磁力泵结构及工作原理的介绍
磁力泵工作原理范文

磁力泵工作原理范文
磁力泵是一种使用磁力传递原理工作的无泄漏、无密封的离心泵。
它将电机与泵体隔离开来,通过磁力偶合传递动力,使泵体内的转子产生旋转并把液体从进口处吸入,再经过离心力的作用将液体从出口处排出。
磁力泵的工作原理主要包括以下几个方面:
1.磁力耦合:磁力泵是通过磁力偶合来传递动力的。
它使用了永磁体或电磁线圈的磁场作用于外部磁铁或线圈上,并产生相应的磁力。
当这些磁力通过泵体传递给转子时,转子开始旋转并带动液体的流动。
2.无泄漏、无密封:传统的泵通常需要使用机械密封来防止泵内液体外泄,但长期使用会导致泄漏、磨损和故障等问题。
而磁力泵通过磁力传递动力,无需机械传动装置,从而避免了泄漏和密封问题,提高了泵的可靠性和使用寿命。
3.离心力作用:磁力泵的转子是离心泵,其工作原理类似于传统的离心泵。
当转子旋转时,离心力产生在泵体内,使液体在进口处被吸入并沿离心力的方向被排出。
离心力的大小取决于转子的转速和液体的密度,通过调整电机的转速可以改变泵的流量和扬程。
4.磁力泵的结构:磁力泵的主要组成部分包括泵体、转子、永磁体或电磁线圈等。
泵体通常由金属材料制成,具有一定的强度和耐腐蚀性能。
转子是泵体内部的旋转部件,由磁性材料制成。
永磁体或电磁线圈产生磁场,与泵体之间通过隔离套进行磁力耦合。
总的来说,磁力泵通过磁力传递动力,实现了无泄漏、无密封的工作方式。
它的工作原理基于磁力耦合和离心力的作用,通过控制电机的转速
可以调整泵的流量和扬程。
磁力泵因其无泄漏、无密封等特点,在化工、制药、环保等领域得到了广泛的应用。
磁力泵工作原理

磁力泵工作原理磁力泵是一种无泄漏、无污染、无噪音、无振动的新型泵类,它采用了磁力耦合原理来实现液体的输送。
磁力泵主要由驱动部分和工作部分组成。
一、驱动部分磁力泵的驱动部分主要包括电动机和磁力耦合器。
电动机通过轴传动磁力耦合器,将机械能传递给工作部分,使其能够进行工作。
1. 电动机:磁力泵通常采用交流电动机作为驱动源。
电动机的功率和转速根据实际需要进行选择,以满足泵的工作要求。
2. 磁力耦合器:磁力耦合器是磁力泵的核心部件,它通过磁力传递动力,实现液体的输送。
磁力耦合器由外磁铁、内磁铁和隔离罩组成。
外磁铁与电动机轴相连,内磁铁与工作部分轴相连。
当电动机驱动外磁铁旋转时,通过磁力作用,内磁铁也会跟随旋转,从而实现液体的输送。
二、工作部分磁力泵的工作部分主要包括泵体、叶轮和密封部件。
工作部分负责将电动机传递的动力转化为液体的流动能量,实现液体的输送。
1. 泵体:磁力泵的泵体通常由不锈钢等耐腐蚀材料制成。
泵体内部设有进口和出口,液体通过进口进入泵体,经过叶轮的作用后,从出口排出。
2. 叶轮:叶轮是磁力泵的关键部件,它位于泵体内部,由多个叶片组成。
当电动机驱动磁力耦合器旋转时,叶轮也会跟随旋转,产生离心力,将液体推向出口。
3. 密封部件:由于磁力泵不需要机械密封,因此在泵体和电动机之间的连接处设置了密封部件,以防止液体泄漏。
常见的密封部件有静密封和动密封,它们通过磁力耦合器的作用,实现了无泄漏的液体输送。
磁力泵的工作原理可以简单总结为:电动机驱动磁力耦合器旋转,磁力耦合器通过磁力作用将动力传递给工作部分,工作部分将动力转化为液体的流动能量,实现液体的输送。
磁力泵具有无泄漏、无污染、无噪音、无振动等优点,广泛应用于化工、医药、电子、冶金等领域。
磁力泵工作原理

磁力泵工作原理
磁力泵工作原理是利用磁力耦合的原理来传递动力,将电动机与泵体之间通过磁力连接而无需机械传动。
其工作原理如下:
