分类加法计算原理与分步乘法计算原理
第一节 分类加法计数原理与分步乘法计数原理 课件(共40张PPT)

角度 涂色、种植问题 [例3] (1)如图,图案共分9个区域,有6 种不同颜色的涂料可供涂色,每个区域只能 涂1种颜色的涂料,其中2和9同色,3和6同 色,4和7同色,5和8同色,且相邻区域的颜色不相同, 则不同的涂色方法有( ) A.360种 B.720种 C.780种 D.840种
1.如图,小明从街道的E处出发,先到F处与小红 会合,再一起到位于G处的老年公寓参加志愿者活动, 则小明到老年公寓可以选择的最短路径条数为( )
A.24 B.18
C.12
D.9
解析:从E点到F点的最短路径有6条,从F点到G点 的最短路径有3条,所以从E点到G点的最短路径有6×3= 18(条),故选B.
4.从0,1,2,3,4,5这六个数字中,任取两个不 同数字相加,其和为偶数的不同取法的种数是______.
解析:从0,1,2,3,4,5六个数字中,任取两数 和为偶数可分为两类,①取出的两数都是偶数,共有3种 方法;②取出的两数都是奇数,共有3种方法,故由分类 加法计数原理得共有N=3+3=6(种).
考点1 分类加法计数原理
1.如图,某货场有两堆集装箱,一
堆2个,一堆3个,现需要全部装运,每
次只能取其中一堆最上面的一个集装箱,则在装运的过
程中不同取法的种数是( )
A.6
B.10
C.12
D.24
解析:将题图中左边的集装箱从上往下分别记为
1,2,3,右边的集装箱从上往下分别记为4,5.分两种
情况讨论:若先取1,则有12345,12453,12435,
答案:D
3.现安排一份5天的工作值班表,每天有一个人值
11.1 分类加法计数原理与分步乘法计数原理

A.9种
B.18种 C.12种
D.36种
-22-
考点1
考点2
考点3
解析:(1)分两类:①当取1时,1只能为真数,此时对数值为0; ②不取1时,分两步:取底数,有5种不同的取法;取真数,有4种不同的
取法.
其中log23=log49,log32=log94,log24=log39,log42=log93,
相同点 用来计算完成一件事的方法种数
分类、相加
分步、相乘
不同点 每类方案中的每一 每步依次完成才算完成这件事情 种方法都能独立地 (每步中的每一种方法都不能独立
完成这件事
地完成这件事)
注意点 类类独立,不重不漏 步步相依,缺一不可
知识梳理 考点自诊
随堂巩固
-4-
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(2)按区域 1 与 3 是否同色分类:
①区域 1 与 3 同色;先涂区域 1 与 3,有 4 种方法,再涂区域 2,4,5(还有
3 种颜色),有A33种方法. 所以区域 1 与 3 同色,共有 4A33=24 种涂色方法.
②区域 1 与 3 不同色:第一步,涂区域 1 与 3,有A24种涂色方法;第二步,
11.1 分类加法计数原固
-2-
1.两个计数原理
分类加法计数原理
分步乘法计数原理
条件
结论 依据
完成一件事,可以 有 n类不同的方案 .在第 1 类方案中有 m1 种不同的方 法,在第 2 类方案中有 m2 种不 同的方法,……在第 n 类方案 中有 mn 种不同的方法 完成这件事共有 N=m1+m2+…+mn 种不同的 方法
随堂巩固
课件12:§1.1 分类加法计数原理与分步乘法计数原理

2. 分步乘法计数原理 (1)分步乘法计数原理:完成一件事需要两个步骤,做第1 步有m种不同的方法,做第2步有n种不同的方法,那么完 成这件事的不同方法共有N=m·n种. (2)分步乘法计数原理的推广:完成一件事需要分成n个步 骤,做第1步有m1种不同的方法,做第2步有m2种不同的方 法……做第n步有mn种不同的方法,那么完成这件事的不 同方法共有N=m1·m2·…·mn种.
类型2 分步乘法计数原理 典例2 已知a∈{3,4,6},b∈{1,2,7,8},r∈{8, 9},则方程(x-a)2+(y-b)2=r2可表示不同的圆的个 数有____2_4___个. 【解析】圆方程由三个量a,b,r确定,a,b,r分别 有3种、4种、2种选法,由分步乘法计数原理,表示 不同的圆的个数为3×4×2=24(个).
