流体力学基础-第三章-一维流体动力学基础
合集下载
吉林大学流体力学3

所以: v dz v dy=0 y z
v z dx v x dz=0 v dy v dx=0 y x
dx dy dz 即: vx v y vz
流线微分方程
流线的性质
(1)定常流动中流线不随时间变化,而且流体质点的 轨迹与流线重合。 (2)实际流场中除驻点或奇点外,流线不能相交,不 能突然转折。(速度为0的点称为驻点,速度为无穷大 的点称为奇点,奇点是一种抽象的理论模型。)
如何用欧拉法表示流体质点的加速度 a
应当注意到的是:速度是坐标和时间的函数,同时 运动质点的坐标也是随时间变化的,即坐标 x,y,z 本身也是时间的函数,因此用欧拉法表示某质点的 加速度实际上是一个对复合函数求导的问题,必须 按照复合函数求导法则进行求导。
如用加速度矢量 a 和速度矢量 来表示,则有 υ a (υ ) υ t
0
dp gdz 0
积分得: z
p C g
详细论证请参看教材P64
3.2.4 缓变流和急变流 流线不是严格平行,但流线之间夹角很小,或流线的曲率 半径很大,或两者皆有,这种流动称为缓变流,其有效断面 称为缓变流断面。
在缓变流断面上可以认为流线近似平行,有效断面为一平面,
压强分布近似与静止流体相同。
(即也近似满足: Z
p C 条件是:质量力只有重力,不可压缩流体) g
那种流线不平行,加速度较大的流动称为急变流。
均匀流、急变流和缓变流
均匀流、急变流和缓变流
均匀流
急变流
缓变流
急变流
3.3 用欧拉法描述流体运动的基本概念
3.3.1 流线 3.3.2 流管、流束、和有效断面
3.3.3 流量 3.3.4 平均流速
第三章一元流体动力学基础

2
d (gz p 1 u 2 ) 0
2
积分后得 gz p 1 u 2 常数
2
考虑到重度γ=ρg,将上式两端除以重力加速度g,得: z p u 2 常数 (3)
2 . 通过某一空间点在给定瞬间只能有一条流线,一般情况流 线不能相交和分支。否则在同一空间点上流体质点将同时 有几个不同的流动方向。只有在流场中速度为零或无穷大 的那些点,流线可以相交,这是因为,在这些点上不会出 现在同一点上存在不同流动方向的问题。速度为零的点称 驻点,速度为无穷大的点称为奇点。
)
再看右端三式相加: 由于是在重力场中,故流体
dx
u x t
u x x
ux
u x y
uy
u x z
uz
X
1
p x
的质量力只是重力,则 X=0, Y=0, Z=-g。
dy
u y t
u y x
ux
u y y
uy
u y z
uz
Y
1
p y
所以: Xdx+Ydy+Zdz=-gdz
dz
u z t
u z x
非定常流动(unsteady flow) :流动物理参数随时间而变化
如:p f (x, y, z,t),u f (x, y, z,t)
定常流动
非定常流动
有旋流动(rotational flow):流体在流动中,流场中有若干处 流体微团具有绕通过其自身轴线的旋转运动
无旋流动(irrotational flow):在整个流场中各处的流体微团 均不绕自身轴线的旋转运动
欧拉法与拉格朗日法区别:
欧拉法:以固定空间为研究对象,了解质点在某一位置时 的流动状况
拉格朗日法:以质点为研究对象,研究某一时刻质点全 部流动过程
d (gz p 1 u 2 ) 0
2
积分后得 gz p 1 u 2 常数
2
考虑到重度γ=ρg,将上式两端除以重力加速度g,得: z p u 2 常数 (3)
2 . 通过某一空间点在给定瞬间只能有一条流线,一般情况流 线不能相交和分支。否则在同一空间点上流体质点将同时 有几个不同的流动方向。只有在流场中速度为零或无穷大 的那些点,流线可以相交,这是因为,在这些点上不会出 现在同一点上存在不同流动方向的问题。速度为零的点称 驻点,速度为无穷大的点称为奇点。
)
再看右端三式相加: 由于是在重力场中,故流体
dx
u x t
u x x
ux
u x y
uy
u x z
uz
X
1
p x
的质量力只是重力,则 X=0, Y=0, Z=-g。
dy
u y t
u y x
ux
u y y
uy
u y z
uz
Y
1
p y
所以: Xdx+Ydy+Zdz=-gdz
dz
u z t
u z x
非定常流动(unsteady flow) :流动物理参数随时间而变化
如:p f (x, y, z,t),u f (x, y, z,t)
定常流动
非定常流动
有旋流动(rotational flow):流体在流动中,流场中有若干处 流体微团具有绕通过其自身轴线的旋转运动
无旋流动(irrotational flow):在整个流场中各处的流体微团 均不绕自身轴线的旋转运动
欧拉法与拉格朗日法区别:
欧拉法:以固定空间为研究对象,了解质点在某一位置时 的流动状况
拉格朗日法:以质点为研究对象,研究某一时刻质点全 部流动过程
《工程流体力学》第三章 流体运动研究方法及一维定常流基本方程

截面1-1和2-2:垂直于流动方向,为什么? 侧面1-2:平行于流动方向,为什么?
