现代电力系统分析理论与方法 第7章 电力系统最优潮流

合集下载

电力系统最优潮流计算

电力系统最优潮流计算

电力系统最优潮流计算电力系统最优潮流计算是电力系统运行与规划中的重要工具,能够帮助运营商合理调度电力资源,保障电网的安全稳定运行。

本文将介绍最优潮流计算的基本原理、应用领域以及挑战,并提出一些建议,以指导电力系统最优潮流计算的实践。

最优潮流计算是指在满足各种电力系统约束条件的前提下,通过优化算法寻找使得系统经济性能达到最佳的潮流分布。

这一计算方法能够有效解决电力系统潮流计算中的多变量、非线性等问题,提供了优化电力系统经济性能的手段。

最优潮流计算在电力系统规划和运行中具有广泛的应用。

在电力系统规划中,最优潮流计算能够优化电网结构和配置,提高电网的经济性能和可靠性。

在电力系统运行中,最优潮流计算能够辅助运营商实现电网的调度与控制,确保电力供需平衡,降低供电成本,并满足各种约束条件,如电压稳定、线路功率限制等。

然而,最优潮流计算面临着一些挑战。

首先,电力系统的规模越来越大,潮流计算的复杂度也在增加。

其次,电力系统具有高度非线性和多变量的特点,传统的最优潮流计算方法在计算效率和准确性上存在一定的局限性。

此外,电力系统中存在不确定性因素,如可再生能源的波动性,这也给最优潮流计算带来了难题。

为了克服这些挑战,我们可以采取一些策略。

首先,应该通过引入高效、准确的优化算法来提高最优潮流计算的效率和精度。

其次,可以利用数据驱动的方法,结合大数据和人工智能技术,对电力系统进行建模和优化。

此外,还可以研究并应用新的计算模型,如基于云计算和边缘计算的最优潮流计算。

在实践中,我们需要注意以下几点。

首先,要准确收集和处理电力系统的数据,包括发电机出力、线路传输能力、负荷需求等。

然后,根据电力系统的特点和需求选择合适的最优化算法进行计算。

最后,对计算结果进行分析和评估,判断其可行性和优劣性,并进行相应的调整和改进。

总之,电力系统最优潮流计算是电力系统规划和运行中的关键工具,能够优化电网经济性能和可靠性。

面对挑战,我们应积极采用新的算法和计算模型,并注重数据处理和结果分析,以提高最优潮流计算的效率和准确性。

电力系统的最优潮流与经济调度

电力系统的最优潮流与经济调度

电力系统的最优潮流与经济调度一、引言电力系统是现代社会经济运行的关键基础设施之一,其可靠性和经济性对于国家和地区的发展至关重要。

在电力系统中,潮流和经济调度是两个核心问题,它们直接影响系统的运行效果和成本。

本报告将探讨电力系统最优潮流和经济调度的相关理论和方法,并分析其在实际应用中的现状和挑战。

二、最优潮流的基本原理1. 潮流方程与节点功率平衡在电力系统中,各节点的潮流满足潮流方程和节点功率平衡条件。

潮流方程是描述电力系统各节点间潮流关系的数学方程,节点功率平衡要求系统中吸入和发出的功率之和为零。

2. 潮流计算方法常见的潮流计算方法包括直流潮流计算方法和交流潮流计算方法。

直流潮流计算方法是一种近似计算方法,简化了复杂的交流潮流计算过程,适用于小规模系统;交流潮流计算方法基于牛顿-拉夫逊法等数值计算方法,能够较准确地计算大规模电力系统的潮流。

