________ AB C A B CB ACABCDAC 边上的高是_________ AC 边上的高是_________ AC 边上的高是_________ [辨析] 高与垂线有差别吗?_____________________________________________[探讨] 画出图1中三角形ABC 三条边上的高,看看有什么发明?假如△ABC 是直角三角形.钝角三角形,上面的结论还成立吗?试着画一画【结论】________________________________________ ☑ 三角形的中线(1)界说:在三角形中,衔接一个极点和它对边中点的线段叫做三角形的中线. 三角形三条中线的交点叫做三角形的重心.【探讨2】如图,AD 为三角形ABC 的中线,△ABD 和△ACD 的面积比拟有何干系?【例2】如图,已知△ABC 的周长为16厘米,AD 是BC 边上的中线,AD=45AB,AD=4厘米,△ABD 的周长是12厘米,求△ABC 各边的长. ☑ 三角形的角等分线(1)界说:三角形的一个角的等分线与这个角的对边订交,这个角的极点和交点之间的线段叫做三角形的角等分线.[辨析]三角形的角等分线与角的等分线是一样的吗? 画出△ABC 各角的角等分线,并解释是哪角的角等分线.[探讨]不雅察画出的三条角平线,你有什么发明?_______________________________ [自我检测]如图,AD.AE.CF 分离是△ABC 的中线.角等分线和高,则: (1)BD=______=12________;(2)BC=2_______=2_______;(3)∠BAE=_______=12_______;(4)∠BAC=2_______=2_______;(5)_______=________=90常识点4 三角形的稳固性三角形的三边长一旦肯定,三角形的外形就独一肯定,这共性质叫做三角形的稳固性.四边形则不具有稳固性. 钢架桥.屋顶钢架和起重机都是应用三角形的稳固性,伸缩门则是应用四边形的不稳固性.你还能举出一些例子吗?A B C BA C FEDCBA【试一试】1.如图,AD 是△ABC 的中线,已知△ABD 比△ACD 的周长大6cm,则AB 与AC 的差为_______2.如图,D 为△ABC 中AC 边上一点,AD=1,DC=2,AB=4,E 是AB 上一点,且△ABC 的面积等于△DEC 面积的2倍,则BE 的长为( )3.若点P 是△ABC 内一点,试解释AB+AC >PB+PC【课后功课】1.AD 是△ABC 的高,可表示为,AE 是△ABC 的角等分线,可表示为,BF 是△ABC的中线,可表示为.2.如图2,AD 是△ABC 的角等分线,则∠=∠=12∠;E 在AC 上,且AE=CE,则BE 是△ABC 的;CF 是△ABC 的高,则∠=∠=900,CFAB.3.如图3,AD 是△ABC 的中线,AE 是△ABC 的角等分线,若BD=2cm,则BC=;若∠BAC=600,则∠CAE=. 4.如图4,以AD 为高的三角形共有.5.三角形的一条高是一条……………………………( )A.直线B.垂线C.垂线段D.射线6.下列说法中,精确的是………………………………( ) A.三角形的角等分线是射线B.三角形的高总在三角形的内部C.三角形的高.中线.角等分线必定是三条不同的线段D.三角形的中线在三角形的内部 7.下列图形具有稳固性的是………………………………( )A.正方形B.梯形C.三角形D.平行四边形 8.如图8,AD ⊥BC 于D,CE ⊥AB 于E,AD.CE 交于点O,OF ⊥CE,则下列说法中精确的是………………………………………………………( ) A.OE 为△ABD 中AB 边上的高 B.OD 为△BCE 中BC 边上的高 C.AE 为△AOC 中OC 边上的高 D.OF 为△AOC 中AC 边上的高9. 如图,BD 是△ABC 的角等分线,DE ∥BC,交AB 于点E,∠A=45°,∠BDC=60°,求∠BED 的度数.CA B DEF图2 AB D EC 图3 A B ED C 图410.已知BD 是△ABC 的中线,AC 长为5cm,△ABD 与△BDC 的周长差为3cm.AB 长为3cm,求BC 的长. 11.如图11,在△ABC 中,∠ACB=900,CD 是AB 边上的高,AB=5cm,BC=4cm,AC=3cm,求(1) △ABC 的面积;(2)CD 的长.12.如图12,D 是△ABC 中BC 边上一点,DE ∥AC 交AB 于点E,若∠EDA=∠EAD,试解释,AD 是△ABC 的角等分线.第二讲 与三角形有关的角 常识点1.三角形的内角和定理:三角形的内角和等于1800.【导入】我们在小学就知道三角形内角和等于1800,这个结论是经由过程试验得到的,这个命题是不是真命题还须要证实,如何证实呢?回想我们小学做过的试验,你是如何操作的?把一个三角形的两个角剪下拼在第三个角的极点处,用量角度量出∠BCD 的度数,可得到∠A+∠B+∠ACB=1800.想一想,还可以如何拼?①剪下∠A ,按图(2)拼在一路,可得到∠A+∠B+∠ACB=1800.图2②把B ∠和C ∠剪下按图(3)拼在一路,可得到∠A+∠B+∠ACB=1800.假如把上面移动的角在图长进行转移,由图1你能想到证实三角形内角和等于1800的办法吗? 证实:已知△ABC,求证:∠A+∠B+∠C=1800..【例1】如图,C 岛在A 岛的北偏东30°偏向,B 岛在A 岛的北偏东100°偏向,C 岛在B岛的北偏西55°偏向,从C 岛看A.B 两岛的视角∠ACB 是若干度?【评论辩论】直角三角形的两锐角之和是若干度?A AA A图11A EB DC图12结论: 直角三角形的两个锐角互余.直角三角形可以用符号“Rt △”表示,直角三角形ABC 可以写成Rt △ABC. 由三角形内角和定理可得:有两个角互余的三角形是直角三角形.常识点2.三角形的外角界说:三角形的一边与另一边的延长线构成的角,叫做三角形的外角. [自我探讨] 画出图中三角形ABC 的外角1.断定图中∠1是不是△ABC 的外角:_______________2.如图,(1)∠1.∠2都是△ABC 的外角吗?________________ (2)△ABC 共有若干个外角?___________________请在图中标出△ABC 的其它外角.3.探讨题:如图,这是我们证实三角形内角和定理时画的帮助线,你能就此图解释∠ACD 与∠A.∠B 的关系吗?∵C E ∥AB, ∴∠A=_____,_____=∠2 又∠ACD=_______+________ ∴∠ACD=_______+________结论1___三角形的一个外角等于与它不相邻的两个内角的和;结论2__三角形的一个外角大于任何一个与它不相邻的内角(外角两性质)【小结】三角形每个极点处有两个外角,便在盘算三角形外角和时,每个极点处只算一个外角,外角和就是三个外角的和.外角的感化:1.已知外角和与它不相邻的两个内角中的一个,求另一个2.可证一个角等于另两个角的和3.证实两个角不相等的关系 [课后演习]1.填空:求出下列各图中∠1的度数.(1)如图,∠1=______;(2)如图,∠1=______;(3)如图,∠1=______;(1)1B AC D (3)1AB C D(4)AB C D 1(5)E AB C D 1(6)E AB CD12ABC1(2)1A B C D A(1)三角形的一个外角等于两个内角的和. ( )(2)三角形的一个外角减去它的一个不相邻的内角,等于它的另一个不相邻的内角. ( ) (3)三角形的一个外角大于与它不相邻的一个内角. ( ) 2.已知:如图,∠1=30°,∠2=50°,∠3=45°, 则(1)∠4=______°;(2)∠5=______°.3.已知:如图∠1=40°,∠2=∠3,则 (1)∠4=______°;(2)∠2=______°.4.如图,AB ∥CD,∠B=55°,∠C=40°,则 (1)∠D=______°;(2)∠1=______°.5. 如图,∠BAE,∠CBF,∠ACD 是△ABC 的三个外角,它们的和是若干? 解:因为∠BAE=∠__+∠____, ∠CBF=∠__+∠___,∠ACD=__________, 所以∠BAE+∠CBF+∠ACD=(∠__+∠___)+(________)+(___________) =2(∠1+_________)=2×180°=360°. 