分类加法计算原理与分步乘法计算原理

合集下载

第一节 分类加法计数原理与分步乘法计数原理 课件(共40张PPT)

第一节 分类加法计数原理与分步乘法计数原理 课件(共40张PPT)
数为A45=120. 故符合题意的四位数一共有960+120=1 080(个). 答案:1 080
角度 涂色、种植问题 [例3] (1)如图,图案共分9个区域,有6 种不同颜色的涂料可供涂色,每个区域只能 涂1种颜色的涂料,其中2和9同色,3和6同 色,4和7同色,5和8同色,且相邻区域的颜色不相同, 则不同的涂色方法有( ) A.360种 B.720种 C.780种 D.840种
1.如图,小明从街道的E处出发,先到F处与小红 会合,再一起到位于G处的老年公寓参加志愿者活动, 则小明到老年公寓可以选择的最短路径条数为( )
A.24 B.18
C.12
D.9
解析:从E点到F点的最短路径有6条,从F点到G点 的最短路径有3条,所以从E点到G点的最短路径有6×3= 18(条),故选B.
4.从0,1,2,3,4,5这六个数字中,任取两个不 同数字相加,其和为偶数的不同取法的种数是______.
解析:从0,1,2,3,4,5六个数字中,任取两数 和为偶数可分为两类,①取出的两数都是偶数,共有3种 方法;②取出的两数都是奇数,共有3种方法,故由分类 加法计数原理得共有N=3+3=6(种).
考点1 分类加法计数原理
1.如图,某货场有两堆集装箱,一
堆2个,一堆3个,现需要全部装运,每
次只能取其中一堆最上面的一个集装箱,则在装运的过
程中不同取法的种数是( )
A.6
B.10
C.12
D.24
解析:将题图中左边的集装箱从上往下分别记为
1,2,3,右边的集装箱从上往下分别记为4,5.分两种
情况讨论:若先取1,则有12345,12453,12435,
答案:D
3.现安排一份5天的工作值班表,每天有一个人值

11.1 分类加法计数原理与分步乘法计数原理

11.1  分类加法计数原理与分步乘法计数原理

A.9种
B.18种 C.12种
D.36种
-22-
考点1
考点2
考点3
解析:(1)分两类:①当取1时,1只能为真数,此时对数值为0; ②不取1时,分两步:取底数,有5种不同的取法;取真数,有4种不同的
取法.
其中log23=log49,log32=log94,log24=log39,log42=log93,
相同点 用来计算完成一件事的方法种数
分类、相加
分步、相乘
不同点 每类方案中的每一 每步依次完成才算完成这件事情 种方法都能独立地 (每步中的每一种方法都不能独立
完成这件事
地完成这件事)
注意点 类类独立,不重不漏 步步相依,缺一不可
知识梳理 考点自诊
随堂巩固
-4-
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(2)按区域 1 与 3 是否同色分类:
①区域 1 与 3 同色;先涂区域 1 与 3,有 4 种方法,再涂区域 2,4,5(还有
3 种颜色),有A33种方法. 所以区域 1 与 3 同色,共有 4A33=24 种涂色方法.
②区域 1 与 3 不同色:第一步,涂区域 1 与 3,有A24种涂色方法;第二步,
11.1 分类加法计数原固
-2-
1.两个计数原理
分类加法计数原理
分步乘法计数原理
条件
结论 依据
完成一件事,可以 有 n类不同的方案 .在第 1 类方案中有 m1 种不同的方 法,在第 2 类方案中有 m2 种不 同的方法,……在第 n 类方案 中有 mn 种不同的方法 完成这件事共有 N=m1+m2+…+mn 种不同的 方法
随堂巩固

