高斯平面直角坐标与大地坐标的相互转换——高斯投影的正算与反算.

合集下载

[转载]高斯正反算

[转载]高斯正反算

[转载]⾼斯正反算⼤地坐标向笛卡尔坐标转换⾼斯正反算采⽤不同椭球实现⾼斯克⾥格投影,将经纬度坐标转换为⾼斯平⾯坐标:正算⾼斯平⾯坐标转换为不同椭球下的经纬度坐标:反算1void GaussProjectDirect(double a,double efang,double B,double L,double L0,double& x,double &y,double& R)//⾼斯投影正算克⽒2 {34double b=aefangtob(a,efang);5double e2=seconde(a,b);6double W=sqrt(1-efang*sin(B)*sin(B));printf("W=%f",W);7double N=a/W;printf("N=%f",N);8double M=a*(1-efang)/pow(W,3);printf("M=%f",M);9double t=tee(B);10double eitef=eitefang(a,b,B);11double l=L-L0;12//主曲率半径计算13double m0,m2,m4,m6,m8,n0,n2,n4,n6,n8;14 m0=a*(1-efang); n0=a;15 m2=3.0/2.0*efang*m0; n2=1.0/2.0*efang*n0;16 m4=5.0/4.0*efang*m2; n4=3.0/4.0*efang*n2;17 m6=7.0/6.0*efang*m4; n6=5.0/6.0*efang*n4;18 m8=9.0/8.0*efang*m6; n8=7.0/8.0*efang*n6;19//⼦午线曲率半径20double a0,a2,a4,a6,a8;21 a0=m0+m2/2+3*m4/8+5*m6/16+35*m8/128;22 a2=m2/2+m4/2+15*m6/32+7.0/16.0*m8;23 a4=m4/8.0+3.0/16.0*m6+7.0/32.0*m8;24 a6=m6/32+m8/16;25 a8=m8/128;2627double X=a0*B-a2/2*sin(2*B)+a4/4*sin(4*B)-a6/6*sin(6*B)+a8/8*sin(8*B);28 x=X+N/2*t*cos(B)*cos(B)*l*l+N/24*t*(5-t*t+9*eitef+4*pow(eitef,2))*pow(cos(B),4)*pow(l,4)+N/720*t*(61-58*t*t+pow(t,4))*pow(cos(B),6)*pow(l,6);29 y=N*cos(B)*l+N/6*(1-t*t+eitef)*pow(cos(B),3)*pow(l,3)+N/120*(5-18*t*t+pow(t,4)+14*eitef-58*eitef*t*t)*pow(cos(B),5)*pow(l,5);30 R=sqrt(M*N);31 }323334//⾼斯投影反算353637void GaussProjectInvert(double a,double efang,double x,double y,double L0,double &B,double& L,double& R)38 {39double b=aefangtob(a,efang);404142double m0,m2,m4,m6,m8,n0,n2,n4,n6,n8;43 m0=a*(1-efang); n0=a;44 m2=3.0/2.0*efang*m0; n2=1.0/2.0*efang*n0;45 m4=5.0/4.0*efang*m2; n4=3.0/4.0*efang*n2;46 m6=7.0/6.0*efang*m4; n6=5.0/6.0*efang*n4;47 m8=9.0/8.0*efang*m6; n8=7.0/8.0*efang*n6;484950//⼦午线曲率半径51double a0,a2,a4,a6,a8;52 a0=m0+m2/2+3*m4/8+5*m6/16+35*m8/128;53 a2=m2/2+m4/2+15*m6/32+7.0/16.0*m8;54 a4=m4/8.0+3.0/16.0*m6+7.0/32.0*m8;55 a6=m6/32+m8/16;56 a8=m8/128;575859double X=x;60double FBf=0;61double Bf0=X/a0,Bf1=0;62while((Bf0-Bf1)>=0.0001)63 { Bf1=Bf0;64 FBf=a0*Bf0-a2/2*sin(2*Bf0)+a4/4*sin(4*Bf0)-a6/6*sin(6*Bf0)+a8/8*sin(8*Bf0);65 Bf0=(X-FBf)/a0;66 }67double Bf=Bf0;68double Vf=bigv(a,b,Bf);69double tf=tee(Bf);70double Nf=bign(a,b,Bf);71double eiteffang=eitefang(a,b,Bf);72double Bdu=rad_deg(Bf)-1/2.0*Vf*Vf*tf*(pow((y/Nf),2)-1.0/12*(5+3*tf*tf+eiteffang-9*eiteffang*tf*tf)*pow((y/Nf),4)+1.0/360.0*(61+90*tf*tf+45*tf*tf)*pow((y/Nf),6))*180/PI; 73double ldu=1.0/cos(Bf)*(y/Nf+1.0/6.0*(1+2*tf*tf+eiteffang)*pow((y/Nf),3)+1.0/120.0*(5+28*tf*tf+24*tf*tf+6*eiteffang+8*eiteffang*tf*tf)*pow((y/Nf),5))*180.0/PI;747576 B=deg_int(Bdu);77 L=L0+deg_int(ldu);78double W=sqrt(1-efang*sin(B)*sin(B));printf("W=%f\n",W); 79double N=a/W;printf("N=%f\n",N);80double M=a*(1-efang)/pow(W,3);printf("M=%f\n",M);81 R=sqrt(M*N);828384 }。