3. 最优潮流的概念与求解最优潮流是指在满足各种约束条件下,使系统总成本达到最小的潮流分布。

最优潮流问题的求解可以通过数学规划方法和基于智能算法的优化方法。

其中,数学规划方法包括线性规划、非线性规划和混合整数规划等;基于智能算法的优化方法包括遗传算法、粒子群算法和模拟退火算法等。

三、经济调度的基本原理1. 发电机组经济调度发电机组的经济调度是指在满足电网需求和各种约束条件的前提下,确定发电机组出力的最优分配。

经济调度需要考虑电网的负荷需求、发电成本、发电机组的技术特性等因素。

2. 输电网的经济调度输电网的经济调度是指在满足电网功率平衡和各种约束条件的情况下,使输电网中的电力传输效率最大化。

经济调度需要考虑输电线路的损耗、电压稳定性、线路容载能力等因素。

3. 负荷与供电平衡经济调度需要实现负荷与供电平衡,即通过调整发电机组出力和调度输电线路,使得供电与负荷之间的差距最小化。

负荷与供电平衡是保证电力系统稳定运行和供电可靠性的基本要求。

四、最优潮流与经济调度的应用与挑战1. 应用案例:电力系统规划与运行最优潮流与经济调度在电力系统规划和运行中有着重要的应用。

最优潮流_电力系统潮流计算

最优潮流_电力系统潮流计算

七.最优潮流问题 随着电力系统规模的日益扩大以及一些 特大事故的发生,电力系统运行安全性问 题被提到一个新的高度上来加以重视。因 此,人们越来越迫切要求将经济和安全问 题统一起来考虑。而以数学规划问题作为 基本模式的最优潮流在约束条件的处理上 具有很强的能力。
七.最优潮流问题 最优潮流能够在模型中引入能表示成状 态变量和控制变量函数的各种不等式约束, 将电力系统对于经济性、安全性以及电能 质量三方面的要求,完美地统一起来。
T
T
七.最优潮流问题---简化梯度算法
L f g λ 0 x x x
L f g λ 0 u u u
T
T
L g(u, x )=0 λ
这是三个非线性 代数方程组,每组 的方程式个数分别 等于向量的维数。 最优潮流的解必须 同时满足这三组方 程。
七.最优潮流问题—数学模型 (1)目标函数采用发电燃料耗量(或 费用)最小: 以除去平衡节点以外的所有有功 电源出力及所有可调无功电源出力(或 用相应的节点电压),还有带负荷调压 变压器的变比作为控制变量,就是对有 功及无功进行综合优化的通常泛称的最 优潮流问题.
七.最优潮流问题—数学模型 (2)若目标函数同(1),仅以有功电源 出力作为控制变量而将无功电源出力(或 相应节点电压模值)固定,则称为有功最 优潮流。
NL
七.最优潮流问题—数学模型 因此可以直接采用平衡节点的有功注入 作为有功网损最小化问题的目标函数,即 有 (1-187) min f min P (U , θ)
s
除此之外,最优潮流问题根据应用场合 不同,还可采用其它类型的目标函数,如 偏移量最小、控制设备调节量最小、投资 及年运行费用之和最小等。
七.最优潮流问题 (3)基本潮流计算是求解非线性代数方 程组;而最优潮流计算从数学上讲是一个 非线性规划问题,因此需要采用最优化方 法来求解。 (4)基本潮流计算完成的只是一种计算功 能,即从给定的 u 求出相应的 x ;而最优 潮流计算是根据特定目标函数并满足相应 约束条件的情况下,自动优选控制变量, 具有指导系统进行优化调整的决策功能。