控制体:1-1-2-2,用I+III表示 在空间上:固定的
t时体系:1-1-2-2,t时刻占据控制体I+III的流体
t+dt时体系:1’-1’-2’-2’ dt时间后: t时体系沿流线运动到III+II
由质量守恒定律: t时体系内质量=t+dt时体系内质量
定常流:空间中任一点参数随不随时间变化? 不随
物理意义?
A1, r1, V1 —— 控制面1-1上的横截面积、气流密度、速度
物理意义?
A2, r2, V2 —— 控制面2-2上的横截面积、气流密度、速度
物理意义?
一维定常流连续方程:在一维定常流中,通过同一流管任 意截面上的流体质量流量、重量流量保持不变。
例1:已知平面非定常流中的流速分量为:ux=x+t, uy= -y+t, 求:流线方程和迹线方程。 解:流线微分方程:
其中t为常数 积分后:
最后得:
迹线微分方程:
其中t为变量
结论:非定常流中迹线与流线不同
—— 迹线方程 ——流线方程
例2:已知平面定常流中的流速分量为:ux=x, uy= -y, 求:流线方程和迹线方程。 解:由流线微分方程:
体系动量对时间变化率:
控制体 = t时体系 环境对控制体内流体作用力 = 环境对t时体系内流体作用力
牛顿第二定律: 某瞬时作用在体系上全部外力合力 =该瞬时体系动量对时间的变化率
分量形式:
作用在控制体内流体上的外力: 1)表面力:控制体外流体或固体壁面作用在控制面上力
作用在进口截面上切向力:0 作用在出口截面上切向力:0
控制体:1-1-2-2,用I+III表示 在空间上:固定的
t时体系:1-1-2-2,t时刻占据控制体I+III的流体
t+dt时体系:1’-1’-2’-2’ dt时间后: t时体系沿流线运动到III+II
由质量守恒定律: t时体系内质量=t+dt时体系内质量
定常流:空间中任一点参数随不随时间变化? 不随
物理意义?
A1, r1, V1 —— 控制面1-1上的横截面积、气流密度、速度
物理意义?
A2, r2, V2 —— 控制面2-2上的横截面积、气流密度、速度
物理意义?
一维定常流连续方程:在一维定常流中,通过同一流管任 意截面上的流体质量流量、重量流量保持不变。
例1:已知平面非定常流中的流速分量为:ux=x+t, uy= -y+t, 求:流线方程和迹线方程。 解:流线微分方程:
其中t为常数 积分后:
最后得:
迹线微分方程:
其中t为变量
结论:非定常流中迹线与流线不同
—— 迹线方程 ——流线方程
例2:已知平面定常流中的流速分量为:ux=x, uy= -y, 求:流线方程和迹线方程。 解:由流线微分方程:
体系动量对时间变化率:
控制体 = t时体系 环境对控制体内流体作用力 = 环境对t时体系内流体作用力
牛顿第二定律: 某瞬时作用在体系上全部外力合力 =该瞬时体系动量对时间的变化率
分量形式:
作用在控制体内流体上的外力: 1)表面力:控制体外流体或固体壁面作用在控制面上力
作用在进口截面上切向力:0 作用在出口截面上切向力:0
流体力学课件_第3章_一元流体动力学基础(下)

A
2. 急变流
动压强特性:在断面上有
3.控制断面的选取: 控制断面一般取在渐变流过水断面或其 极限情况均匀流断面上。
想一想
为什么在总流分析法中需引入断面平均 流速? 即目的所在?