6.已知:如图,在△ABC 中,AD 是BC 边上的高, ∠BAC=80°,∠C=40°,则∠BAD=________°. 7.已知:如图,BD 是△ABC 的角等分线, ∠A=100°,∠C=30°,则∠ADB=________°. 8.*如图,AD.BE 分离是△ABC 的高和角等分线,∠BAC=100°,∠C=30°,则∠1=________°. 9.如图所示,D,E 分离AC,AB 边上的点,DB,EC 相 交于点F,则∠A+∠B+∠C+∠EFB=_________10.△ABC 中,∠B=∠A+100,∠C=∠B+200,求△ABC 各内角的度数11.如图所示,已知∠1=∠2,∠BAC=70度,求∠DEF 的度数.12.如图所示,在△ABC 中,∠A=70°,BO,CO 分离等分∠ABC 和∠ACB,求∠BOC 的度数.第2题图54321第4题图DCBA1第3题图4321123DE FB AC第5题图DABCABDC1E ABDC第6题第7题第9题第8题OCBA13.如图所示,在△AB C 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°, 求∠DAC 的度数.4321D CB A第三讲 多边形及其内角和一、 常识点总结11180223601332n n n n n ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎧⎨⎩⎧⎨⎩⎧⎪︒-⎪︒⎨⎪⎪-⎩由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。
七年级升八年级数学暑期辅导材料

与三角形有关的线段知识点1:三角形的边三角形的概念:不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形。
(三角形的表示、边、顶点、内角)三角形的三边关系定理:三角形两边之和大于第三边. 推论:三角形两边的差小于第三边。
三角形分类有两种方法:(1)按角分类;(2)按边分类(1) 按角分类锐角三角形三角形 直角三角形 钝角三角形(2)按边分类 不等边三角形三角形 底边和腰不相等的等腰三角形 等腰三角形等边三角形考点1:认识三角形顶点A 、B 、C 所对的边分别是___________,用小写字母分别表示为 __________.2.三角形按边分类可分为__________三角形,__________三角形;等腰三角形分为底与腰__________的三角形和底与腰__________的三角形. 3.AB 为一边的三角形有( ) A.3个 B.4个 C.5个 D.6个考点2:三角形三边关系4.已知四组线段的长分别如下,以各组线段为边,能组成三角形的是( ) A.1,2,3 B.2,5,8 C.3,4,5 D.4,5,105.(2008·福州)已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A.13cmB.6cmC.5cmD.4cm 6.如果线段a 、b 、c 能组成三角形,那么,它们的长度比可能是( ) A.1∶2∶4 B.1∶3∶4C.3∶4∶7D.2∶3∶4 7.已知等腰三角形的两边长分别为4cm 和7cm ,则此三角形的周长为( ) A.15cm B .18cm C.15cm 或18cm D.不能确定8.下列各组给出的三条线段中不能组成三角形的是( ) A.3,4,5B.3a ,4a ,5aC.3+a ,4+a ,5+aD.三条线段之比为3∶5∶89.三角形三边的比是3∶4∶5,周长是96cm ,那么三边分别是________cm. 10.已知等腰三角形的周长是25cm ,其中一边长为10cm ,求另两边长__________. 11.小明的爷爷要做一个三角形的木架养鱼用,现有两根长度为3m 和5m 的木棒,还需要到某木材市场上购买腰腰底边顶角底角底角A一根.问:(1)有几种规格的木棒可供小明的爷爷选择?(2)选择哪一种规格的木棒最省钱?12.如图所示,已知P是△ABC内一点,试说明PA+PB+PC>12(AB+BC+AC).13、如图,从A经B到C是一条柏油马路,AC是一条小路,人们从A到C,为什么不走柏油路,而喜欢走小路?请你用学过的知识解释一下原因。
七升八暑假数学辅导资料(复习篇)

七升八衔接班暑假数学辅导学案(第一部分 复习篇) 2013.7复习内容第5章相交线与平行线 第6章 实数 第7章平面直角坐标系 第8章 二元一次方程组第九章 不等式与不等式组 第十章 数据的收集、整理与描述 第6章 实数一、算术平方根知识点一:算术平方根的定义 正数a 有2个平方根,其中正数a 的正的平方根,也叫做a 的算术平方根。
例:求下列各数的算术平方根(1)625(2)0. 81;(3)6;(4)2)2(-(5) 256 (6) 2)25.0(-知识点二:a 的性质在a 中,a 表示一个 数,a 表示一个 数例:1、下列各式哪些有意义,哪些没有意义?①-3 ②3-③()23- ④23-3、.当 时,x 23- 有意义。
4、322+-+-=x x y ,求xy 算术平方根。
4、若|a-5|+ 2)3(2++-c b =0,则c b a ++的算术平方根是知识点三:比较大小例:比较大小3- 2π-, 32 25.二、平方根知识点一;平方根的定义如果( )2=a,那么 叫做 的平方根。
例:判断下列各数有没有平方根,若有,求其平方根。
若没有,说明为什么。
(1) 0.81 (2) 3625(3) -100 (4) (-4)2(5)1.69 (6) 412(7) 10 (8) 5例:求下列各式中的x 的值: A . (2)()25122=-x知识点二:平方根的性质例:1、若x ²=16,则5-x 的算术平方根是 。
2、若4a+1的平方根是±5,则a ²的算术平方根是 。
3、36的平方根等于 ,算术平方根等于 。
4、已知一个正数x 的两个平方根是1+a 和3-a ,则a = ,x = .知识点三:被开方数与算术平方根之间小数点的变化规律例:477.530,732.13==求300三、立方根知识点一:立方根的定义如果X 3=a,那么 叫做 的立方根。
例:求其立方根。
(1) 64 (2) 833- (3) -216(4) (-4)3(5)0.729 (6) 0.64 例:求下列各式中的x .(1)125x 3=8 (2)(-2+x )3=-216(3)32-x =-2 (4)27(x +1)3+64=0四、实数知识点一、无理数的定义____________________________叫做无理数。
七升八暑期衔接班数学讲义(word版)

七升八暑期衔接班数学培优讲义目录1. 第一讲:与三角形有关的线段;2. 第二讲:与三角形有关的角;3. 第三讲:与三角形有关的角度求和;4. 第四讲:专题一:三角形题型训练(一);5. 第五讲:专题二:三角形题型训练(二);6. 第六讲:全等三角形;7. 第七讲:全等三角形的判定(一)SAS;8. 第八讲:全等三角形的判定(二)SSS,ASA,AAS;9. 第九讲:全等三角形的判定(三)HL;10.第十讲:专题三:全等三角形题型训练;11. 第十一讲:专题四:全等三角形知识点扩充训练;12. 第十二讲:角平分线的性质定理及逆定理;13. 第十三讲:轴对称;14. 第十四讲:等腰三角形;15. 第十五讲:等腰直角三角形;16. 第十六讲:等边三角形(一);17. 第十七讲:等边三角形(二);18. 第十八讲:专题五:全等、等腰三角形综合运用(一)19. 第十九讲:专题六:全等、等腰三角形综合运用(二)20. 第二十讲:专题七:综合题题型专题训练;第一讲与三角形有关的线段【知识要点】一、三角形1. 概念:①三条线段;②不在同一直线上;③首尾相连. A2. 几何表示:①顶点;②内角、外角;③边;④三角形.3. 三种重要线段及画法:①中线;②角平分线;③高线.B C二、三角形按边分类:(注意:等边三角形是特殊的等腰三角形)不等边三角形三角形等腰三角形腰底不相等的等腰三角形腰底相等的等腰三角形等边三角形三、三角形的三边关系( 教具)引例:已知平面上有A、B、C 三点. 