1. 磁力偶合:磁力泵由驱动端和泵体端两部分组成。
驱动端有电动机、磁铁和轴承组成,而泵体端则是由泵壳、叶轮和输出轴等组成。
两个端之间通过静态密封分隔,并且驱动端的磁铁能经由轴承间的壁隔绝与泵体部分联系,形成磁力链接。
2. 电动机驱动:电动机向磁铁供电,使其产生磁力。
磁力会作用于静止的泵体端的磁铁上,引发相应的磁力反作用,使得泵体端的叶轮也随之转动。
3. 磁力传递:由于电动机不与泵体直接相连,因此无需机械盖环或轴封来保证两者之间的动力传递。
相反地,通过磁力偶合进行传递动力,不会导致泄漏或磨损的问题。
4. 加载液体运输:当泵体端的叶轮转动时,会从进口处吸入液体,然后通过叶轮的转动,将液体推向出口。
液体在转动过程中受到离心力的作用,加速流动并克服阻力。
这样,磁力泵就能够实现液体的输送。
总之,磁力泵工作原理是通过驱动端的电动机产生磁力,再通过磁力偶合传递动力到泵体端的叶轮,从而实现液体的输送,避免了机械传动带来的泄漏和磨损问题。
磁力泵的工作原理讲解

中国水泵行业后起之秀--上海沈泉泵业,是集研究、开发、生产、销售和服务为一体的泵阀生产企业。
产品涉及工矿企业、农业、城市供水、石油化工、电站、船舶、冶金、高层建筑、消防供水、工业水处理和纯净水、食品、制药、锅炉、空调循环系统等行业领域。
一、磁力泵的结构组成
磁力泵是由电动机、驱动器、隔热套、外壳、磁转子和静止器等组成。
其中,外壳、隔热套和驱动器构成了基本的泵体,磁转子和静止器则是关键组成部分,直接决定了磁力泵的工作原理和性能。
二、磁力泵的工作原理
简单来说,磁力泵是通过磁力耦合实现传动。
其工作原理如下:
当电机驱动器转动时,通过磁场相互作用将驱动器内的磁力转子旋转起来。
磁转子上所带的磁场则在静止器内感应出磁场,这样就形成了一组相互作用的磁场。
而磁转子则通过隔热套与泵体隔开,从而使得磁场不会直接作用于介质,实现了介质的隔离。
在介质作用下,叶轮随之旋转,完成了液体输送的任务。
三、磁力泵的适用范围和优缺点
磁力泵适用于输送高纯度、易燃易爆、剧毒、有挥发性、高温高压的液体。
另外,由于其磁力耦合的特点,因此其不需要机械密封件,可完全消除泄漏难题。
当然,磁力泵也有其缺点。
首先,其造价相对较高;其次,因为磁性转子和静止器之间有一定的隔离层,因此其能耗比起普通泵要高一些;最后,目前磁力泵仍存在着可靠性和耐久性的问题,需要在使用中加以注意。
总结而言,磁力泵利用磁场耦合的特点,消除了泵的机械密封,主要适用于输送高纯度、易燃易爆、剧毒、有挥发性、高温高压的液体。
同时,其也存在一
定缺点,需要针对具体情况进行选择使用。
磁力泵结构及工作原理的介绍

磁力泵结构及工作原理的介绍1磁力泵的结构及工作原理内磁转子与叶轮一起固定在泵轴;外磁转子与电机相连接。
在电机的驱动下,外磁转子做旋转运动。
由于外磁转子与内磁转子相互之间的磁作用力,使得内磁转子带动叶轮一起旋转。
2.Halbach阵列介绍20世纪80年代,美国劳伦斯伯克利国家实验室Klaus Halbach 教授提出了一种永磁体阵列Halbach阵列。
随后的10年里,Halbach 阵列被许多研究机构相继应用于粒子加速器,自由电子激光装置,同步辐射装置,真空设备,磁悬浮技术等高能物理领域。
基于当前的生产加工工艺,要获得理想Halbach阵列需要整体环形充磁。
由于利用现有的技术对整体工艺还不够完善,因此在绝大多数的工程应用领域中,都采用分段拼装方式的分段式Halbach阵列。
Halbach阵列使得阵列的内部磁场加强,同时阵列的外部磁场得到削弱。
同理,通过磁体的不同排列,可以得到外部磁场加强,内部磁场削弱的阵列。