课件12:§1.1 分类加法计数原理与分步乘法计数原理

课件12:§1.1 分类加法计数原理与分步乘法计数原理
分类,要做到不重不漏.
2. 分步乘法计数原理 (1)分步乘法计数原理:完成一件事需要两个步骤,做第1 步有m种不同的方法,做第2步有n种不同的方法,那么完 成这件事的不同方法共有N=m·n种. (2)分步乘法计数原理的推广:完成一件事需要分成n个步 骤,做第1步有m1种不同的方法,做第2步有m2种不同的方 法……做第n步有mn种不同的方法,那么完成这件事的不 同方法共有N=m1·m2·…·mn种.
类型2 分步乘法计数原理 典例2 已知a∈{3,4,6},b∈{1,2,7,8},r∈{8, 9},则方程(x-a)2+(y-b)2=r2可表示不同的圆的个 数有____2_4___个. 【解析】圆方程由三个量a,b,r确定,a,b,r分别 有3种、4种、2种选法,由分步乘法计数原理,表示 不同的圆的个数为3×4×2=24(个).
(3)分为三类: 第一类是一幅选自国画,一幅选自油画,由分步乘法计数原 理知,不同的选法有5×2=10(种). 第二类是一幅选自国画,一幅选自水彩画,不同的选法有 5×7=35(种). 第三类是一幅选自油画,一幅选自水彩画,不同的选法有 2×7=14(种). 综上所述,不同的选法有10+35+14=59(种).
归纳升华 解两个计数原理的综合应用题时,最容易出现不知道 应用哪个原理解题的情况,其思维障碍在于没有区分 该问题是“分类”还是“分步”,突破方法在于认真 审题,明确“完成一件事”的含义.具体应用时灵活 性很大,要在做题过程中不断体会和思考,基本原则 是“化繁为简”.
变式训练 一个袋子里有10张不同的中国移动手机卡, 另一个袋子里有12张不同的中国联通手机卡. (1)某人要从两个袋子中任取一张自己使用的手机卡,共 有多少种不同的取法? (2)某人的手机是双卡双待机,想得到一张移动和一张联 通卡供自己使用,问一共有多少种不同的取法?

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理

自然数2520有多少个约数? 有多少个约数? 例3.自然数 自然数 有多少个约数 解:2520=23×32×5×7 = × 分四步完成: 分四步完成: 第一步: 第一步:取20,21,22,23,24有4种; 种 第二步: 第二步:取30,31,32有3种; 种 第三步:取50,51有2种; 第三步: 种 第四步: 第四步:取70,71有2种。 种 由分步计数原理,共有4× × × = 种 由分步计数原理,共有 ×3×2×2=48种 练习: 张 元币 元币, 张 角币 角币, 张 分币 分币, 张 分币 分币, 练习:5张1元币,4张1角币,1张5分币,2张2分币,可组成 多少种不同的币值?( 张不取, ?(1张不取 角不计在内) 多少种不同的币值?( 张不取,即0元0分0角不计在内) 元 分 角不计在内 元:0,1,2,3,4,5 , , , , , 角:0,1,2,3,4 , , , , 分:0,2,4,5,7,9 , , , , , 6×5×6-1=179 × × - =
பைடு நூலகம்
(染色问题) 染色问题)
1.如图 要给地图 、B、C、D四个区域分别涂上 种 如图,要给地图 四个区域分别涂上3种 如图 要给地图A、 、 、 四个区域分别涂上 不同颜色中的某一种,允许同一种颜色使用多次 允许同一种颜色使用多次,但相 不同颜色中的某一种 允许同一种颜色使用多次 但相 邻区域必须涂不同的颜色,不同的涂色方案有多少种 不同的涂色方案有多少种? 邻区域必须涂不同的颜色 不同的涂色方案有多少种?
深化理解 4. 何时用分类计数原理、分步计数原理呢 何时用分类计数原理、分步计数原理呢? 完成一件事情有n类方法 答:完成一件事情有 类方法 若每一类方法中的任 完成一件事情有 类方法,若每一类方法中的任 何一种方法均能将这件事情从头至尾完成,则计算完 何一种方法均能将这件事情从头至尾完成 则计算完 成这件事情的方法总数用分类计数原理. 成这件事情的方法总数用分类计数原理 完成一件事情有n个步骤 若每一步的任何一种 完成一件事情有 个步骤,若每一步的任何一种 个步骤 方法只能完成这件事的一部分,并且必须且只需完成 方法只能完成这件事的一部分 并且必须且只需完成 互相独立的这n步后 才能完成这件事,则计算完成这 步后,才能完成这件事 互相独立的这 步后 才能完成这件事 则计算完成这 件事的方法总数用分步计数原理. 件事的方法总数用分步计数原理