根据下列线段的长度判断A、B、C 存在的位置情况:(1)若AB=9,AC=4,BC=5,则A、B、C 存在的位置情况是:(2)若AB=3,AC=10,BC=7,则A、B、C 存在的位置情况是:(3)若AB=5,AC=4,BC=8,则A、B、C 存在的位置情况是:(4)若AB=3,AC=9,BC=10,则A、B、C 存在的位置情况是:(5)若AB=4,AC=6,BC=12,则A、B、C 存在的位置情况是:总结:三角形的三边关系定理:三角形任意两边之和大于第三边.三角形的三边关系定理的推论:三角形任意两边之差小于第三边.【应用】利用定理判断三条线段能否构成三角形或确定三角形第三边的长度或范围.1.已知BC=a,AC=b,AB=c.(1)A、B、C 三点在同一条直线上,则a,b,c 满足:;(2)若构成△ABC,则a,b,c 满足:;2.已知BC=a,AC=b,AB=c,且a<b<c.(1)A、B、C 三点在同一条直线上,则a,b,c 满足:;(2)若构成△ABC,则a,b,c 满足:;【新知讲授】例一、如图,在△ABC中.①AD为△ABC的中线,则线段= = 1;A 2②AE为△ABC的角平分线,则= = 1;2③AF为△ABC的高线,则= =90 °;④以AD为边的三角形有;B F E D C⑤∠AEC是的一个内角;是的一个外角.例二、已知,如图,BD⊥AC,AE⊥CG,AF⊥AC,AG⊥AB,则△ABC的BC边上的高线是线段( ).(A)BD (B) AE (C) AF (D) AG例三、(1)以下列各组长度的线段为边,能.构成三角形的是( ).(A)7cm ,5cm,12cm (B)6cm ,8cm,15cm(C)4cm ,6cm,5cm (D)8cm ,4cm,3cm GFEBA D C(2)满足下列条件的三条线段不能..组成三角形的是. (a、b、c 均为正数)①a=5,b=9,c=7;②a∶b∶c=2 ∶3∶5;③1,a,b,其中1+a>b;④a,b,c,其中a+b>c;⑤a+2,a+6,5;⑥a<b<c,其中a+b>c.例四、已知三角形的三边长分别为2,5,x,则x 的取值范围是.发散:①已知三角形的三边长分别为2,5,2x-1 ,则x 的取值范围是.②已知三角形的三边长分别为2,5,2 4 x,则x 的取值范围是.3③已知三角形三边长分别为2,x,13,若x 为正整数,则这样的三角形个数为( ).(A)2 (B)3 (C)5 (D)13④已知三角形的两边长分别为2,5,则三角形周长l 的取值范围是.⑤已知一个三角形中两边长分别为a、b,且a>b,那么这个三角形的周长l 的取值范围是.(A)3b <l <3a (B)2a <l <2a+2b (C)a+2b <l <2a+b (D)a+2b <l <3a-b例五、已知三角形的三边长分别为5,11-x ,3x-1.(1)则x 的取值范围是;(2)则它的周长l 的取值范围是;(3)若它是一个等腰三角形,则x 的值是.发散:①已知三角形的三边长分别为2,5-x ,x-1 ,则x 的取值范围是.②已知三角形两边的长分别为 3 和7,则第三边 a 的取值范围是;若它的周长是偶数,则满足条件的三角形共有个;若它是一个等腰三角形,则它的周长为.③已知等腰三角形腰长为2,则三角形底边 a 的取值范围是;周长l 的取值范围是.④已知三角形三边的长a、b、c 是三个连续正整数,则它的周长l 的取值范围是. 若它的周长小于19,则满足条件的三角形共有个.⑤若 a 、b、c 是△ABC的三边长,化简| a b c | +| a b c | 的结果为( ).(A) 2b (B)0 (C) 2a (D) 2a 2c⑥已知在△ABC中,AB=7,BC∶AC=4∶3,则△ABC的周长l 的取值范围为.【题型训练】1. 以下列各组线段为边,能组成三角形的是( ).(A)2cm ,3cm,5cm (B)5cm ,6cm,10cm (C)1cm ,1cm,3cm (D)3cm ,4cm,9cm2.各组线段的比分别为①1∶3∶4;②1∶2∶3;③1∶4∶6;④3∶4∶5;⑤3∶3∶6. 其中能组成三角形的有( ).(A)1 组(B)2 组(C)3 组(D)4 组3. 三角形的下列线段中能将三角形的面积分成相等两部分的是()(A) 中线(B) 角平分线(C) 高线(D) 角平分线或中线4. 已知三角形的三边长分别为6,7,x,则x 的取值范围是( ).(A)2 <x<12 (B)1 <x<13 (C)6 <x<7 (D)1 <x<75.已知三角形的两边长分别为 3 和5,则周长l 的取值范围是( ).(A)6<l <15 (B)6<l <16 (C)11<l <13 (D)10<l <166.已知等腰三角形的两边长分别为 5 和11,则周长是( ).(A)21 (B)27 (C)32 (D)21 或277.等腰三角形的底边长为8,则腰长 a 的范围为.8. 等腰三角形的腰长为8,则底边长 a 的范围为.9. 等腰三角形的周长为8,则腰长 a 的范围为;底边长 b 的范围为.10. 三角形的两边长分别为6,8,则周长l 的范围为.11. 三角形的两边长分别为6,8,则最长边 a 的范围为.12. 等腰三角形的周长为14,一边长为3,则另两边长分别为.13. 若a、b、c 分别为△ABC的三边长,则|a+b-c |- |b-c-a |+|c-b-a |= .14. 已知在ΔABC中,AB=AC,它的周长为16 厘米,AC边上的中线BD把ABC分成周长之差为 4 厘米的两个三角形,求ABC各边的长. ADB C15. 等腰三角形一腰的中线(如图,等腰△ABC中,AB=AC,BD为△ABC的中线)把它的周长分为15 厘米和 6 厘米两部分,求该三角形各边长. ADB C综合探究、三角形两条内、外角平分线的夹角与第三个内角之间的关系1.如图,△ABC中,∠ABC、∠ACB的平分线交于点I ,探求∠I 与∠A 的关系;2.如图,在△ABC中,∠A B C、∠ACB的外角∠ACD的平分线交于点I ,探求∠I 与∠A 的关系;3.如图,在△ABC中,∠ABC的外角∠CBD、∠ACB的外角∠BCE的平分线交于点I ,探求∠I 与∠A 的关系.A A AII B CB C B C D D EI例三、“箭形”、“蝶形”、“四边形”两条内、外角平分线的夹角与另两个内角之间的关系发散探索一:如图,∠A B D、∠ACD的平分线交于点I ,探索∠I 与∠A、∠D 之间的数量关系.A A I ADIID B CB C B C D发散探索二:如图,∠ABD的平分线与∠ACD的邻补角∠ACE的平分线所在的直线交于点I ,探索∠I 与∠A、∠D 之间的数量关系.AIBB DCEIAA IDEC B CE D发散探索三:如图,∠ABD的邻补角∠DBE平分线与∠ACD的邻补角∠DCF的平分线交于点I ,探索∠I 与∠A、∠D之间的数量关系.A A AD【知识要点】第二讲与三角形有关的角一、三角形按角分类: ①锐角三角形;②直角三角形;③钝角三角形;A二、三角形的内角和定理:三角形内角和为180°(∠ A+∠B+∠1=180°);三、三角形的内角和定理的推论:1 2①直角三角形两锐角互余;B C②三角形的任意一个外角等于和它不相邻的两个内角之和(∠2=∠A+∠B);③三角形的任意一个外角大于任意一个和它不相邻的内角;四、n 边形的内角和定理:(n-2 )×180°;五、n 边形的外角和为360°.【新知讲授】例一、①正方形的每个内角的度数为;正五边形的每个内角的度数为;正六边形的每个内角的度数为;正八边形的每个内角的度数为;正十边形的每个内角的度数为;正十二边形的每个内角的度数为.②若一个正多边形的内角和等于等于外角和的 5 倍,则它的边数是.③若一个正多边形的每一个内角都等于144°,则它的边数是.④若一个正多边形的每一个内角都等于相邻外角的 2 倍°,则它的边数是.例二、如图,△ABC中,∠A=50°,两条高线B D、CE所在直线交于点H,求∠BHC的度数.A AEECH D BDHB C例三、如图,△ABC中,∠A=50°,两条角平分线B D、CE交于点I ,求∠BIC 的度数.AEIB C例四、如图,四边形ABCD中,∠A=∠C,∠B=∠D,求证:AB∥CD,AD∥BC.A D例五、如图,AB∥C D,AD∥BC,AE⊥BC,AF⊥CD,求证:∠BBAD+∠EAF=180°.CA DFD例六、如图,六边形ABCDEF中,AF∥CD,∠A=∠D,∠B=∠E,求证:BC∥EF.A FEBC D例七、如图,在凸六边形ABCDEF中,∠A+∠B+∠F=∠C+∠D+∠E,求证:BC∥EF.DECFA B【题型训练】1.