内磁转子采用这种阵列,可以加强磁力传动机构的气隙磁场强度,进而达到增大磁传动机构传递转矩的目的。
3几何模型的建立及材料属性磁极为24极。
R1=35mm,R2=45mm,R3 =55mm,R4=58mm,R5=68mm,R6=78mm.内,外轭铁的磁导率取4000H/m;磁体磁导率取1.1H/m,矫顽力取Hc=870000A/m;空气的磁导率取1.0 H/m.4磁场力与转矩的计算方法4.1电磁场基本方程麦克斯韦方程组是支配所有宏观磁现象的一组基本控制方程。
由以下4个微分方程组成:D=v E=-B t B=0 H=J+ D t式中:D为电位移(或称电通密度),C/m2;v为单位体积中的电荷,即电荷体密度;E为电场强度,V/m;B为磁感应强度(或称磁通密度),T;H为磁场强度,A/m;J为电流密度,A/m2。
以上4个微分方程也分别称为:高斯电通定律,法拉第电磁感应定律,高斯磁通定律以及安培环路定律(或称全电流定律)。
磁力泵的工作原理、结构原理

磁力泵的工作原理、结构原理磁力泵是一种利用磁力传动而实现无泄漏密封的离心泵,其主要工作原理是通过电机产生的磁场来驱动磁力转子,使之旋转从而实现液体的吸入和排出。
磁力泵的结构主要由电机、磁力转子、泵壳和液体导轮等部分组成。
首先,电机是磁力泵的核心部件,它通过通电产生的磁场来驱动磁力转子的旋转。
电机通常采用永磁同步电机或感应电机,其中永磁同步电机由永磁体和线圈组成,通过电流改变磁场的方向和强度来控制磁力转子的转速。
其次,磁力转子是磁力泵的传动部件,通常由外转子和内转子组成。
外转子是利用电机产生的磁场而实现旋转的部分,内转子则是通过磁力转子的旋转来带动液体的吸入和排出。
泵壳是磁力泵的外壳,主要用于承载磁力转子和液体导轮。
泵壳一般采用不锈钢或铸铁等材料制成,具有一定的机械强度和耐腐蚀性能。
液体导轮是磁力泵的流道部分,通过液体导轮将液体引入和排出泵体。
液体导轮通常采用叶轮、导流片等形式,对于不同的工况有不同的结构设计。
磁力泵的工作原理是利用电机产生的磁场来驱动磁力转子的旋转,从而带动液体的流动。
具体过程如下:1. 首先,当电机通电时,产生的磁场使得磁力转子开始旋转。
外转子与内转子之间的磁力传递作用下,带动液体一起旋转。
2. 液体流经液体导轮的进口处,被导轮的叶片或导流片吸入。
由于液体导轮与磁力转子的联动,液体随着转子的旋转而运动。
3. 进一步,液体被带入离心力的作用下,推向液体导轮的出口处。
在液体导轮的作用下,液体被强制推出泵体,实现液体的排出。
总的来说,磁力泵利用电机产生的磁场来驱动磁力转子的旋转,从而实现液体的吸入和排出,其结构由电机、磁力转子、泵壳和液体导轮等部分组成。
通过磁力转子的旋转,液体可随着转子的运动而流动,实现无泄漏密封的离心泵的工作。
该种结构原理有效地避免了传统泵由于轴封的损坏而导致的泄漏问题,具有较好的可靠性和稳定性。
磁力泵结构原理及安装步骤

磁力泵结构原理及安装步骤
一、磁力泵工作原理
它通常由电机,磁力耦合器,水冷却装置和耐腐蚀离心泵四大部分组成,其主要特点是利用磁力耦合器传递动力。
当电动机带动磁力耦合器的外磁钢旋转时,磁力线穿过间隙和隔离套,作用于内磁钢上,使泵转子与电动机同步旋转,无机械接触地传递扭矩。
在泵的动力输入端,由于液体被封闭在静止的隔离套内,没有动密封因而无泄漏。
磁力耦合器的磁性材料采用耐高温型稀土永磁材料,能承受280度以下的高温介质而保持强大的磁力扭矩。
在电机与磁力耦合器之间加装了水冷却装置,防止泵送高温介质之热量传导至电机,以保持电机的正常运行,从而达到无泄漏输送高温介质。