分类加法和分步乘法计数原理

分类加法和分步乘法计数原理
N=m1×m2×m3
如果完成一件事需要有n个步骤,做每一 步中都有若干种不同方法,那么应当如何 计数呢?
6.分步乘法计数原理一般结论:
如果完成一件事需要n个步骤,做第1步 有m1种不同的方法,做第2步有m2种不 同的方法,…,做第n步有mn种不同的方 法,那么完成这件事的方法总数如何计 算?
N=m1×m2×…×mn
2思考:用前6个大写英文字母和1~9这9个阿 拉伯数字,以A1,A2,···,B1, B2,···的方式给教室里的座位编号,总共能 编出多少个不同的号码?
在这个问题中,号码必须由一个英文字母和 一个作为下标的阿拉伯数字组成,即得到一 个号码要经过先确定一个英文字母,后确定 一个阿拉伯数字这样两个步骤用下图可以列 出所有可能的号码.
22464000
计数问题是我们从小就经常遇到的,通过列举法 一个一个地数是计数的基本方法,但当问题中的数 量很大,列举的效率不高,能否设计巧妙的“数法” 以提高效率呢?
二、探究新知
1.问题1:用一个大写的的英文字母或一个阿拉伯数 字给教室里的座位编号,总共能够编出多少种不同 的号码?
因为英文字母共有26个,阿拉伯数字0~9共有10个,所以 总共可以编出26+10=36种不同的号码.
3.分步乘法计数原理
完成一件事,需要两个步骤: 做第1步 有m种不同的方法,做第2步有n种不同的 方法,则完成这件事共有:
N= m×n种不同的方法
巩固新知
4.例2.设某班有男生30名,女生24名。现要从 中选出男、女生各一名代表班级参加比赛,共 有多少种不同的选法?
分析:选出一组参赛代表,可分两步: 第一步, 选男生;第二步,选女生
N=m1+m2+m3
如果完成一件事有n类不同方案,在每一 类中都有若干种不同方法,那么应当如 何计数呢?

公开课分类加法计数原理与分步乘法计数原理课件

公开课分类加法计数原理与分步乘法计数原理课件
公开课分类加法计数 原理与分步乘法计数 原理课件
• 分类加法计数原理 • 分步乘法计数原理 • 分类加法计数原理与分步乘法计
数原理的比较 • 公开课总结与展望
目录
01
分类加法计数原理
定义与理解
定义
分类加法计数原理是指将一个问题分成若干个互斥的子问题,每个子问题有一 个明确的解决策略,然后将这些子问题的解合并起来得到原问题的解。
分类加法计数原理的实例
实例1
在组合数学中,将一个复杂组合问题 分解为若干个简单的组合问题,然后 分别计算这些简单问题的解,最后将 这些解相加得到原问题的解。
实例2
在统计学中,将一个复杂统计问题分 解为若干个简单的统计问题,然后分 别计算这些简单问题的解,最后将这 些解相加得到原问题的解。
02
分步乘法计数原理
解析
根据分步乘法计数原理,学生可以选择不同的交通方式有$m_1$种方法,选择不 同的住宿方式有$m_2$种方法,因此总共有$m_1 times m_2$种不同的春游方 案。
03
分类加法计数原理与分步乘
法计数原理的比较
两者之间的联系
分类加法计数原理和分步乘法计数原 理都是基本的计数原理,用于解决组 合数学中的计数问题。
定义与理解
定义
分步乘法计数原理是指完成一件事情,需要分成$n$个步骤,做第$1$步有$m_1$种不同的方法,做第$2$步有 $m_2$种不同的方法,……,做第$n$步有$m_n$种不同的方法,则完成这件事情有$m_1 times m_2 times ldots times m_n$种不同的方法。
理解
理解
分类加法计数原理的核心思想是将复杂问题分解为简单问题,然后分别解决这 些简单问题,最后将结果合并。

6.1分类加法计数原理和分步乘法计数原理-【新教材】人教A版高中数学选择性必修第三册课件

6.1分类加法计数原理和分步乘法计数原理-【新教材】人教A版高中数学选择性必修第三册课件
个(2二)进计算制机位汉构字成国标。码包含了6763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至
少要用多少个字节表示?
分析:
第1位 第2位 第3位
第8位 ......
第1位 第2位 第3位
第8位 ......
2种 2种
2种
2种
2种 2种
2种
2种
256*256=65536
两 例7:计算机编程人员在编写好程序以后要对程序进行测试。程序员需要知道到底有多少条执行
分析:
“选出2幅画,分别挂
1、“要完成的一件事”:在左、右两边墙上”
2、如何完成:“分步”
追问1:你还能给出不同 的解法吗?
第1步:从3幅画中选2幅,有3种选法; (甲,乙)、(甲,丙)、(乙,丙) 第2步:将选出的两幅画挂好,有2种挂法;
N=3✖2=6种.
例5:给程序模块命名,需要用3个字符,其中首字符要求用字母A~G或U~Z, 后两个字符要求用数字1~9,最多可以给多少个程序模块命名?
个 计 路(程序从开始到结束的线),以便知道需要提供多少个测试数据。一般的,一个程序模块又许
数 原
多子模块组成.下图是一个具有许多执行路径的程序模块。问:这个程序模块有多少条执行路径?
理 另外为了减少测试时间,程序员需要设法减少测试次数,你能帮助程序员设计一个测试方式,以
的 实
减少测试次数吗?