如图,△ABC中,BD、CE为两条角平分线,若∠BDC=90°,∠BEC=105°,求∠ A.AEDB C2.如图,△ABC中,BD、CE为两条角平分线,若∠BDC=∠AEC,求∠A 的度数.AEDB C3.如图,在△ABC中,BD为内角平分线,CE为外角平分线,若∠BDC=125°,∠E=40°,求∠BAC的度数.EADB C M4.如图,在△ABC中,BD为内角平分线,CE为外角平分线,若∠BDC与∠E 互补,求∠BAC的度数.EADB C M第二讲作业1.如果一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是( ).(A) 等腰三角形(B) 直角三角形(C) 锐角三角形(D) 钝角三角形2.如图所示,∠A、∠1、∠2的大小关系是( ).(A) ∠A>∠1>∠2 (B) ∠2>∠1>∠A(C) ∠A>∠2>∠1 (D) ∠2>∠A>∠13.下面四个图形中,能判断∠1>∠2 的是( ).(A) (B) (C) (D)4.将一副三角板按如图所示摆放,图中∠α的度数是( ).A.75°B.90°C.105°D.120°5. 在活动课上,小聪将一副三角板按图中方式叠放,则∠=( ).(A) 30°(B) 45°(C) 60°(D) 75°6. 如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2 的度数为( ).(A)120 °(B)180 °(C)240 °(D)300 °7.如图,在△ABC中,∠C=70o,沿图中虚线截去∠C,则∠1+∠2=( ).(A)360 o (B)250 o (C)180 o (D)140 o8.如图,折纸活动中,小明制作了一张△ABC 纸片,点D、E 分别是边AB、AC上,将△ABC沿着DE折叠,A 与A′重合,若∠ A=75°,则∠1+∠2= ( ).(A) 150°(B) 210°(C) 105°(D) 75°9.如图,在△ABC 中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD 的度数为()(A)40 °(B)45 °(C)50 °(D)55 °10.已知ΔABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A,则此三角形( ).(A) 一定有一个内角为45 (B) 一定有一个内角为60(C) 一定是直角三角形(D) 一定是钝角三角形11.将一副三角尺按如图方式放置,则图中∠AOB的度数为( ). OB(A) 75°(B) 95°(C) 105°(D) 120°12.若一个正多边形的每一个内角都等于160°,则它是( ). A(A) 正十六形(B) 正十七形(C) 正十八边形(D) 正十九边形13.一个多边形的内角和比它的外角和的 2 倍还大180°,这个多边形的边数为( ).(A)7 (B)8 (C)9 (D)1014.已知:在△ABC 中,∠B是∠A的 2 倍,∠C比∠A大20°,则∠A等于( ).(A)40 °(B)60 °(C)80 °(D)90 °15.如图,人民币旧版壹角硬币内部的正多边形每个内角度数是.16.如图,在△ABC中,D、E 分别是边AB、AC上的两点,BE、CD相交于点F,∠A=62°,∠ACD=40°,∠ABE=20°,求∠BFC的度数.AD E17.如图,已知直线DE分别交△ABC 的边AB、AC于D、E 两点,交边BC的延长线于点F,若∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数.第三讲:与三角形有关的角度求和【知识要点】1. 与三角形有关的四个基本图及其演变;2. 星形图形的角度求和.【新知讲授】例一、如图,直接写出∠ D 与∠A、∠B、∠C 之间的数量关系.A A ADDB CB C B C D箭形:;蝶形:;四边形:.请给出“箭形”基本图结论的证明(你能想出几种不同的方法):例二、三角形两条内、外角平分线的夹角与第三个内角之间的关系A1.如图,△ABC中,∠ABC、∠ACB的平分线交于点I ,探求∠I 与∠A 的关系;IB C2.如图,在△ABC中,∠A B C、∠ACB的外角∠ACD的平分线交于点I ,探求∠I 与∠A的关系;AIB C DE3. 如图,在△ ABC 中,∠ ABC 的外角∠ C B D 、∠ ACB 的外角∠ BCE 的平分线交于点 I ,探求∠ I 与∠ A 的关系 .ABC例三、“箭形”、“蝶形”、“四边形”两条内、外角平分线的夹角与另两个内角之间D的关系E发散探索一: 如图,∠ A B D 、∠ ACD 的平分线交于点 I ,探索∠ I 与∠ A 、∠ D 之间的数量关系 .IAAIADIIDBCBCBCD发散探索二: 如图,∠ ABD 的平分线与∠ ACD 的邻补角∠ ACE 的平分线所在的直线交于点 I ,探索∠ I 与∠ A 、∠ D 之间的数量关系.A IBBDCEIAA IDECBCED发散探索三: 如图,∠ ABD 的邻补角∠ DBE 平分线与∠ ACD 的邻补角∠ DCF 的平分线交于点 I ,探索∠ I 与∠ A 、∠ D 之间的数量 关系 .AAADDBC B C B DC FEFEIIFI例四、如图,在△ ABC 中, BP 、BQ 三等分∠ ABC , CP 、CQ 三等分∠ ACB.( 1)若∠ A=60°,直接写出:∠ BPC 的度数为,∠ BQC 的度数为;( 2)连接 PQ 并延长交 BC 于点 D ,若∠ BQD=63°,∠ CQD=80°,求△ ABC 三个内角的度数 .A例五、如图,B D、CE交于点M,OB平分∠ ABD,OC平分∠ ACE,OD平分∠ ADB,OE平分∠ AEC,求证:∠BOE=∠COD;AE ODM【题型训练】BC1.如图,求∠A+∠B+∠C+∠D+∠E 的度数和. AD CB EA2.如图,求∠A+∠B+∠C+∠D+∠E+∠F 的度数和.EFBC 3.如图,已知∠1=60°,求∠A+∠B+∠C+∠D+∠E+∠F 的度数和.发散探索:①如图,∠A+∠B+∠C+∠D+∠E= ;②如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G= ;③如图,∠A+∠B+∠C+∠D+∠E+∠F= .④如图,∠A+∠B+∠C+∠D+∠E+∠F= .⑤如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G= ;⑥如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G= ;⑦如图,BC⊥EF,求∠ A+∠B+∠C+∠D+∠E+∠F 的度数.D第三讲作业1.如图,B 岛在 A 岛的南偏西30°,A 岛在C岛的北偏西35°,B 岛在 C 岛的北偏西78°,则从B岛看A、C两岛的视角∠ABC的度数为( ).(A)65 °(B)72 °(C)75 °(D)78 °2.如图,D、E 分别是AB、AC 上一点,BE、CD 相交于点F,∠ACD=30°,∠ABE=20°,∠BDC+∠BEC=170°则∠ A 等于( ).(A)50 °(B)85 °(C)70 °(D)60 °3.一副三角板,如图所示叠放在一起,则图中∠的度数是( ).(A)75 °(B)60 °(C)65 °(D)55 °ADEFB C4.如图,在△ABC中,∠BAC=36°,∠C=72°,BD平分∠ABC交AC于点D,AF∥BC,交BD的延长线于点F,AE 平分∠CAF交DF 于E 点. 我们定义:在一个三角形中,有一个角是36°,其余两个角均为72°的三角形和有一个角是108°,其余两个角均为36°的三角形均被称作“黄金三角形”,则这个图中黄金三角形共有( ).(A)8 个(B)7 个(C)6 个(D)5 个5.如图,∠A=35°,∠B=∠C=90°,则∠D的度数是( ).(A)35 °(B)45 °(C)55 °(D)65 °6.如图,已知∠A+∠BCD=140°,BO平分∠ABC,DO平分∠ADC,则∠BOD=( ).(A)40 °(B)60 °(C)70 °(D)80 °7.如图,一个直角三角形纸片,剪去直角后,得到了一个四边形,则∠1+∠2= .8.