二、磁力泵的安装步骤
1、安装前的准备工作
1)检查水泵和电机,确认在运输和装卸过程中没有损伤;
2)准备工具和起重机械,并按图检查机器的基础;
2、安装顺序
1)整套水泵运抵现场时,都已装好电机,找平底座时,可不必卸下水泵和电机。
2)将底座放在地基上,准备找平后填充混凝土之用。
3)用水平仪利用泵的吐出口平面检查底座的水平度,找平后,安上地脚螺栓,用混凝土灌注地脚螺栓。
4)将钢尺放在联轴器上(上、下、前、后测量),检查泵与电机的
轴心线是否重合。
5)待固定地脚螺栓的混凝土完全干固后,拧紧地脚螺栓的螺母,再检查一下整台机组的水平度,稍有不平时,可用楔铁找平。
6)安装吸水和出口管路,当管路与泵结合时,应注意勿使管路的重量和压力增加到泵上,以免泵出现变形。
7)清理环境,保持卫生。
磁力泵的工作原理及结构组成

磁力泵的工作原理及结构组成
磁力泵的工作原理及结构组成概括如下:
一、磁力泵的工作原理
1. 磁力泵利用了电磁铁的吸引作用。
2. 当电磁铁通电磁化时,将吸引钢球上升。
3. 当断电时,钢球下落。
电磁铁周期性地通断电,带动钢球上下运动。
4. 钢球在管道内上下运动,带动流体向上输送。
二、磁力泵的基本结构
1. 泵体:U形倾斜管道,内装有多颗钢球。
2. 电磁铁:设置在管道下部,周期性闭合吸引钢球。
3. 进出口:管道下端为流体进口,上端接出口。
4. 传感开关:检测钢球运动控制电磁铁通断电。
5. 电源系统:为电磁铁提供工作电流。
三、磁力泵的工作原理特点
1. 简单可靠,无滑动密封件,维护方便。
2. 流量及扬程可调节,使用灵活。
3. 可输送高温、易结垢等不同介质。
4. 流体无污染,适合食品、医药等行业。
5. 体积小,不占空间。
四、磁力泵的设计注意事项
1. 电磁铁通断电参数的控制。
2. 钢球数目及材质的选择。
3. 泵体倾角度的确定。
4. 传感开关的控制精度。
5. preventing干燥烧损。
磁力泵由简单零部件构成,利用电磁原理实现流体输送,具有结构简单、无污染等优点,应用范围广泛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁力泵结构及工作原理的介绍
1磁力泵的结构及工作原理
内磁转子与叶轮一起固定在泵轴;外磁转子与电机相连接。
在电机的驱动下,外磁转子做旋转运动。
由于外磁转子与内磁转子相互之间的磁作用力,使得内磁转子带动叶轮一起旋转。
2.Halbach阵列介绍
20世纪80年代,美国劳伦斯伯克利国家实验室Klaus Halbach 教授提出了一种永磁体阵列Halbach阵列。
随后的10年里,Halbach 阵列被许多研究机构相继应用于粒子加速器,自由电子激光装置,同步辐射装置,真空设备,磁悬浮技术等高能物理领域。
基于当前的生产加工工艺,要获得理想Halbach阵列需要整体环形充磁。
由于利用现有的技术对整体工艺还不够完善,因此在绝大多数的工程应用领域中,都采用分段拼装方式的分段式Halbach阵列。
Halbach阵列使得阵列的内部磁场加强,同时阵列的外部磁场得到削弱。
同理,通过磁体的不同排列,可以得到外部磁场加强,内部磁场削弱的阵列。
内磁转子采用这种阵列,可以加强磁力传动机构的气隙磁场强度,进而达到增大磁传动机构传递转矩的目的。
3几何模型的建立及材料属性
磁极为24极。
R1=35mm,R2=45mm,R3 =55mm,R4=58mm,R5=68mm,R6=78mm.内,外轭铁的磁导率取4000H/m;磁体磁导率
取1.1H/m,矫顽力取Hc=870000A/m;空气的磁导率取1.0 H/m.