电力系统中的潮流计算与最优潮流技术研究

电力系统中的潮流计算与最优潮流技术研究

电力系统中的潮流计算与最优潮流技术研究引言:电力系统是现代社会中不可或缺的基础设施,它对于供应可靠的电力以满足人们日常生活和工业生产的需要至关重要。

然而,随着电力负荷的增加和电网结构的复杂化,电力系统的运行和管理变得越来越复杂。

潮流计算与最优潮流技术作为电力系统运行和管理的核心技术,对于保障电网稳定运行和提高运行效率具有重要的意义。

一、电力系统潮流计算1.1 潮流计算概述潮流计算是一种用于计算电力系统中电压、电流以及功率等参数分布的方法。

它通过解析电力系统中的潮流方程,求解各节点的电压幅值和相角,从而得到电力系统的潮流分布情况。

潮流计算是电力系统分析和规划的基础,能够帮助工程师了解电网的负荷分配、线路流量以及电压控制等方面的信息。

1.2 潮流计算方法1.2.1 潮流计算的基本方法潮流计算方法包括直流潮流计算方法和交流潮流计算方法。

直流潮流计算方法是最简单的潮流计算方法,通过假设电力系统中只有直流电流流动,忽略了交流电流的影响,来近似地计算潮流分布。

交流潮流计算方法则考虑了电力系统中交流电流的影响,是比较精确的潮流计算方法。

1.2.2 潮流计算算法的发展随着电力系统的发展和计算机技术的进步,潮流计算算法也得到了不断的发展。

从最早的高斯-赛德尔迭代算法到后来的牛顿-拉夫逊算法和最小二乘逼近算法,各种计算方法在潮流计算中得到了应用。

这些算法的发展带来了潮流计算的效率和精确度的提高。

二、最优潮流技术研究2.1 最优潮流技术概述最优潮流技术是指在考虑电力系统的各种运行限制条件的前提下,通过优化方法来求解满足这些限制条件下的最优功率分布和控制策略。

最优潮流技术能够实现电力系统的经济性运行,减少系统的损耗和成本,提高供电质量和可靠性。

2.2 最优潮流技术的研究内容2.2.1 最小损耗运行最小损耗运行是最优潮流技术的重要研究内容之一,它通过优化节点的功率分配来减少电网的线路损耗。

该方法能够在满足电力系统的各种运行限制条件下,找到一个最佳的功率分布方案,降低电网的损耗。

电力系统最优潮流

电力系统最优潮流

浅述电力系统最优潮流摘要:电力系统最优潮流,简称opf(optimal power flow),是法国学者carpentier在20世纪60年代提出的。

opf问题是一个复杂的非线性规划问题,要求在满足特定的电力系统运行和安全约束条件下,通过调整系统中可利用控制手段实现预定目标最优的系统稳定运行状态。

本文详细介绍了最优潮流模型和算法的研究发展现状。

关键词:最优潮流;模型;算法引言电力系统最优潮流, 就是当电力系统的结构参数及负荷情况给定时, 通过控制变量的优选,找到能满足所有指定的约束条件, 并使系统的一个或多个性能指标达到最优时的潮流分布。

最优潮流具有统筹兼顾、全面规划的优点, 不但考虑系统有功负荷, 而且考虑系统无功负荷的最优分配; 不但考虑各发电单元的有功上、下限, 还可以考虑各发电单元的无功上、下限, 各节点电压大小的上、下限等。

为了进一步反映系统间安全性限制、联络线功率限制、节点对的功角差限制等。

就能将安全性运行和最优经济运行等问题,综合地用统一的数学模型来描述, 从而把经济调度和安全监控结合起来。

1最优潮流模型的研究现状1.1 在电力市场定价中应用实时电价计算是一个带网络约束的电力系统优化问题, 与传统opf不同, 它的目标函数是基于发电厂报价的市场总收益最大, 而不是单纯的发电成本最小。

总之, 实时电价方面最优潮流的扩展主要是考虑对偶变量提供的丰富的经济信息及影响实时电价的各种因素, 计算其对生产费用的灵敏度, 并将其组合在一起构成实时电价。

缺陷是数学上还不够严格, 各种相关因素不易考虑周全。

1.2 在输电网络管理中的应用由于电力工业市场化程度和人们环保意识的增强, 电力公司试图延缓对新输电网络和配电网络的投资; 另一方面, 电力需求的不断增加, 电力网络中的潮流将继续增长, 这必然造成现有电力网络运行困难。

研究电力市场下输电网络管理的相关问题已刻不容缓。

1.3 动态最优潮流电力系统实际是一个动态变化的系统, 各个时段之间相互影响。

电力系统最优潮流分析

电力系统最优潮流分析

电力系统最优潮流分析电力系统是现代社会中最重要的系统工程之一,为社会生产和人民生活提供了绝大部分能量。

电能的生产需要耗费大量的燃料,而目前电能在输送、分配和消费过程中存在着大量的损耗。

因此如何采取适当措施节约能源,提高整个电力系统的运行效率,优化系统的运行方式,是国内外许多学者一直关注与研究的热点。

电力系统的最优化运行是指在确保电力系统安全运行、满足用户用电需求的前提下,如何通过调度系统中各发电机组或发电厂的运行,从而使系统发电所需的总费用或所消耗的总燃料达到最小的运筹决策问题。