如图,在△ABC中,∠A=80°,点D为边BC延长线上的一点,∠ACD=150°,则∠B= .9.将一副直角三角板如上图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠ 1 的度数为.10.一副三角板叠在一起如图放置,最小锐角的顶点 D 恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M .若∠ADF=100,°则∠BMD为.1.如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= .12.如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD 的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,,如此下去,∠A n﹣1BC的平分线与∠A n﹣1CD的平分线交于点A n .设∠A=θ.则∠A1= ;A n = .13.已知:如图1,在△ABC中,∠ABC、∠ACB的角平分线交于点O,则1 11 BOC 90 A21802 2A ;如图 2 ,在△ABC 中,∠ABC、∠ACB 的两条三等分角线分别对应交于点O1 、O2 ,则BO1C 21801A ,BO C11802A ;;根据以上阅读理解,当n 等分角时,内部有2n 1 个交点,你以猜想3 3 3 3 BO n 1 C =( ).(A) 2 1180 AA A A n nO n-1(B) 1 2 O2180 A On n O1 O2O1 n 1(C) (C)n180 A1 n 1 C B C B C(D) 1180图1n 1A图2 图3 n n14.在△ ABC中,∠ C=∠ABC=2∠A,BD是AC边上的高,BE 平分∠ ABC,求∠ DBE度数.B第四讲专题一:三角形题型训练(一)【知识要点】平行线、三角形内角和的综合运用【新知讲授】例一、如图,在四边形ABCD中,∠A=∠C=90°,BE、DF 分别平分∠ABC、∠ADC,请你判断BE、DF 的位置关系并证明你的结A论.DEFB C例二、如图,在四边形ABCD中,∠A=∠C=90°,∠ABC的外角平分线与∠ADC的平分线交于点E,请你判断BE、DE的位置关系并证明你的结论.ADEM B C例三、如图,在四边形ABCD中,∠A=∠C=90°,BE、DF分别平分∠ABC、∠ADC的外角,请你判断BE、DF的位置关系并证明你的结论. ADNBCFME例四、如图,∠A=∠C=90°,∠ABC的平分线与∠ADC的平分线交于点E,请你判断B E、DE的位置关系并证明你的结论.DBCEA例五、如图,∠A=∠C=90°,BE平分∠ABC,DF 平分∠ADC的的外角,请你判断BE、DE的位置关系并证明你的结论.MDF例六、如图,∠A=∠C=90°,∠ABC的外角平分线与∠ADC的外角平分线交于点E,请你判断BE、DE的位置关系并证明你的结论.NEDMCBA例七、如图,△ABC中,P 为BC边上任一点,PD∥AB,PE∥AC.(1)若∠ A=60°,求∠ DPE的度数;(2)若EM平分∠BEP,DN平分∠CDP,试判断EM与DN之间的位置关系,写出你的结论并证明.ADEB P CM N例八、如图,△ABC中,D、E、F 分别在三边上,∠BDE=∠BED,∠CDF=∠CFD.(1)若∠ A=70°,求∠ EDF的度数;(2)EM平分∠BED,FN平分∠CFD,若EM∥FN,求∠A 的度数. AEFB M D N C例九、如图,△ABC中,D、E、F 分别在三边上,∠DBE=∠DEB,∠DCF=∠DFC. A(1)若∠A=70°,求∠EDF的度数;E(2)EM平分∠ BED,FN平分∠ CFD,若EM∥FN,求∠ A 的度数.F【题型训练】 B M D N C1. 如图1、图 2 是由10 把相同的折扇组成的“蝶恋花”和“梅花”,图中的折扇完全打开且无重叠,则“梅花”图案中五角星的 5 个锐角的度数均为( ).(A) 36 °(B) 42 °(C) 45 °(D) 48 °2. 如图,在△ABC中,∠B=∠C,D是BC上一点,DE⊥BC交AC于点E,DF⊥A B,垂足为F,若∠AED=160°,则∠EDF等于( ).(A)50 °(B)60 °(C)70 °(D)80 °3. 如图,△ABC中,∠B=∠C,∠BAD=32°,∠ADE=∠AED,则∠CDE= .AE4. 已知△ABC 中,∠ACB—∠B=90°,∠BAC 的平分线交BC于E,∠BAC的外角的平分线交BC的延长线于F,则△AEF 的形状是.5. 如图,AB∥CD,∠A=∠C,AE⊥DE,∠D=130°,则∠B的度数为.6.如图:点D、E、F 为△A BC三边上的点,则∠1+∠2 +∠3+∠4+∠5+∠6= .DA D CEB EC FA Bc 60 ,∠P=110°,则de 的7. 若一束光线经过三块平面镜反射,反射的路线如图所示,图中的字母表示相应的度数,若值为,x的值.B M CA D,则∠BAD= ,8. 如图,在平行四边形ABCD中,∠BAD的平分线交边BC于点M,连接MD,且MD恰好平分∠AMC,若∠MDC=4°5∠ABC= .第四讲作业1. 如图,已知△ABC的三个顶点分别在直线a、b 上,且a∥b,若∠1=120°,∠2=80°,则∠3 的度数是( ).(A)40 °(B)60 °(C)80 °(D)120 °2. 如图,BD∥EF,AE与BD交于点C,若∠ABC=30°,∠BAC=75°,则∠CEF的大小为( ).(A)60 °(B)75 °(C)90 °(D)105 °3. 如图,已知D、E 在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A 的度数为( ).(A)100 °(B)90 °(C)80 °(D)70 °4. 已知,直线l 1∥l2,将一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( ).(A) 30°(B) 35°(C) 40°(D) 45°5. 如图,将三角尺的直角顶点放在直线 a 上,a∥b,∠1=50°,∠2=60°,则∠3的度数为( ).(A) 50°(B) 60°(C) 70°(D) 80°6. 小明同学把一个含有45°角的直角三角板在如图所示的两条平行线m,n 上,测得=120°,则的度数是( ).(A)45 °(B)55 °(C)65 °(D)75 °7. 如图,在Rt △ABC中,∠C=90°.D 为边CA延长线上的一点,DE‖AB, ∠ADE=42°,则∠ B 的大小为( ).(A) 42 °(B) 45 °(C) 48 °(D)58 °8. 如图,B 处在 A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在 B 处的北偏东80°方向,则∠ACB等于()(A)65 °(B)72 °(C)75 °(D)78 °9. 如图,已知AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是( ).(A)63 °(B)83 °(C)73 °(D)53 °10. 如图,已知a∥b,小亮把三角板的直角顶点放在直线 b 上.若∠1=40°,则∠2的度数为.11. 如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ A=60°.(1)求∠ EDC的度数;(2)求∠ BDC度数.12.如图,∠ DAB+∠D=180°,AC平分∠ DAB,且∠ CAD=25°,∠ B=95°.(1)求∠ DCA的度数;(2)求∠ FEA的度数.13.如图,B 处在A处的南偏西57°的方向, C 处在 A 处的南偏东15°方向,C 处在 B 处的北偏东82°方向,求∠C的度数.A北南CB第五讲专题一:三角形题型训练(二)知识点:三角形三边的关系定理:两边之和大于第三边;两边之差小于第三边三角形的内角和定理:三角形的内角和等于180°典型例题:1、已知Δ ABC的周长为10,且三边长为整数,求三边的长。
初一升初二暑假数学辅导资料(二)

初一升初二数学暑假辅导资料(二)第十二章 全等三角形学习内容: 12.1全等三角形学习目标: 1.能说出怎样的两个图形是全等形,并会用符号语言表示两个三角形全等。