因为总流过水断面上各点的流速是不相等的。为了 简化总流的计算,所以引入了断面平均流速来代替 各点的实际流速。
第五节 恒定总流连续性方程
取距基准面的铅直距离来分别表示相应断面的总水头与测 压管水头。 • 测压管水头线是根据总水头线减去流速水头绘出的。
第十一节 恒定气流能量方程式
虽然恒定总流伯努利方程是在不可压缩这样 的流动模型基础上提出的,但在流速不高(小于 68m / s ) ,压强变化不大的情况下,同样可以应 用于气体。
p1 α v p2 α v z1 + + = z2 + + + hw γ 2g γ 2g
二、控制断面的选取
1、渐变流的性质 渐变流过水断面近似为平面,即 渐变流是流线接近于平行直线的流动。均匀流是渐变 流的极限。 2、动压强特性:在渐变流同一过水断面上, 各点动 压强按静压强的规律(2-11)式分布,如图的c-c断面, 即
想一想
图中,过水断面上的动压强分布符合静 压强分布规律的为: A 直管处 B 弯管处
第3章 一元流体动力学基础(下)
重点内容: 1、总流分析方法; 2、恒定总流能量方程 1)恒定总流能量方程 2)能量方程的扩展 3)能量方程的应用 掌握内容: 1、连续性方程 2、实际流体元流能量方程
第五节 补充内容 (伯努利方程基础概念)
一、概念 1.控制体:即在流场中划定的一个固定的 空间区域,该区域完全被流动流体所充满。 2.控制断面:即控制体(流管)有流体流 进流出的两个断面,如图中的1-1,2-2断面。
流体力学基础-第三章-一维流体动力学基础

1Q1dt 2Q2dt
1. 微小流束连续性方程
1Q1 2Q2 11dA1 22dA2
对不可压缩流体:
1 2 , Q1 Q2 1dA1 2dA2
1. 微小流束连续性方程 推而广之,在全部流动的各个断面上:
Q1 Q2 ~ Q
拉格朗日法(Lagrange method)—“跟踪”法
拉格朗日法是将流场中每一流体质点作为研究对象, 研究每一个流体质点在运动过程中的位置、速度、加 速度及密度、重度、压强等物理量随时间的变化规律。 然后将所有质点的这些资料综合起来,便得到了整 个流体的运动规律。即将整个流体的运动看作许多流 体质点运动的总和。
d 2 4A d 4R d x
非圆形截面管道的当量直径 x
D 4A 4R x
R
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
五、一维流动模型
一维流动: 流动参数是一个坐标的函数; 二维流动: 流动参数是两个坐标的函数; 三维流动: 流动参数是三个坐标的函数。
二维流动→一维流动
(1)(a,b,c)=const ,t 为变数,可以 得出某个指定质点在任意时刻所处的位置。 (2)(a,b,c)为变数,t =const,可以得 出某一瞬间不同质点在空间的分布情况。
流体质点速度为: x a,b,c,t
流体质点加速度为:
v x x a,b,c,t a x t t 2 v y 2 y a,b,c,t a y 2 t t vz 2 z a,b,c,t a z t 2 t
动方向的横断面, 如图中的 1-1,2-2 断面。又称为有效 截面,在流束中与各流线相垂直,在每一个微元流束的过 水断面上,各点的速度可认为是相同的。
流体力学基础第三章

§1-3 流动液体的基本力学特性 一、基本概念
3、非恒定流动:通过空间某一固定点的各液 体质点的速度、压力和密度等任一参数只要 有一个是随时间变化的,即为非恒定流动。
4、一维流动:若运动参数(流速、压力、 密度等)只是一个坐标的函数,则称为一维 流动。
第一章 液压油及液压流体力学基础
§1-3 流动液体的基本力学特性 一、基本概念
动画演示
第一章 液压油及液压流体力学基础
∵ v1 << v2 v1可忽略不计,收缩断面流动是紊流 α2=1; 而△pw仅为局部损失 即
△pw=ζρv22/2 ∴ v2 =√2/ρ·(p1-p2)/√α2+ξ = Cv√2△p /ρ 故 q = A2v2 = CcATv2 = CvCcAT√2/ρ△p = CqAT√2△p/ρ