(3)分为三类: 第一类是一幅选自国画,一幅选自油画,由分步乘法计数原 理知,不同的选法有5×2=10(种). 第二类是一幅选自国画,一幅选自水彩画,不同的选法有 5×7=35(种). 第三类是一幅选自油画,一幅选自水彩画,不同的选法有 2×7=14(种). 综上所述,不同的选法有10+35+14=59(种).
归纳升华 解两个计数原理的综合应用题时,最容易出现不知道 应用哪个原理解题的情况,其思维障碍在于没有区分 该问题是“分类”还是“分步”,突破方法在于认真 审题,明确“完成一件事”的含义.具体应用时灵活 性很大,要在做题过程中不断体会和思考,基本原则 是“化繁为简”.
变式训练 一个袋子里有10张不同的中国移动手机卡, 另一个袋子里有12张不同的中国联通手机卡. (1)某人要从两个袋子中任取一张自己使用的手机卡,共 有多少种不同的取法? (2)某人的手机是双卡双待机,想得到一张移动和一张联 通卡供自己使用,问一共有多少种不同的取法?
分类加法计数原理与分步乘法计数原理

自然数2520有多少个约数? 有多少个约数? 例3.自然数 自然数 有多少个约数 解:2520=23×32×5×7 = × 分四步完成: 分四步完成: 第一步: 第一步:取20,21,22,23,24有4种; 种 第二步: 第二步:取30,31,32有3种; 种 第三步:取50,51有2种; 第三步: 种 第四步: 第四步:取70,71有2种。 种 由分步计数原理,共有4× × × = 种 由分步计数原理,共有 ×3×2×2=48种 练习: 张 元币 元币, 张 角币 角币, 张 分币 分币, 张 分币 分币, 练习:5张1元币,4张1角币,1张5分币,2张2分币,可组成 多少种不同的币值?( 张不取, ?(1张不取 角不计在内) 多少种不同的币值?( 张不取,即0元0分0角不计在内) 元 分 角不计在内 元:0,1,2,3,4,5 , , , , , 角:0,1,2,3,4 , , , , 分:0,2,4,5,7,9 , , , , , 6×5×6-1=179 × × - =
பைடு நூலகம்
(染色问题) 染色问题)
1.如图 要给地图 、B、C、D四个区域分别涂上 种 如图,要给地图 四个区域分别涂上3种 如图 要给地图A、 、 、 四个区域分别涂上 不同颜色中的某一种,允许同一种颜色使用多次 允许同一种颜色使用多次,但相 不同颜色中的某一种 允许同一种颜色使用多次 但相 邻区域必须涂不同的颜色,不同的涂色方案有多少种 不同的涂色方案有多少种? 邻区域必须涂不同的颜色 不同的涂色方案有多少种?
深化理解 4. 何时用分类计数原理、分步计数原理呢 何时用分类计数原理、分步计数原理呢? 完成一件事情有n类方法 答:完成一件事情有 类方法 若每一类方法中的任 完成一件事情有 类方法,若每一类方法中的任 何一种方法均能将这件事情从头至尾完成,则计算完 何一种方法均能将这件事情从头至尾完成 则计算完 成这件事情的方法总数用分类计数原理. 成这件事情的方法总数用分类计数原理 完成一件事情有n个步骤 若每一步的任何一种 完成一件事情有 个步骤,若每一步的任何一种 个步骤 方法只能完成这件事的一部分,并且必须且只需完成 方法只能完成这件事的一部分 并且必须且只需完成 互相独立的这n步后 才能完成这件事,则计算完成这 步后,才能完成这件事 互相独立的这 步后 才能完成这件事 则计算完成这 件事的方法总数用分步计数原理. 件事的方法总数用分步计数原理
分类加法和分步乘法计数原理

如果完成一件事需要有n个步骤,做每一 步中都有若干种不同方法,那么应当如何 计数呢?
6.分步乘法计数原理一般结论:
如果完成一件事需要n个步骤,做第1步 有m1种不同的方法,做第2步有m2种不 同的方法,…,做第n步有mn种不同的方 法,那么完成这件事的方法总数如何计 算?
N=m1×m2×…×mn
2思考:用前6个大写英文字母和1~9这9个阿 拉伯数字,以A1,A2,···,B1, B2,···的方式给教室里的座位编号,总共能 编出多少个不同的号码?