2.能在全等三角形中正确地找出对应顶点、对应边、对应角。
3.能说出全等三角形的对应边、对应角相等的性质。
学习重点:探究全等三角形的性质学习难点: 掌握两个全等三角形的对应边、对应角 一 课前预习:阅读课本P31-32,解决下列问题 (一)、全等形、全等三角形的概念阅读课本P31内容,回答课本思考问题,并完成下面填空: 1.能够完全重合的两个图形叫做 .全等图形的特征:全等图形的 和 都相同. 2.全等三角形.两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
、全等三角形的对应元素及表示阅读课本P31第一个思考及下面两段内容,完成下面填空:1. 平移 翻折 旋转甲DCABFE 乙DCAB丙DCABE启示:一个图形经过平移、翻折、旋转后, 变化了,•但 、 都没有改变,所以平移、翻折、旋转前后的图形 ,这也是我们通过运动的方法寻全等的一种策略.第(4)题图EBAE 第(1)题图E C BFC第(2)题图D A C B 2.全等三角形的对应元素(说一说)(1)对应顶点(三个)——重合的(2)对应边(三条) ——重合的 (3)对应角(三个) ——重合的 3.寻找对应元素的规律(1)有公共边的,公共边是 ;(2)有公共角的,公共角是 ; (3)有对顶角的,对顶角是 ;(4)在两个全等三角形中,最长边对应最长边,最短边对应最短边;最大角对应最大角,最小角对应最小角.简单记为:(1)大边对应大边,大角对应 ;(2) 公共边是对应边,公共角是 ,对顶角也是 ;4.“全等”用“ ”表示,读作“ ”如图甲记作:△ABC ≌△DEF 读作:△ABC 全等于△DEF 如图乙记作: 读作: 如图丙记作: 读作:注意:两个三角形全等时,把表示对应顶点的字母写在对应的位置上. (三)、全等三角形的性质阅读课本P32第二个思考及下面内容,完成下面填空:课堂探究(小组讨论 合作交流)活动一:观察下列各组的两个全等三角形,并回答问题:(1) 如图(1)△ABC ≌△DEF ,BC 的对应边是 ,即可记为BC= 。
初一升初二暑假数学教材讲义
第1讲 平方根 月 日 姓名:【学习目标】1、了解算术平方根与平方根的概念,并且会用根号表示;2、会进行有关平方根和算术平方根的运算;3、理解算术平方根与平方根的区别和联系,培养同学们的抽象概括能力。
【知识要点】1、算术平方根:如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做的算 术平方根,记作“a ” ,读作“根号a ”。
注意:(1)规定0的算术平方根为0,即00=;(2)负数没有算术平方根,也就是a 有意义时,a 一定表示一个非负数;(3)a 0≥(0≥a )。
2、平方根:如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫做a 的平方根(也叫二次方根)。
注意:(1)一个正数a 必须有两个平方根,一个是a 的算术平方根“a ” ,另外一个是“-a ”,读作“负根号a ”,它们互为相反数;(2)0只有一个平方根,是它本身;(3)负数没有平方根。
3、开平方:求一个数a 的平方根的运算。
其中a 叫做被开方数。
⎩⎨⎧<-≥==)0()0(2a a a a a a()a a =2()0≥a观察二者的特征,注意他们的区别与联系。
【典型例题】例1、 求下列各数的算术平方根与平方根(1)25 (2)100 (3)1(4)0 (5)94(6)7例2、 计算(1)81 (2)41 (3)-169例3、计算(1)()264 (2)24925⎪⎪⎭⎫ ⎝⎛(3)()22.7 (4)()22-(5)2544369++ (6)416925-⨯例4、当22-+a a 有意义时,a 的取值范围是多少?【经典练习】1、求下列各数的算术平方根和平方根(1)16 (2)225121 (3)12(4)0.01 (5)()25-2、计算(1)28116⎪⎪⎭⎫ ⎝⎛ (2)()25.0-(3)146449+ (4)41225.0+⨯3、判断 (1)-52的平方根为-5 ( )(2)正数的平方根有两个,它们是互为相反数 ( )(3)0和负数没有平方根 ( )(4)4是2的算术平方根 ( )(5)9的平方根是±3 ( ) (6)因为161的平方根是±41,所以161=±41 ( ) 4、121---x x 有意义,则x 的范围___________5、如果a (a >0)的平方根是±m ,那么( )A.a 2=±mB.a =±m 2C.a =±mD.±a =±m【课后作业】1、下列各数中没有平方根的数是( )A.-(-2)3B.3-3C.a0 D.-(a 2+1) 2、2a 等于( )A.aB.-aC.±aD.以上答案都不对3、若正方形的边长是a ,面积为S ,那么( )A.S 的平方根是aB.a 是S 的算术平方根C.a =±SD.S =a 4、当x ___________时,x 31-是二次根式.5、要使21-+x x 有意义,则x 的范围为___________ 6、计算 (1)- 16964 (2)2243+记一记100102= 121112= 144122= 169132=196142= 225152= 256162= 289172=324182= 361192= 400202= 625252=第6讲 立方根 月 日 姓名:【学习目标】1. 掌握立方根的概念,并会用根号表示一个数的立方根。
初一升初二数学暑假补习资料
初一升初二数学暑假补习资料(华师版)(总47页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一节平方根[情景引入]【知识要点】1、平方根一般地,如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫做a 的平方根(也叫做二次方根)。
①一个正数有两个平方根,它们互为相反数;②0只有一个平方根是0;③负数没有平方根。
2、算术平方根一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x就叫做a 的算术平方根,记为“a ”,读作“根号a ”。
特别地,我们规定0的算术平方根是0,即00=。
3、开平方求一个数a 的平方根的运算叫做开平方,其中a 叫做被开方数,a 必须为非负数,即a 有意义的条件是a ≥0。
4、开平方与平方的关系:互为逆运算。
5、a (a ≥0)的非负性,即一个非负数的算术平方根仍为非负数。
6、形如()()⎩⎨⎧<-≥==002a a a a a a【典型例题】例1-1、求下列各数的算术平方根、平方根。
①259; ②64; ④; ⑤49151; ⑥0。
例1-2、求下列各数的算术平方根、平方根:①3625; ③; ④2563; ⑤81;例2、填空:(1)23= ; (2)()231-= ; (5)210= ; (6)()2101-= ;(9)对于任意数x ,2x = ;例3、求适合下列各式中未知数的值:(1)()0064252<=-x x (2)()4912=+x(3)()()3252100-=--x (4)13=x例4、已知355+-+-=x x y ;求x+y 的值。
例5、已知()02132=++-+-z y x ,求xyz 的值。
例6、x为何值时,x1有意义。
x+-例7、已知1a的平方根是4±,求ba2+b+的平方根。
3-a的平方根是32-±,1例8、小明家最近刚购买一套新房,他要在客厅铺花岗岩地面,客厅面积为232m,他要用50块正方形的花岗岩。
初一升初二数学暑期衔接教辅
初一升初二暑期数学辅导资料目录第一讲三角形总复习第二讲如何做几何证明题第三讲勾股定理第四讲平方根第五讲立方根第六讲实数第七讲非负数的性质及应用第八讲分母有理化第九讲二次根式的混合运算第十讲平行四边形的性质第十一讲平行四边形的判定第十二讲菱形第十三讲《勾股定理》质量检测第十四讲《实数》质量检测第十五讲《二次根式》质量检测第十六讲综合评估- 1 -乐教、诚毅、奉献、创新第一讲、三角形总复习【知识精读】1. 三角形的求证:说明:在角度不定的情况下比较两角大小,如果能运用三角形内角和都等于180°间接求得。