数学上可将此问题描述为非线性规划或混合非线性规划问题。

最优潮流问题是指在满足必须的系统运行和安全约束条件下,通过调整系统中可利用控制手段实现预定目标最优的系统稳定运行状态。

同经典的经济调度法相比,最优潮流具有全面规划、统筹考虑等优点,它可将安全运行和最优经济运行等问题进行综合考虑,通过统一的数学模型来描述,从而将电力系统对经济性、安全性以及电能质量等方面的要求统一起来。

最优潮流问题的提出把电力系统的最优运行理论提高到一个新的高度,受到了国内外学者高度重视。

最优潮流已在电力系统中的安全运行、电网规划、经济调度、阻塞管理、可靠性分析以及能量管理系统等方面得到了广泛应用,成为了电力系统网络运行分析和优化中不可或缺的工具。

一、最优潮流问题研究的意义最优潮流可将电力系统可靠性与电能质量量化成相应的经济指标,并最终达到优化资源配置、降低成本、提高服务质量的目的。

因此最优潮流研究具有传统潮流计算无法比拟的意义,主要体现在以下两个方面。

一方面,通过最优潮流计算可指导系统调度员的操作,保证系统在经济、安全、可靠的状态下运行。

具体表现为:第一,当所求问题以目标函数、控制变量和约束条件的形式固定下来后,就一定可以求出唯一最优解,并且该结果不受人为因素的影响。

第二,最优潮流的寻优过程可以自动识别界约束,在解逐渐趋于最优的过程中可得到网络传输瓶颈信息,从而可以指导电网扩容与规划。

最优潮流算法

最优潮流算法

电力系统最优潮流算法综述摘要:本文阐明了电力系统最优潮流研究目的及意义,总结了国内外关于电力系统最优潮流算法的研究现状,介绍了求解最优潮流的经典算法,智能优化方法,同时指出了各种算法的优缺点;并根据目前最优潮流存在的问题提出了今后的研究方向。

电力系统最优潮流问题是一个复杂的非线性规划问题,40多年来,研究人员对其进行了大量的研究,提出了最优潮流计算的各种方法,取得了不少成果。

本文对最优潮流算法的研究现状进行了综述,并对其潜在的发展方向进行了预测。

1 电力系统最优潮流的经典优化方法电力系统最优潮流的经典优化方法是基于线性规划、非线性规划以及解耦原则的解算方法,是研究最多的最优潮流算法,这类算法的特点是以目标函数的一阶或二阶梯度作为寻找最优解的主要信息。

1.1 简化梯度法1968 年Dommel 和Tinney 提出的简化梯度法是第一个能够成功求解较大规模的最优潮流问题并得到广泛采用的算法。

梯度法分解为两步进行,第一步在不加约束下进行梯度优化;第二步将结果进行修正后,在目标函数上加上可能的电压越限罚函数。

该方法可以处理较大的网络规模,但是计算结果不符合工程实际情况。

在梯度法的基础上利用共轭梯度法来改进原来的搜索方向,从而得到比常规简化梯度法更好的收敛效果。

简化梯度法主要缺点:收敛性差,尤其是在接近最优点附近时收敛很慢;另外,每次对控制变量修正以后都要重新计算潮流,计算量较大。

对控制变量的修正步长的选取也是简化梯度法的难点之一,这将直接影响算法的收敛性。

总之,简化梯度法是数学上固有的,因此不适合大规模电力系统的应用。

1.2 牛顿法牛顿法最优潮流是一种具有二阶收敛的算法,在最优潮流领域计算有较为成功的应用。

牛顿法不区分状态变量和控制变量,并充分利用了电力网络的物理特征和稀疏矩阵技术,同时直接对Lagrange 函数的Kuhn-Tucker 条件进行牛顿法迭代求解,收敛速度快,这大大推动了最优潮流的实用化进程。