在这个问题中,号码必须由一个英文字母和 一个作为下标的阿拉伯数字组成,即得到一 个号码要经过先确定一个英文字母,后确定 一个阿拉伯数字这样两个步骤用下图可以列 出所有可能的号码.
22464000
计数问题是我们从小就经常遇到的,通过列举法 一个一个地数是计数的基本方法,但当问题中的数 量很大,列举的效率不高,能否设计巧妙的“数法” 以提高效率呢?
二、探究新知
1.问题1:用一个大写的的英文字母或一个阿拉伯数 字给教室里的座位编号,总共能够编出多少种不同 的号码?
因为英文字母共有26个,阿拉伯数字0~9共有10个,所以 总共可以编出26+10=36种不同的号码.
3.分步乘法计数原理
完成一件事,需要两个步骤: 做第1步 有m种不同的方法,做第2步有n种不同的 方法,则完成这件事共有:
N= m×n种不同的方法
巩固新知
4.例2.设某班有男生30名,女生24名。现要从 中选出男、女生各一名代表班级参加比赛,共 有多少种不同的选法?
分析:选出一组参赛代表,可分两步: 第一步, 选男生;第二步,选女生
N=m1+m2+m3
如果完成一件事有n类不同方案,在每一 类中都有若干种不同方法,那么应当如 何计数呢?
公开课分类加法计数原理与分步乘法计数原理课件

• 分类加法计数原理 • 分步乘法计数原理 • 分类加法计数原理与分步乘法计
数原理的比较 • 公开课总结与展望
目录
01
分类加法计数原理
定义与理解
定义
分类加法计数原理是指将一个问题分成若干个互斥的子问题,每个子问题有一 个明确的解决策略,然后将这些子问题的解合并起来得到原问题的解。
分类加法计数原理的实例
实例1
在组合数学中,将一个复杂组合问题 分解为若干个简单的组合问题,然后 分别计算这些简单问题的解,最后将 这些解相加得到原问题的解。
实例2
在统计学中,将一个复杂统计问题分 解为若干个简单的统计问题,然后分 别计算这些简单问题的解,最后将这 些解相加得到原问题的解。
02
分步乘法计数原理
解析
根据分步乘法计数原理,学生可以选择不同的交通方式有$m_1$种方法,选择不 同的住宿方式有$m_2$种方法,因此总共有$m_1 times m_2$种不同的春游方 案。
03
分类加法计数原理与分步乘
法计数原理的比较
两者之间的联系
分类加法计数原理和分步乘法计数原 理都是基本的计数原理,用于解决组 合数学中的计数问题。
定义与理解
定义
分步乘法计数原理是指完成一件事情,需要分成$n$个步骤,做第$1$步有$m_1$种不同的方法,做第$2$步有 $m_2$种不同的方法,……,做第$n$步有$m_n$种不同的方法,则完成这件事情有$m_1 times m_2 times ldots times m_n$种不同的方法。
理解
理解
分类加法计数原理的核心思想是将复杂问题分解为简单问题,然后分别解决这 些简单问题,最后将结果合并。
6.1分类加法计数原理和分步乘法计数原理-【新教材】人教A版高中数学选择性必修第三册课件

少要用多少个字节表示?
分析:
第1位 第2位 第3位
第8位 ......
第1位 第2位 第3位
第8位 ......
2种 2种
2种
2种
2种 2种
2种
2种
256*256=65536
两 例7:计算机编程人员在编写好程序以后要对程序进行测试。程序员需要知道到底有多少条执行
分析:
“选出2幅画,分别挂
1、“要完成的一件事”:在左、右两边墙上”
2、如何完成:“分步”
追问1:你还能给出不同 的解法吗?
第1步:从3幅画中选2幅,有3种选法; (甲,乙)、(甲,丙)、(乙,丙) 第2步:将选出的两幅画挂好,有2种挂法;
N=3✖2=6种.
例5:给程序模块命名,需要用3个字符,其中首字符要求用字母A~G或U~Z, 后两个字符要求用数字1~9,最多可以给多少个程序模块命名?
个 计 路(程序从开始到结束的线),以便知道需要提供多少个测试数据。一般的,一个程序模块又许
数 原
多子模块组成.下图是一个具有许多执行路径的程序模块。问:这个程序模块有多少条执行路径?