4磁场力与转矩的计算方法
4.1电磁场基本方程麦克斯韦方程组是支配所有宏观磁现象的一组基本控制方程。
由以下4个微分方程组成:D=v E=-B t B=0 H=J+ D t式中:D为电位移(或称电通密度),C/m2;v为单位体积中的电荷,即电荷体密度;E为电场强度,V/m;B为磁感应强度(或称磁通密度),T;H为磁场强度,A/m;J为电流密度,A/m2。
以上4个微分方程也分别称为:高斯电通定律,法拉第电磁感应定律,高斯磁通定律以及安培环路定律(或称全电流定律)。
以上的微分方程并不能得到确定的解,还有与材料相关的本构方程(或称电磁性能关系式):D=E B=H在电源以外区域,有:J=E式中:,和分别为介电常数,F/m,磁导率,H/m,电导率,S/ m. 4.2力与转矩的计算
经典电磁理论提供了麦克斯韦应力法,虚位移法等解析计算方法等。
4.2.1麦克斯韦应力法
经过有限元分析,通过已经得到个单元的磁感应强度和磁场强度,只有适当选定封闭曲面,通过上式就可求出作用在S面所包围磁性体上的合力及转矩。
4.2.2虚位移法根据虚功原理,当磁场能量用磁链表示时,处于磁场中的物体受到的作用力及转矩可由下式计算:fg=- Wm g 140磁力泵Halbach阵列传动机构有限元分析丛小青王利伟白滨等M=- Wm
#式中:Wm为所研究系统的磁场能量;g为广义坐标;#为角度坐标。
当媒介为线性时有:Wm= 1 2#v HBdv+ 1 2s HAds 5数值模拟数值模拟过程为二维瞬态磁场分析,利用Ansoft有限元分析软件来进行模拟计算。
麦克斯韦方程组通过简化可以得到二维瞬态磁场的计算方程:vA=J- A t -v+Hc式中:Hc为永磁体的矫顽力;v为运动物体的速度;A为磁矢量;J为电流密度。
模拟过程保持外磁转子固定,使内磁转子旋转来计算内磁转子的转矩大小。
此模拟去除了隔离套,只考虑磁转子的传动效应。
而只有隔离套的涡流损失与转动速度有关,因此模拟过程中内磁转子的转动速度可以任意设定,不会对转矩的大小有影响。
这里,我们设其转速为360/s.瞬态计算总时间为1s,每0.001s做一次求解。
对内,外轭铁施加磁通量平衡条件。
6模拟结果及分析
分别对传统阵列,紧密阵列和Halbach阵列进行数值计算,采用Ansoft商用软件的二维瞬态分析模块。
6.1传统阵列
传统阵列内磁转子转矩的变化曲线图,取其一个变化周期。
对于传统阵列,一个变化周期的转角为30.从转矩图可以看出第一个最大转矩绝对值为T=4380Nm/m,其转角为7.5(即实际工作中内外磁转子的转角差为7.5)。
对于磁力转动机构的实际工作情况,取磁块轴向长度L=40mm,则实际传动最大转矩值Tmax=TL=175.2Nm.
6.2紧密阵列
取一个变化周期。
一个变化周期的转角为60.第一个最大转矩绝对值处的位移角为15,转矩值为4720Nm/m,对于磁力转动机构的实际工作情况,取磁块长度为40mm,则实际传动最大转矩值为188.8Nm.图8紧密阵列转矩变化曲线(取一个周期)
6.3Halbach阵列(每极4段)
一个变化周期的转角为60.第一个最大转矩绝对值出现在转角差为15处,转矩值为5400Nm/m,取磁块长度为40 mm,则实际工作的最大转矩为216Nm.Halbach阵列(每极4段)转矩变化曲线(取一个周期)
6.4分析
目前,磁力泵传动机构主要使用传统阵列和紧密阵列。
从模拟结果来看紧密阵列与传统阵列相比,紧密阵列只有约7.8%的提升,而Halbach阵列能提高约23.3%.因此,Halb ach阵列对提高磁体利用率有着非常重要的作用。
使得高转矩磁力泵的设计也成为可能。
同时,Halbach阵列具有磁屏蔽作用。
外磁转子在空气中磁通量线闭合在磁阵列内部。
因此,使用Halb ach阵列的传动机构可以减小轭铁的厚度,甚至可以取消轭铁。
对于取消轭铁的传动机构,其转动惯量减小,传动机构的启动性能将得到提升。
7结语
(1)通过数值模拟,分析传统阵列,紧密阵列,Halbach阵列的最大转矩值,得出紧密阵列与传统阵列相比提高约7.8%,Halbach阵列与传统阵列相比提高约23.3%.
(2)Halbach阵列具有磁屏蔽作用,使用Halbach阵列可以减小轭铁的厚度,从而提高传动机构的启动性能。
(3)本文未考虑隔离套对转矩的影响。
实际工作中,金属隔离套在交变的磁场中会产生涡流损失。
因此,今后有必要对于金属隔离套的涡流损失进行深入的研究。