开始
数 多子模块组成.下图是一个具有许多执行路径的程序模块。问:这个程序模块有多少条执行路径?
原 理
另外为了减少测试时间,程序员需要设法减少测试次数,你能帮助程序员设计一个测试方式,以
的 减少测试次数吗?
实 际
开始

分类加法原理与分布乘法原理

分类加法原理与分布乘法原理

分类加法计数原理和分步乘法计数原理第一课时1 分类加法计数原理 (1)提出问题问题 1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?(2)发现新知分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有n m N += 种不同的方法. (3)知识应用例1.在填写高考志愿表时,一名高中毕业生了解到,A,B 两所大学各有一些自己感兴趣的强项专业,具体情况如下:A 大学B 大学 生物学 数学 化学 会计学 医学 信息技术学 物理学 法学 工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?变式:若还有C 大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n 类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢? 一般归纳:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.例2.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条? 练习1.填空: ( 1 )一件工作可以用 2 种方法完成,有 5 人只会用第 1 种方法完成,另有 4 人只会用第 2 种方法完成,从中选出 l 人来完成这件工作,不同选法的种数是_ ;( 2 )从 A 村去 B 村的道路有 3 条,从 B 村去 C 村的道路有 2 条,从 A 村经 B 的路线有_条.第二课时2 分步乘法计数原理 (1)提出问题问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以1A ,2A ,…,1B ,2B ,…的方式给教室里的座位编号,总共能编出多少个不同的号码?(2)发现新知分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有n m N ⨯= 种不同的方法. (3)知识应用例1.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?探究:如果完成一件事需要三个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,做第3步有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n 个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢? 一般归纳:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.3.理解分类加法计数原理与分步乘法计数原理异同点 ①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.例2 .如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?变式1,如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?2若颜色是2种,4种,5种又会什么样的结果呢?练习2.现有高一年级的学生 3 名,高二年级的学生 5 名,高三年级的学生 4 名. ( 1 )从中任选1 人参加接待外宾的活动,有多少种不同的选法?村去 C 村,不同 ( 2 )从 3 个年级的学生中各选 1 人参加接待外宾的活动,有多少种不同的选法?第三课时3 综合应用例1. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书. ①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1本书,有多少种不同的取法? ③从书架上任取两本不同学科的书,有多少种不同的取法?例2. 要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?例3.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有3个不重复的英文字母和 3 个不重复的阿拉伯数字,并且 3 个字母必须合成一组出现,3个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?练习1.乘积12312312345)()()a a a b b b c c c c c ++++++++(展开后共有多少项?2.某电话局管辖范围内的电话号码由八位数字组成,其中前四位的数字是不变的,后四位数字都是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学选修2-3第一章计数原理1.1分类 加法计 数原理 与分步 乘法计 数原理