理 另外为了减少测试时间,程序员需要设法减少测试次数,你能帮助程序员设计一个测试方式,以
的 实
减少测试次数吗?
际
开始
数 多子模块组成.下图是一个具有许多执行路径的程序模块。问:这个程序模块有多少条执行路径?
原 理
另外为了减少测试时间,程序员需要设法减少测试次数,你能帮助程序员设计一个测试方式,以
的 减少测试次数吗?
实 际
开始
分类加法原理与分布乘法原理

分类加法计数原理和分步乘法计数原理第一课时1 分类加法计数原理 (1)提出问题问题 1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?(2)发现新知分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有n m N += 种不同的方法. (3)知识应用例1.在填写高考志愿表时,一名高中毕业生了解到,A,B 两所大学各有一些自己感兴趣的强项专业,具体情况如下:A 大学B 大学 生物学 数学 化学 会计学 医学 信息技术学 物理学 法学 工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?变式:若还有C 大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n 类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢? 一般归纳:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.例2.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条? 练习1.填空: ( 1 )一件工作可以用 2 种方法完成,有 5 人只会用第 1 种方法完成,另有 4 人只会用第 2 种方法完成,从中选出 l 人来完成这件工作,不同选法的种数是_ ;( 2 )从 A 村去 B 村的道路有 3 条,从 B 村去 C 村的道路有 2 条,从 A 村经 B 的路线有_条.第二课时2 分步乘法计数原理 (1)提出问题问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以1A ,2A ,…,1B ,2B ,…的方式给教室里的座位编号,总共能编出多少个不同的号码?(2)发现新知分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有n m N ⨯= 种不同的方法. (3)知识应用例1.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?探究:如果完成一件事需要三个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,做第3步有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n 个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢? 一般归纳:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.3.理解分类加法计数原理与分步乘法计数原理异同点 ①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.例2 .如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?变式1,如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?2若颜色是2种,4种,5种又会什么样的结果呢?练习2.现有高一年级的学生 3 名,高二年级的学生 5 名,高三年级的学生 4 名. ( 1 )从中任选1 人参加接待外宾的活动,有多少种不同的选法?村去 C 村,不同 ( 2 )从 3 个年级的学生中各选 1 人参加接待外宾的活动,有多少种不同的选法?第三课时3 综合应用例1. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书. ①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1本书,有多少种不同的取法? ③从书架上任取两本不同学科的书,有多少种不同的取法?例2. 要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?例3.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有3个不重复的英文字母和 3 个不重复的阿拉伯数字,并且 3 个字母必须合成一组出现,3个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?练习1.乘积12312312345)()()a a a b b b c c c c c ++++++++(展开后共有多少项?2.某电话局管辖范围内的电话号码由八位数字组成,其中前四位的数字是不变的,后四位数字都是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:分类加法计数原理与 分步乘法计数原理 授课:张贤华 学校:衡阳市第八中学
时间:2010年上期
问题提出
1 5730 p 2
t
1.先后抛掷两枚骰子,求点数 之和为8的概率,怎样计算?
1 2 3 4 5 6
N=m1+m2+…+mn
探究二:分步乘法计数原理
思考1:用A~F六个大写的英文字母 和1~9九个阿拉伯数字,以A1,A2,…, B1,B2,…,…的方式给教室里的座位 编号,总共能够编出多少种不同的号 码? 6×9=54
探究二:分步乘法计数原理
思考2:从甲地到乙地,先要从甲地乘 火车到丙地,再于次日从丙地乘汽车到 乙地.一天中从甲地到丙地的火车有4 班,从丙地到乙地的汽车有8班,那么两 天中,乘坐这些交通工具从甲地到乙地 共有多少种不同的走法?
4×8=32
探究二:分步乘法计数原理
思考3:从师大声乐系某6名男生和8名 女生中各选一人表演男女二重唱,共有 多少种不同的选派方法? 6×8=48 思考4:上述计数问题的算法有何共同 特点?由此归纳,这类问题的一般计数 原理是什么?
完成一件事需要两个步骤,做第1步有m种不 同的方法,做第2步有n种不同的方法,那么 完成这件事共有N=m×n种不同的方法.