最优潮流_电力系统潮流计算

最优潮流_电力系统潮流计算

采用经典的函数求极值的方法,将 L 分 别对变量x,u 及 求导并令其等于零,即
得到极值所满足的必要条件为
L x
f x
g x
T
λ
0
L uL
f u
g u
g(u, x)=0
T
λ
0
λ
(1-194) (1-195) (1-196)
七.最优潮流问题---简化梯度算法
L x
f x
g x
T
λ
七.最优潮流问题
40多年来,广大学者对最优潮流问 题进行了大量的研究。这些研究工作,除 了提出了采用不同的目标函数和约束条件, 因而构成不同应用范围的最优潮流模型之 外,更大量的是从改善收敛性能、提高计 算速度等目的出发而提出的最优潮流计算 的各种模型和求解算法。
ห้องสมุดไป่ตู้
七.最优潮流问题
本节主要内容 最优潮流的数学模型
七.最优潮流问题
(3)基本潮流计算是求解非线性代数方 程组;而最优潮流计算从数学上讲是一个 非线性规划问题,因此需要采用最优化方 法来求解。 (4)基本潮流计算完成的只是一种计算功 能,即从给定的 u 求出相应的 x ;而最优 潮流计算是根据特定目标函数并满足相应 约束条件的情况下,自动优选控制变量, 具有指导系统进行优化调整的决策功能。
例如:
七.最优潮流问题—数学模型
(1)目标函数采用发电燃料耗量(或 费用)最小:
以除去平衡节点以外的所有有功 电源出力及所有可调无功电源出力(或 用相应的节点电压),还有带负荷调压 变压器的变比作为控制变量,就是对有 功及无功进行综合优化的通常泛称的最 优潮流问题.
七.最优潮流问题—数学模型
(2)若目标函数同(1),仅以有功电源 出力作为控制变量而将无功电源出力(或 相应节点电压模值)固定,则称为有功最 优潮流。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最优潮流计算
在系统的结构参数及负荷情况给定情况下,通过控制变量的优选, 找到能够满足所有给定的约束条件,并使系统的某一技术指标达到 最优(如网损、煤耗)时的潮流分布。
注:u为待选变量 约束条件分为等式约束条件和不等式约束条件。 采用的方法为:非线性规划
4
第一节
概述
随着电力系统规模扩大,对计算速度和系统安全性提出了更高要求,这 些经典调度理论已不能满足要求。将电力系统的潮流计算和优化理论结合, 并且计及系统的各种约束条件和电能质量,即形成了经典的优化理论—— 最优潮流(OPF)。OPF已在电力市场很多经济理论中广泛应用。
11
第二节
最优潮流的数学模型
考虑电力系统的经济因素,20世纪60年代末出现了一些经济调度理论, 例如最优分配有功负荷分布的等耗量微增率和无功电源最优分布的等网损 微增率。等耗量微增率准则是指系统所有发电机组具有同样的耗量微增率 时,系统运行所需要的费用最小,等网损微增率是指系统所有无功电源配 置具有相同的网损微增率时,系统网损最小。
最优潮 流的目 标函数
全系统火电机组燃料总费用,即 f Ki (PGi ) inG
式中:nG 为全系统所有发电机的集合,Ki (PGi ) 为第i台发 电机的耗量特性,一般用二次多项式表示,PGi 为第i台发电
机的有功出力。
有功网损,即 f (Pij Pji ) (i, j )nl 式中,nl 表示所有支路的集合。 9
可以证明最优潮流包含了等耗量微增率和等网损微增率,是这2个准则 在电力系统中的进一步发展运用(通过对目标函数的比较、约束条件的比 较、物理含义的分析等等)。
12
第三节
最优潮流的简化梯度算法
13
第三节
最优潮流的简化梯度算法
简化梯度算法是以极坐标形式的牛顿法为基础的,所采用的目标函 数、等式及不等式约束条件均如前所述。
L(u, x, ) f (u, x) T g(u, x)
式中:λ为由拉格朗日乘子所构成的向量。
这样把原来的有约束最优化问题变成了一个无约束最优化问题。采用经典
的函数求极值的方法,将函数分别对变量及乘子求导,并使之等于0,即得到求极值的一组
必要条件为
L f g T 0 (7-8)