课题:分类加法计数原理与 分步乘法计数原理 授课:张贤华 学校:衡阳市第八中学
时间:2010年上期
问题提出
1 5730 p 2
t
1.先后抛掷两枚骰子,求点数 之和为8的概率,怎样计算?
1 2 3 4 5 6
N=m1+m2+…+mn
探究二:分步乘法计数原理
思考1:用A~F六个大写的英文字母 和1~9九个阿拉伯数字,以A1,A2,…, B1,B2,…,…的方式给教室里的座位 编号,总共能够编出多少种不同的号 码? 6×9=54
探究二:分步乘法计数原理
思考2:从甲地到乙地,先要从甲地乘 火车到丙地,再于次日从丙地乘汽车到 乙地.一天中从甲地到丙地的火车有4 班,从丙地到乙地的汽车有8班,那么两 天中,乘坐这些交通工具从甲地到乙地 共有多少种不同的走法?
4×8=32
探究二:分步乘法计数原理
思考3:从师大声乐系某6名男生和8名 女生中各选一人表演男女二重唱,共有 多少种不同的选派方法? 6×8=48 思考4:上述计数问题的算法有何共同 特点?由此归纳,这类问题的一般计数 原理是什么?
完成一件事需要两个步骤,做第1步有m种不 同的方法,做第2步有n种不同的方法,那么 完成这件事共有N=m×n种不同的方法.
探究一:分类加法计数原理
思考1:用一个大写的英文字母或一个 阿拉伯数字给教室里的座位编号,总共 能够编出多少种不同的号码? 26+10=36 思考2:从甲地到乙地可以乘火车,也 可以乘汽车,一天中火车有4班,汽车有 8班,那么一天中,乘坐这些交通工具从 甲地到乙地共有多少种不同的走法? 4+8=12
理论迁移
例1 在填写高考志愿时,一名高中毕业 生了解到,A,B两所大学各有一些自己 感兴趣的强项专业,具体情况如下:
A大学:生物学 化学 医学 物理学 工程学 B大学: 数学 会计学 信息技术学 法学
如果这名同学只能选一个专业,求他共 有多少种不同的选择方法?
N=5+4=9(种)
理论迁移
例2 某班有男生30名,女生24名,现要
课堂小结
3.在应用分类加法计数原理时,分类方 法不唯一,但分类不能重复,也不能遗 漏.在应用分步乘法计数原理时,分步 方法不惟一,但分步不能重叠,也不能 缺少.
作业布置
P12习题1.1A组:
1,2,3,4,5.
(1)N=4+3+2=9(种)
(2)N=4×3×2=24(种)
理论迁移
例4 要从甲、乙、丙3幅不同的画中选
出2幅,分别挂在左、右两边墙上的指
定位置,求共有多少种不同的挂法? N=3×2=6(种)
课堂小结
1.分类加法计数原理和分步乘法计数原理, 都是解决完成一件事的方法数的计数问题, 其不同之处在于,前者是针对“分类”问 题的计数方法,后者是针对“分步”问题 的计数方法. 2.在“分类”问题中,各类方案中的每一 种方法相互独立,选取任何一种方法都能 完成这件事;在“分步”问题中,各步骤 中的方法相互依存,只有各步骤各选一种 方法才能完成这件事.
探究二:分步乘法计数原理
思考5:上述原理称为分步乘法计数 原理,如何从集合运算的角度理解这 个原理? 若U={(a,b)|a∈A,b∈B},
则card(U)=card(A)×card(B).
探究二:分步乘法计数原理
思考6:如果完成一件事需要n个步骤, 做第1步有m1 种不同的方法,做第2步 有m2 种不同的方法,…,做第n步有mn 种不同的方法,那么完成这件事的方法 总数如何计算? N=m1×m2×…×mn
1
2 3 4 5
11
21 31 41 51
12
22 32 42 52
13
23 33 43 53
14
24 34 44 54
15
25 35 45 55
16
26 36 46 56
6
61
62
63
64
65
66
问题提出
2.计数问题是现实生活中最常见的问 题,同时也是数学中的重要研究对象 之一,特别在概率统计领域里,计数问 题更是解题的基础.对于简单的计数 问题,我们可以通过穷举法计算,但对 于复杂的计数问题,我们希望通过有 关பைடு நூலகம்数原理来解决.因此,在实践中总 结、归纳出科学的计算原理,具有十 分重要的意义.
探究一:分类加法计数原理
思考5:上述原理称为分类加法计数 原理,如何从集合运算的角度理解这 个原理? A B
若A∪B=U,A∩B=Φ, 则card(U)=card(A)+card(B).
探究一:分类加法计数原理
思考6:如果完成一件事有n类不同 方案,在第1类方案中有m1 种不同的 方法,在第2类方案中有m2 种不同的 方法,…,在第n类方案中有mn种不同 的方法,那么完成这件事的方法总数 如何计算?
探究一:分类加法计数原理
思考3:从师大声乐系某6名男生或8名 女生中任选一人表演独唱,共有多少种 6+8=14 不同的选派方法? 思考4:上述计数问题的算法有何共同 特点?由此归纳,这类问题的一般计数 原理是什么?
完成一件事有两类不同方案,在第1类方案 中有m种不同的方法,在第2类方案中有n种 不同的方法,那么完成这件事共有N=m+n 种不同的方法.
从中选出男、女生各一名代表班级参
加朗诵比赛,求共有多少种不同的选派
方法? N=30×24=720(种)
理论迁移
例3 书架有三层,其中第一层放有4本不 同的计算机书,第二层放有3本不同的文 艺书,第三层放有2本不同的体育书. (1)从书架上任取1本书,有多少种不同 的取法? (2)从书架的第一,二,三层各取1本书, 有多少种不同的取法?
相关文档
最新文档