- 2 -乐教、诚毅、奉献、创新2. 三角形三边关系的应用说明:在分析此问题时,首先将求证式变形,得,然后通过倍长中线的方法,相当于将绕点旋转180°构成旋转型的全等三角形,把AC、AB、2AM转化到同一三角形中,利用三角形三边不等关系,达到解决问题的目的。
很自然有。
请同学们自己试着证明。
223. 角平分线定理的应用说明:本题的证明过程中先使用角平分线的定理是为判定定理的运用创造了条件MG=MB。
同时要注意不必证明三角形全等,否则就是重复判定定理的证明过程。
- 3 -乐教、诚毅、奉献、创新4. 全等三角形的应用(1)构造全等三角形解决问题例4. 已知如图4,△ABC是边长为1的等边三角形,△BDC是顶角(∠BDC)交AC于N,。
采用旋转构造全等的方法来解决。
说明:通过旋转,使已知图形中的角、线段充分得到利用,促进了问题的解决。
(2)“全等三角形”在综合题中的应用例5. 如图5,已知:点C是∠FAE的平分线AC上一点,CE⊥AE,CF⊥AF,E、F为垂10。
求AC乐教、诚毅、奉献、创新分析:要求AC的长,需在直角三角形ACE中知AE、CE的长,而AE、CE均不是已知长度的线段,这时需要通过证全等三角形,利用其性质,创设条件证出线段相等,进而求出AE、CE的长,使问题得以解决。
5、中考点拨例1.如图,在中,已知∠B和∠C的平分线相交于点F,过点F作DE∥BC,交AB6、题型展示例1. 已知:如图6,中,AB=AC,∠ACB=90°,D是AC上一点,AE 垂直BD的延长线于E,。
七年级升八年级数学暑期辅导材料
与三角形有关的线段知识点1:三角形的边三角形的概念:不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形。
(三角形的表示、边、顶点、内角)三角形的三边关系定理:三角形两边之和大于第三边. 推论:三角形两边的差小于第三边。
三角形分类有两种方法:(1)按角分类;(2)按边分类(1) 按角分类锐角三角形三角形 直角三角形钝角三角形 (2)按边分类不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形等边三角形考点1:认识三角形1.如图7.1.1-1的三角形记作__________,它的三条边是__________,三个顶点分别是_________,三个内角是__________,顶点A 、B 、C 所对的边分别是___________,用小写字母分别表示为 __________.2.三角形按边分类可分为__________三角形,__________三角形;等腰三角形分为底与腰__________的三角形和底与腰__________的三角形.3.如图7.1.1-2所示,以AB 为一边的三角形有( ) A.3个 B.4个 C.5个 D.6个考点2:三角形三边关系4.已知四组线段的长分别如下,以各组线段为边,能组成三角形的是( ) A.1,2,3 B.2,5,8 C.3,4,5 D.4,5,105.(2008·福州)已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A.13cmB.6cmC.5cmD.4cm6.如果线段a 、b 、c 能组成三角形,那么,它们的长度比可能是( ) A.1∶2∶4 B.1∶3∶4 C.3∶4∶7 D.2∶3∶47.已知等腰三角形的两边长分别为4cm 和7cm ,则此三角形的周长为( ) A.15cm B.18cm C.15cm 或18cm D.不能确定图图腰 腰底边顶角 底角 底角8.下列各组给出的三条线段中不能组成三角形的是( ) A.3,4,5 B.3a ,4a ,5aC.3+a ,4+a ,5+aD.三条线段之比为3∶5∶89.三角形三边的比是3∶4∶5,周长是96cm ,那么三边分别是________cm.10.已知等腰三角形的周长是25cm ,其中一边长为10cm ,求另两边长__________. 11.某木材市场上木棒规格和价格如下表:的木棒,还需要到某木材市场上购买一根.问:(1)有几种规格的木棒可供小明的爷爷选择?(2)选择哪一种规格的木棒最省钱?12. 如图所示,已知P 是△ABC 内一点,试说明PA+PB+PC>12(AB+BC+AC).13、如图,从A 经B 到C 是一条柏油马路,AC 是一条小路,人们从A 到C ,为什么不走柏油路,而喜欢走小路?请你用学过的知识解释一下原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与三角形有关的线段知识点1:三角形的边三角形的概念:不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形。
(三角形的表示、边、顶点、内角)三角形的三边关系定理:三角形两边之和大于第三边. 推论:三角形两边的差小于第三边。
三角形分类有两种方法:(1)按角分类;(2)按边分类(1) 按角分类锐角三角形三角形 直角三角形钝角三角形 (2)按边分类不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形等边三角形考点1:认识三角形1.如图7.1.1-1的三角形记作__________,它的三条边是__________,三个顶点分别是_________,三个内角是__________,顶点A 、B 、C 所对的边分别是___________,用小写字母分别表示为 __________.2.三角形按边分类可分为__________三角形,__________三角形;等腰三角形分为底与腰__________的三角形和底与腰__________的三角形.3.如图7.1.1-2所示,以AB 为一边的三角形有( ) A.3个 B.4个 C.5个 D.6个考点2:三角形三边关系4.已知四组线段的长分别如下,以各组线段为边,能组成三角形的是( ) A.1,2,3 B.2,5,8 C.3,4,5 D.4,5,105.(2008·福州)已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A.13cm B.6cm C.5cm D.4cm6.如果线段a 、b 、c 能组成三角形,那么,它们的长度比可能是( ) A.1∶2∶4 B.1∶3∶4 C.3∶4∶7 D.2∶3∶47.已知等腰三角形的两边长分别为4cm 和7cm ,则此三角形的周长为( ) A.15cm B.18cm C.15cm 或18cm D.不能确定图7.1.1-2 图7.1.1-1腰 腰底边顶角 底角 底角8.下列各组给出的三条线段中不能组成三角形的是( ) A.3,4,5 B.3a ,4a ,5a C.3+a ,4+a ,5+a D.三条线段之比为3∶5∶89.三角形三边的比是3∶4∶5,周长是96cm ,那么三边分别是________cm.10.已知等腰三角形的周长是25cm ,其中一边长为10cm ,求另两边长__________. 11.的木棒,还需要到某木材市场上购买一根.问:(1)有几种规格的木棒可供小明的爷爷选择?(2)选择哪一种规格的木棒最省钱?12. 如图所示,已知P 是△ABC 内一点,试说明PA+PB+PC>12(AB+BC+AC).13、如图,从A 经B 到C 是一条柏油马路,AC 是一条小路,人们从A 到C ,为什么不走柏油路,而喜欢走小路?请你用学过的知识解释一下原因。
BAC14、已知a 、b 、c 是△ABC 的三边长,化简a b c b c a c a b --+--+--P CA知识点2:三角形的高、中线与角平分线1.三角形的高(如图1)从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段。
表示法:(1)AD是△ABC的BC上的高。
(2)AD⊥BC于D。
(3)∠ADB=∠ADC=90°。
注意:①三角形的高是线段;②锐角三角形的三条高都在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条高所在直线交于一点。
AB D CAB D CAB D C12图1 图2 图3 2.三角形的中线(如图2)三角形中,连结一个顶点和它对边中点的线段。
表示法:(1)AD是△ABC的BC上的中线;(2)BD=DC=12BC注意:①三角形的中线是线段;②三角形三条中线全在三角形内部;③三角形三条中线交于三角形内部一点;④中线把三角形分成面积相等的两个三角形。