探究一:分类加法计数原理
思考1:用一个大写的英文字母或一个 阿拉伯数字给教室里的座位编号,总共 能够编出多少种不同的号码? 26+10=36 思考2:从甲地到乙地可以乘火车,也 可以乘汽车,一天中火车有4班,汽车有 8班,那么一天中,乘坐这些交通工具从 甲地到乙地共有多少种不同的走法? 4+8=12
理论迁移
例1 在填写高考志愿时,一名高中毕业 生了解到,A,B两所大学各有一些自己 感兴趣的强项专业,具体情况如下:
A大学:生物学 化学 医学 物理学 工程学 B大学: 数学 会计学 信息技术学 法学
如果这名同学只能选一个专业,求他共 有多少种不同的选择方法?
N=5+4=9(种)
理论迁移
例2 某班有男生30名,女生24名,现要
课堂小结
3.在应用分类加法计数原理时,分类方 法不唯一,但分类不能重复,也不能遗 漏.在应用分步乘法计数原理时,分步 方法不惟一,但分步不能重叠,也不能 缺少.
作业布置
P12习题1.1A组:
1,2,3,4,5.
(1)N=4+3+2=9(种)
(2)N=4×3×2=24(种)
理论迁移
例4 要从甲、乙、丙3幅不同的画中选
出2幅,分别挂在左、右两边墙上的指
定位置,求共有多少种不同的挂法? N=3×2=6(种)
课堂小结
1.分类加法计数原理和分步乘法计数原理, 都是解决完成一件事的方法数的计数问题, 其不同之处在于,前者是针对“分类”问 题的计数方法,后者是针对“分步”问题 的计数方法. 2.在“分类”问题中,各类方案中的每一 种方法相互独立,选取任何一种方法都能 完成这件事;在“分步”问题中,各步骤 中的方法相互依存,只有各步骤各选一种 方法才能完成这件事.
探究二:分步乘法计数原理
思考5:上述原理称为分步乘法计数 原理,如何从集合运算的角度理解这 个原理? 若U={(a,b)|a∈A,b∈B},
则card(U)=card(A)×card(B).
探究二:分步乘法计数原理
思考6:如果完成一件事需要n个步骤, 做第1步有m1 种不同的方法,做第2步 有m2 种不同的方法,…,做第n步有mn 种不同的方法,那么完成这件事的方法 总数如何计算? N=m1×m2×…×mn
1
2 3 4 5
11
21 31 41 51
12
22 32 42 52
13
23 33 43 53
14
24 34 44 54
15
25 35 45 55
16
26 36 46 56
6
61
62
63
64
65
66
问题提出
2.计数问题是现实生活中最常见的问 题,同时也是数学中的重要研究对象 之一,特别在概率统计领域里,计数问 题更是解题的基础.对于简单的计数 问题,我们可以通过穷举法计算,但对 于复杂的计数问题,我们希望通过有 关பைடு நூலகம்数原理来解决.因此,在实践中总 结、归纳出科学的计算原理,具有十 分重要的意义.
探究一:分类加法计数原理
思考5:上述原理称为分类加法计数 原理,如何从集合运算的角度理解这 个原理? A B
若A∪B=U,A∩B=Φ, 则card(U)=card(A)+card(B).
探究一:分类加法计数原理
思考6:如果完成一件事有n类不同 方案,在第1类方案中有m1 种不同的 方法,在第2类方案中有m2 种不同的 方法,…,在第n类方案中有mn种不同 的方法,那么完成这件事的方法总数 如何计算?
探究一:分类加法计数原理
思考3:从师大声乐系某6名男生或8名 女生中任选一人表演独唱,共有多少种 6+8=14 不同的选派方法? 思考4:上述计数问题的算法有何共同 特点?由此归纳,这类问题的一般计数 原理是什么?
完成一件事有两类不同方案,在第1类方案 中有m种不同的方法,在第2类方案中有n种 不同的方法,那么完成这件事共有N=m+n 种不同的方法.
从中选出男、女生各一名代表班级参
加朗诵比赛,求共有多少种不同的选派
方法? N=30×24=720(种)
理论迁移
例3 书架有三层,其中第一层放有4本不 同的计算机书,第二层放有3本不同的文 艺书,第三层放有2本不同的体育书. (1)从书架上任取1本书,有多少种不同 的取法? (2)从书架的第一,二,三层各取1本书, 有多少种不同的取法?