第一章 液压油及液压流体力学基础
§1-3 流动液体的基本力学特性 滑阀上的稳态液动力
稳态液动力是阀芯移动完毕,开口固定 以后,液流流过阀口时因动量变化而作 用在阀芯的力
第一章 液压油及液压流体力学基础
§1-3 流动液体的基本力学特性 滑阀上的瞬态液动力
瞬态液动力是滑阀在移动过程中(即开 口大小发生变化时)阀腔中液流因加速或 减速而作用在阀芯上的力
2. 液体所受质量力只有重力;
3. 液体是连续的,不可压缩。ρ=常数;
4. 所选择的两个通流截面必须符合渐变 流条件,且不考虑两截面间的流动状 态。
第一章 液压油及液压流体力学基础
§1-3 流动液体的基本力学特性 五、动量守恒
动星定理指出:作用在物体上的力的大 小等于物体在力作用方向上动量的变化 率,即:
层流和紊流是两种不同性质的流动状 态。层流时粘性力起主导作用,惯性力 与粘性力相比不大,液体质点受粘性的 约束,不能随意运动;紊流时惯性力起 主导作用,液体质点在高速流动时,粘 性不再能约束它。
3、非恒定流动:通过空间某一固定点的各液 体质点的速度、压力和密度等任一参数只要 有一个是随时间变化的,即为非恒定流动。
4、一维流动:若运动参数(流速、压力、 密度等)只是一个坐标的函数,则称为一维 流动。
第一章 液压油及液压流体力学基础
§1-3 流动液体的基本力学特性 一、基本概念
动画演示
第一章 液压油及液压流体力学基础
∵ v1 << v2 v1可忽略不计,收缩断面流动是紊流 α2=1; 而△pw仅为局部损失 即
△pw=ζρv22/2 ∴ v2 =√2/ρ·(p1-p2)/√α2+ξ = Cv√2△p /ρ 故 q = A2v2 = CcATv2 = CvCcAT√2/ρ△p = CqAT√2△p/ρ
第一章 液压油及液压流体力学基础
§1-3 流动液体的基本力学特性 滑阀上的稳态液动力
稳态液动力是阀芯移动完毕,开口固定 以后,液流流过阀口时因动量变化而作 用在阀芯的力
第一章 液压油及液压流体力学基础
§1-3 流动液体的基本力学特性 滑阀上的瞬态液动力
瞬态液动力是滑阀在移动过程中(即开 口大小发生变化时)阀腔中液流因加速或 减速而作用在阀芯上的力
2. 液体所受质量力只有重力;
3. 液体是连续的,不可压缩。ρ=常数;
4. 所选择的两个通流截面必须符合渐变 流条件,且不考虑两截面间的流动状 态。
第一章 液压油及液压流体力学基础
§1-3 流动液体的基本力学特性 五、动量守恒
动星定理指出:作用在物体上的力的大 小等于物体在力作用方向上动量的变化 率,即:
层流和紊流是两种不同性质的流动状 态。层流时粘性力起主导作用,惯性力 与粘性力相比不大,液体质点受粘性的 约束,不能随意运动;紊流时惯性力起 主导作用,液体质点在高速流动时,粘 性不再能约束它。
工程流体力学课件3流体动力学基础

总结词
边界层理论是研究流体在固体表面附近流动的理论, 其特征包括流体的粘性和湍流状态。
详细描述
边界层理论主要关注流体与固体表面之间的相互作用 ,特别是流体的粘性和湍流状态对流动的影响。在边 界层内,流体的速度和压力变化梯度较大,湍流状态 较为明显。
边界层分离现象和转捩过程
总结词
边界层分离现象是指流体在经过曲面或突然扩大区域 时,流速减小,压力增加,导致流体离开壁面并形成 回流的现象。转捩过程则是从层流到湍流的过渡过程 。
有旋流动
需要求解偏微分方程组,如纳维-斯托克斯 方程(Navier-Stokes equations),该方 程组较为复杂,需要采用数值方法进行求解
。
05 流体动力学中的湍流流动
湍流流动的定义和特征
湍流流动的定义
湍流是一种高度复杂的流动状态,其中流体的速度、压 力和其它属性随时间和空间变化。
湍流流动的特征
质量守恒定律在流体中的应用
质量守恒定律
物质的质量不会凭空产生也不会消失,只会从一种形式转化为另一种形式。在流体中,质量守恒定律表现为流体 微元的质量变化率等于进入和离开微元的净质量流量。
质量守恒方程