3、三角形的角平分线(如图3)三角形一个内角的平分线与它的对边相交这个角顶点与交点之间的线段。
表示法:(1)AD是△ABC的∠BAC的平分线。
(2)∠1=∠2=12∠BAC注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部;③三角形三条角平分线交于三角形内部一点;④可以用量角器画三角形的角平分线。
考点1:三角形的高1.如图7.1.2-1,在△ABC中,BC边上的高是________;在△AFC中,CF边上的高是________;在△ABE中,AB边上的高是_________.图7.1.2-1 图7.1.2-2 图7.1.2-32.如图7.1.2-2,△ABC 的三条高AD 、BE 、CF 相交于点H ,则△ABH 的三条高是_______,这三条高交于________.BD 是△________、△________、△________的高.3.如图7.1.2-3,在△ABC 中EF ∥AC ,BD ⊥AC 于D ,交EF 于G ,则下面说话中错误的是( )A.BD 是△ABC 的高B.CD 是△BCD 的高C.EG 是△ABD 的高D.BG 是△BEF 的高4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A.锐角三角形 B.直角三角形 C .钝角三角形 D .不能确定5.三角形的三条高的交点一定在( ) A.三角形内部 B.三角形的外部C.三角形的内部或外部D.以上答案都不对6.如图7.1.2-4所示,△ABC 中,边BC 上的高画得对吗?为什么?图7.1.2-47、如图,在△ABC 中,D 是BC 边上的任意一点,AH ⊥BC 于H 。
图中以AH 为高的三角形个数为( )A 、3B 、4C 、5D 、6考点2:三角形的中线与角平分线 8如图7.1.2-5所示:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________= ∠________=90°.(2)AE 平分∠BAC ,交BC 于E 点,则AE 叫做△ABC 的________,∠________=∠________=21∠________. (3)若AF =FC ,则△ABC 的中线是________,S △ABF =________.(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线.图7.1.2-5 图7.1.2-69.如图7.1.2-6,DE ∥BC ,CD 是∠ACB 的平分线,∠ACB =60°,那么∠EDC =______度. 10.如图7.1.2-7,BD =DC ,∠ABN =21∠ABC ,则AD 是△ABC 的________线,BN 是△ABC 的________,ND 是△BNC 的________线.AB D H C图7.1.2-7 图7.1.2-811.如图7.1.2-8,若上∠1=∠2、∠3=∠4,下列结论中错误的是( ) A.AD 是△ABC 的角平分线 B.CE 是△ACD 的角平分线 C.∠3=21∠ACB D.CE 是△ABC 的角平分线12.下列判断中,正确的个数为( ) (1)D 是△ABC 中BC 边上的一个点,且BD =CD ,则AD 是△ABC 的中线 (2)D 是△ABC 中BC 边上的一个点,且∠ADC =90°,则AD 是△ABC 的高 (3)D 是△ABC 中BC 边上的一个点,且∠BAD =21∠BAC ,则AD 是△ABC 的角平分线 (4)三角形的中线、高、角平分线都是线段 A.1 B.2 C.3 D.412.如图,在△ABC 中,AE 是中线,AD 是角平分线,AF 是高,则根据图形填空:⑴BE= =21 ; ⑵∠BAD= =21⑶∠AFB= =900;14.如图图7.1.2-9所示,在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,求S △ABE .图7.1.2-915.△ABC 中,高AD 与CE 的长分别为2㎝,4㎝ 求AB 与BC 的比是多少?16、在△ABC 中,AB =AC ,AC 上的中线BD 把三角形的周长分为24cm 和30cm 的两个部分,求三角形的三边长。
16.根据你画图的实践,用序号字母填写下表(有几种可能情况填写几个字母): A.在三角形的内部 B.在三角形的边上 C.在三角形的外部EDC B A第(12)题E DBA17.填表:用长度相等的火柴棒拼成如图所示的图形18.如图所示,在△ABC 中,∠A=α,△ABC 的内角平分线或外角平分线交于点P, 且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.(1)PCBA (2)PCBA (3)PCBA知识3:三角形的稳定性考点1:三角形的稳定性1.三角形是具有________的图形,而四边形没有________.2.自行车用脚架撑放比较稳定的原因是________.3.木工师傅在做完门框后,为了防止变形常常像图7.1.3-1所示那样钉上两条斜拉的木板条(即图中的AB、CD两个木条),这样做根据数学道理是____________.图7.1.3-1 图7.1.3-2考点2:四边形的不稳定性4.如图7.1.3-2是放缩尺,其工作原理是______________.5下列把四边形的不稳定性合理地应用到生产实际中的例子有()(1)活动挂架(2)放缩尺(3)屋顶钢架(4)能够推拢和拉开的铁拉门(5)自行车的车架(6)大桥钢架A.1B.2C.3D.46.下列图形(如图7.1.3-3)中哪些具有稳定性?图7.1.3-37.如图7.1.3-4,哪些应用了三角形的稳定性,些应用了四边形的不稳定性.钢架桥起重机屋顶钢架活动滑门图7.1.3-4你来试一试:夯实基础一、精心填一填,你会轻松(每题5分,共30分)1、如图,当______=______时,AD 是△ABC 的中线;当∠______=∠______时,AD 是△ABC 的角平分线.AB C DABCDE F G HIJ 图2A BCDEFI图32、图2中有____个三角形,它们分别是_______________________________.3、如图3,△ABC 的高AD 、BE 、CF 相交于点I ,△BIC 的BI 边上的高是________4、三角形的三边之比是3∶4∶5,周长是36cm ,求这个三角形各边长分别为___________。
5、已知三角形两边长分别是2cm 和5cm ,第三边长数值为奇数,则这个三角形周长为_______cm .6、观察下表中三角形个数变化规律,填表并回答下面问题.问题:如果图中三角形的个数是102个,则图中应有___________条横截线. 二、耐心选一选,你会开心(每题5分,共30分) 7、在下列长度的四组线段中,能组成三角形的是( ) .A 、4,5,6B 、6,8,15C 、7,5,12D 、3,7,13 8、在图中,正确画出AC 边上高的是( ).BAA BA BA BEEA B C D9、已知三角形的周长为15cm ,且其中两边都等于第三边的2倍,那么最短边的长是( ). A 、1cm B 、2cm C 、3cm D 、4cm10、在下列长度的四根木棒中,能与4cm 、9cm 长的两根木棒钉成一个三角形的是( ).A 、4cmB 、5cmC 、9cmD 、13cm11、如图,线段AD 把△ABC 分为面积相等的两部分,则线段AD 是( ).A 、三角形的角平分线B 、三角形的中线C 、三角形的高D 、以上都不对ADBC12、在三条边都不相等的三角形中,同一条边上的中线、高和这边所对角的角平分线,最短的是( ).A 、高B 、中线C 、角平分线D 、不能确定 综合创新三、细心做一做,你会成功(共40分)14、如图,△ABC 正好可以放在长方形内,要测出△ABC 的面积,现有一把刻度尺,你能做到吗?说出你是怎样做的.ABC DE15、如图,AD 、CE 是△ABC 的两条高,AB =3cm ,BC =6cm ,CE =8cm ,求AD 的长.A BC DE三角形的内角和猜想:三角形的三个内角和是多少? 你有什么办法可以验证呢? 把三个角拼在一起试试看?知识点定理:三角形的内角和等于1800.试用已经学过的方法证明定理。