约束
①各有功电源出力上下限约束
条件
②各发电机及无功补偿装置无功出力上下限约束
不等 ③移相器抽头位置约束
式约 ④带负荷调压变压器抽头位置约束 束 ⑤各节点电压幅值上下限约束
⑥各支路通过的最大功率约束
⑦线路两端节点电压相角差约束
统一表示为:
h(u, x) 0
8
第二节
最优潮流的数学模型
最优潮流的目标函数
下面先讨论仅计及等式约束条件时算法的构成,然后再讨论计及不等式约束条件 时的处理方法。
仅有等式约束条件时的算法
对于仅有等式约束的最优潮流计算,其数学模型可以表示为
min f (u, x) s.t.g(u, x) 0
14
第三节
最优潮流的简化梯度算法
用经典的拉格朗日乘子法,引入和等式约束同样多的拉格朗日乘子
x x x
最优潮流的解必须同时满 足这3组方程。直接联立求解这
L f


g
T

0Fra bibliotek(7-9)
u u u
3个极值条件方程组,可以求得 此非线性规划问题的最优解。
L g (u, x) 0

(7-10)
15
第三节
最优潮流的简化梯度算法
由于方程数目多,非线性,因此采用一个迭代下降算法。其基本思想:
04
由于
g x
就是牛顿法潮流计算的雅可比矩阵
J
,利用已经求得
的 J , 由(7-8)式,可以方便的求出


-
g
T
1
f
x x
(7-11)
05 将u及已经求得的x、λ 带入第(7-9)式,有
现代电力系统分析 理论与方法
第七章 电力系统最优潮流
1
第七章 电力系统最优潮流
01
概述
02
最优潮流的数学模型
03
最优潮流的简化梯度算法
04
最优潮流的牛顿算法
05
最优潮流的内点法
06 电力市场环境下的最优潮流计算
2
第一节
概述
3
第一节
概述
常规潮流计算
针对扰动变量p,根据给定的控制变量u,求状态变量x. 在工程实际中求出的x可能技术上不可行,需要调整控制变量u, 找到满足约束条件的解(技术上可行的潮流解)。
从一个初始点开始,确定一个搜索方向,沿着这个方向移动一步,使目标函数有所下 降,然后由这个新的点开始,再重复进行上述步骤,直到满足一定的收敛判据为止。
具体步骤如下:
0 1
置迭代次数k=0
02 假定一组控制变量初值u(0)
03 通过潮流方程,由已知的u求得相应的x(k)
16
第三节
最优潮流的简化梯度算法
第二节
最优潮流的数学模型
最优潮流的数学模型
最优潮流问题在数学上可以描述为:在网络结构和参数以及系 统负荷给定的条件下,确定系统的控制变量,满足各种等式、不等式 约束,使得描述系统运行效益的某个给定目标函数取极值。其数学模 型为:
min f (u, x) s.t.g (u, x) 0 h(u, x) 0
最优潮流计算是一个典型的有约束非线性规划问题,求解最优潮流的 非线性规划法有简化梯度法、二次规划法、牛顿法、人工智能方法等。本 章将介绍简化梯度法、牛顿法和内点法。
5
第二节
最优潮流的数学模型
6
第二节
最优潮流的数学模型
最优潮流问题在数学上是一个带约束的优化问题,其主要构成包括 变量集合、约束条件和目标函数。
由以上公式可以看出,电力系统最优潮流计算是一个典型的具有 约束的非线性规划问题。
10
第二节
最优潮流的数学模型
最优潮流分类:
1
全系统最优潮流
目标函数:燃料耗量
控制变量:有功、无功出力
2
有功最优潮流
目标函数:燃料耗量
控制变量:有功出力 无功出力固定
3
无功优化潮流
目标函数:网损
控制变量:无功出力 有功固定
最优潮流的变量
变量
① 发电机(平衡节点除外)的有功出力 控制 ② 所有发电机、无功补偿装置的无功出力或 变量 相应的节点电压幅值;
③ 带负荷调压变压器的变比。
状态 ①各节点电压 变量 ②各支路功率
7
第二节
最优潮流的数学模型
最优潮流的约束条件

式 约
即潮流方程式,统一表示为 g (u, x) 0
相关文档
最新文档