根据质量守恒定律,流体微元的质量变化率可以表示为流入和流出微元的净质量流量。这个方程是流体动力学基 本方程之一,用于描述流体的运动特性。
流体流动的描述方法
描述流体流动的方法包括拉格朗日法和欧拉法。
拉格朗日法是以流体质点作为描述对象,追踪各个质点的运动轨迹,研究其速度、加速度等参数随时 间的变化。欧拉法是以空间点作为描述对象,研究空间点上流速、压强等参数随时间和空间的变化。
03 流体动力学基本方程的推 导
牛顿第二定律在流体中的应用
能源
边界层理论是研究流体在固体表面附近流动的理论, 其特征包括流体的粘性和湍流状态。
详细描述
边界层理论主要关注流体与固体表面之间的相互作用 ,特别是流体的粘性和湍流状态对流动的影响。在边 界层内,流体的速度和压力变化梯度较大,湍流状态 较为明显。
边界层分离现象和转捩过程
总结词
边界层分离现象是指流体在经过曲面或突然扩大区域 时,流速减小,压力增加,导致流体离开壁面并形成 回流的现象。转捩过程则是从层流到湍流的过渡过程 。
有旋流动
需要求解偏微分方程组,如纳维-斯托克斯 方程(Navier-Stokes equations),该方 程组较为复杂,需要采用数值方法进行求解
。
05 流体动力学中的湍流流动
湍流流动的定义和特征
湍流流动的定义
湍流是一种高度复杂的流动状态,其中流体的速度、压 力和其它属性随时间和空间变化。
湍流流动的特征
质量守恒定律在流体中的应用
质量守恒定律
物质的质量不会凭空产生也不会消失,只会从一种形式转化为另一种形式。在流体中,质量守恒定律表现为流体 微元的质量变化率等于进入和离开微元的净质量流量。
质量守恒方程
根据质量守恒定律,流体微元的质量变化率可以表示为流入和流出微元的净质量流量。这个方程是流体动力学基 本方程之一,用于描述流体的运动特性。
流体流动的描述方法
描述流体流动的方法包括拉格朗日法和欧拉法。
拉格朗日法是以流体质点作为描述对象,追踪各个质点的运动轨迹,研究其速度、加速度等参数随时 间的变化。欧拉法是以空间点作为描述对象,研究空间点上流速、压强等参数随时间和空间的变化。
03 流体动力学基本方程的推 导
牛顿第二定律在流体中的应用
能源
2-流体力学-第三章-流体动力学(1)-三大方程-黄国钦

d ∂ ∂ ∂ ∂ = +u +v + w dt ∂t ∂x ∂y ∂z
质点导数亦称随体导数亦称物质导数等。
11 12
2
例题 例题:
r r r r V = x 2 yi − 3 yj + 2 z 2 k
3.2 几个概念 3.2.1 流动的分类——定常流和非定常流
试求点 (1, 2 , 3) 处流体加速度的三个分量 解:
•
欧拉法是流场法,
它定义流体质点的速 度矢量场为:
选定某一空 选定某一空 间固定点 间固定点
记录流动空间 某固定位置 处,流体运动 要素(速度、 加速度)随时 间变化规律
r r u =u (x,y,z,t)
综合流场中 许多空间点 随时间的变 化情况
(( x ,, y ,, zz )) 是 x y 是空 空间 间点 点( (场 场 r u 点)。流速 是在 点)。流速 是在 tt 时 时 刻占据 (( x ,, y ,, zz )) 的那个流 刻占据 x y 的那个流
工程流体力学 Engineering Fluid Mechanics
制造工程系:黄国钦
1
2
3.1.2 描述流体运动的两种方法及质点导数概念
3.1.2 描述流体运动的两种方法 3.1.2.1 拉格朗日法
基本思想:以研究个别流体质点的运动为基础,跟踪每个流体质点的运动全 基本思想: 过程,记录它们在运动过程中的各物理量及其变化规律。即通过描述每一质 点的运动了解流体运动。(随体法或跟踪法)
迹线
M(-1,-1)
o
x
流线
t = 0 时过 M(-1,-1)点的流线和迹线示意图
19
dx dy dz = = vx v y vz
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 微小流束连续性方程 如图所示,在总流上取一微小流束,过水断面分别为
dA1 和dA2 ,相应的平均流速分别为υ1和υ2 ,密度ρ1 和 ρ2 。由于微小流束的表面是由流线围成的,所以没有流 体穿入或穿出流束表面,只有两端面dA1 和dA2有流体 的流入和流出。在dt时间内对于dA1断面:
1dA11dt 1Q1dt
dyj
dzk
u为流体质点在A点的流速:
u uxi uy j uzk
因为流速向量与流线相切,即没有垂直于流线的流速
分量,u 和ds重合。所以
ds
u
0
即
i jk
dx dy dz 0
ux uy uz
展开后得到: dx dy dz ——流线方程 ux uy uz
(1)(a,b,c)=const ,t 为变数,可以 得出某个指定质点在任意时刻所处的位置。
(2)(a,b,c)为变数,t =const,可以得 出某一瞬间不同质点在空间的分布情况。
流体质点速度为:
vx v y
xa,b,c,t
t
y a,b,c,t
t
vz
为kg s,用Qm表示)
Q
A udA,Qm
udA
A
六、流量和平均流速
2、断面平均流速
断面平均流速,以v表示,它是一种假想的流速,假定在
单位时间内,过流断面上各流体质点都以v流速流动,按
此流速计算的流量恰好等于过流断面上各流体质点以真实
流速u所通过的流量。
即 vA AudA Q
1mQ1 2mQ2
—总流的连续性方程,它说明可压缩流体做定常流动 时,总流的质量流量保持不变。
2. 总流的连续性方程
对不可压缩流体:
1 2 Q1 Q2 and u1A1 u2 A2
—不可压缩流体定常流动总流的连续性方程,其物理 意义是:不可压缩流体做定常流动时,总流的体积流 量保持不变;各过水断面平均流速与过水断面面积成 反比,即过水断面面积↑处,流速↓;而过水断面面积↓ 处,流速↑。 对于理想流体和实际流体均可适用。
或用它们余弦相等推得:
cos ux dx , cos uy dy , cos uz dz
u ds
u ds
u ds
2.迹线
1)迹线的定义
迹线—某一质点在某
一时段内的运动轨迹线。
图中烟火的轨迹为迹线。
三.元流与总流
1.流管—在流场中取任一封闭曲线(不是流线),通过 该封闭曲线的每一点作流线,这些流线所组成的管状空 间称为流管。 2.流束—过流管横截面上各点作流线,则得到充满
当该元流流段在dt时间内由位置1-2移 动到位置1’-2’时,由动能定理知,动 能的变化量等于同一时间内作用于该 元流流段上的所有外力对该流段做功
的总和,即:E W
1、动能的变化 由于为定常流,各点的位置和形状
v
v x,y,z,t
= x,y,z,t
p
px,y,z,t
T T x,y,z,t
第二节 流体运动的基本概念
一、定常流动和非定常流动 定常流动:在流场中,流体质点的一切运动要素(υ、p、 粘性力、惯性力)都不随时间改变而只是坐标的函数的 流动。表示为:
Q1 Q2 ~ Q
1dA1 2dA2 ~ dA
由此得出速度之比与断面积之比之间的关系:
1 :2
:~~:
1 dA1
:
1 dA2
~~: 1 dA
1 2
dA2 dA1
2. 总流的连续性方程 将微小流束连续性方程两边对相应的过水断面A1及A2 进行积分可得:
A1 1u1dA1 A2 2u2dA2 1mu1dA1 2mu2dA2
t
0
u u( x, y, z, t)
p
p( x,
y, z,t)
例如水箱中的水位随着水的泄出而不
断下降的孔口出流就是非定常流动。
二 流线与迹线
1. 流线
流线的定义——表示某
一瞬时流体各点流动趋势 的曲线; 曲线上每一点的速度矢量 总在该点与曲线相切。
右图为流线谱中显示的流 线形状。
流管的一束流线簇,称为流束。
3.元流 — 当流束的断面无限小时的微小流束。
元流性质:
流体做定常流动时,元流的形状不随时间变化。 流体不能从元流的侧面流入和流出,流体只能沿元流
端面流入或流出。 元流横断面积无限小,其断面流速、压强等参数可以
认为是相等的。
4.总流:若干元流组合成的流束称为总流。
断面平均流速为
v
1 A
vA
Q-流体的体积流量
v-断面平均流速
A-总流过流断面的面积
第三节 流体运动的连续性方程
连续性条件:流体连续地充满所占据的空间,当流体流动 时在其内部不形成空隙,这就是流体运动的连续性条件。 连续性方程:根据流体运动时应遵循质量守恒定律 (conservation of mass),将连续性条件用数学形式表示出 来,即连续性方程。 在管路等流体力学计算中得到极为广泛的应用。
u t
p t
t
0
u
p
u(x, y, z) p( x, y, z)
例如离心式水泵,恒位水箱出水口的
稳定泄流都是定常流动。
非定常流动:在流场中,流体质点的一切运动要素(υ、 p、粘性力、惯性力)都是时间和坐标的函数的流动。 表示为:
u t
0,
p t
0,
对于dA2断面: 2dA22dt 2Q2dt
根据质量守恒定律:
1Q1dt 2Q2dt
1. 微小流束连续性方程
1Q1 2Q2 11dA1 22dA2
对不可压缩流体:
1 2, Q1 Q2 1dA1 2dA2
1. 微小流束连续性方程 推而广之,在全部流动的各个断面上:
拉格朗日法(Lagrange method)—“跟踪”法 拉格朗日法是将流场中每一流体质点作为研究对象,
研究每一个流体质点在运动过程中的位置、速度、加 速度及密度、重度、压强等物理量随时间的变化规律。
然后将所有质点的这些资料综合起来,便得到了整 个流体的运动规律。即将整个流体的运动看作许多流 体质点运动的总和。
Q0 Q2 2Q Q2 2Q 1.6 m3 s
Q0
v1
Q3
Q1 A
3Q Q3
2.4 0.5 0.5
Q
9.6
0.8 m3
m s
s
v2
Q2 A
1.6 0.5 0.5
6.4 m s
v3
Q3 A
0.8 0.5 0.5
3.2 m s
第四节 流体定常流能量方程
第三章 一维流体动力学基础
无论在自然界或工程实际中,流体的静止总是相 对的,运动才是绝对的。流体最基本的特征就是它 的流动性。因此,进一步研究流体运动规律便具有 更重要、更普遍的意义。
第一节 概述
一、流体动力学与流体静力学的区别 流体静力学只考虑作用在流体上的重力和压力, 流体静压强只与该点的空间位置有关; 流体动力学除考虑重力和压力外,还要考虑流体 受到的惯性力和粘性力,动力学中的压强不仅与 空间坐标有关,还与方向有关。
流线的作法
在流场中任取一点(如图所示), 绘出某时刻通
过该点的流体质点的流速矢量u1,再画出距1点很近的2 点在同一时刻通过该处的流体质点的流速矢量u2…,如
此下去,得一折线1234 …,若各点无限接近,其极限 就是某时刻的流线。
流线的性质
a.同一时刻的不同流线,不能相交.
b.流线不能是折线,而是一条光 滑的曲线。
四.过水断面 湿周 水力半径
1.过水断面—即水道(管道、明渠等)中垂直于水流流
动方向的横断面, 如图中的 1-1,2-2 断面。又称为有效 截面,在流束中与各流线相垂直,在每一个微元流束的过 水断面上,各点的速度可认为是相同的。
2.湿周 水力半径 当量直径
湿周——在总流的有效截面上,流体与固体壁面的接触长度。
c.流线的形状和位置,在定常流 动时不随时间变化;而在不定 常流动时,随时间变化。
u1 交点 u2
s1
s2
u1 折点 u2
s
d.流线簇的疏密反映了速度的大小 (流线密集的地方流速大,稀疏的地方流速小)。
流线的方程
根据流线的定义,可以求得流
线的微分方程:
设ds为流线上A处一微元弧长:
ds
dxi
z a,b,c,t
t
流体质点加速度为:
ax
vx t
2 xa,b,c,t
t 2
a y
v y t
2 ya,b,c,t
t 2
az
vz t
2 z a,b,c,t
t 2
流体质点的其它流动参量可以类 似地表示为a、b、c和 t 的函数。 如:
第一节 概述
流体的流动是由充满整个流动空间的无限 多个流体质点的运动构成的。充满运动流体的 的空间称为流场。 研 欧拉法 究
方 拉格朗日法
法
一、拉格朗日法
拉格朗日方法:是以流场中每一流体质点作为描述流 体运动的方法,它以流体个别质点随时间的运动为基 础,通过综合足够多的质点(即质点系)运动求得整 个流动。 研究对象:流体质点