高斯坐标和大地坐标的转换

高斯坐标和大地坐标的转换

高斯坐标和大地坐标的转换高斯坐标和大地坐标是地理学和测量学中常用的两种坐标系统。

它们之间的转换对于地理信息系统(GIS)和测绘工作非常重要。

本文将详细阐述高斯坐标和大地坐标的转换过程及其在实际应用中的意义。

首先,我们来了解一下高斯坐标和大地坐标的定义及特点。

高斯坐标,也称为平面直角坐标,是一种二维坐标系统,用于描述平面上的点的位置。

它的基准面通常选取为椭球体的切面,通过将地球表面投影到平面上而得到。

高斯坐标的优点是计算简单、精度高,适用于小范围区域的测量。

大地坐标,也称为地理坐标,是一种三维坐标系统,用于描述地球上的点的位置。

它的基准面选取为椭球体的表面,通过经纬度来表示点的位置。

大地坐标的优点是能够全面反映地球上各点的位置关系,适用于大范围区域的测量。

在实际应用中,由于高斯投影和地球椭球体的差异,高斯坐标和大地坐标之间存在一定的偏差。

因此,需要进行坐标转换来保证数据的准确性和一致性。

下面我们将介绍两种常用的坐标转换方法。

一种方法是从高斯坐标转换到大地坐标。

这个过程涉及到投影反算和大地测量的计算。

首先,根据高斯投影的参数,将高斯坐标反算为平面上的点的地理坐标。

然后,根据大地测量的原理,通过计算经纬度和大地方位角,将点的地理坐标转换为大地坐标。

另一种方法是从大地坐标转换到高斯坐标。

这个过程涉及到大地测量的计算和投影正算。

首先,根据大地测量的原理,通过计算大地方位角和距离,将点的大地坐标转换为经纬度。

然后,根据高斯投影的参数,将经纬度正算为平面上的点的高斯坐标。

这两种转换方法在实际应用中都有广泛的应用。

比如,在地图制作中,通过高斯坐标和大地坐标的转换,可以将不同坐标系统表示的点进行统一,使得地图的绘制更加准确。

在地理信息系统中,将不同坐标系统表示的数据进行转换,可以实现数据的叠加和分析,提供更多有用的信息。

不仅如此,高斯坐标和大地坐标的转换还在工程测量、导航定位、地质勘探等领域具有重要的应用价值。

比如,在工程测量中,通过高斯坐标和大地坐标的转换,可以实现工程设计和实际施工之间的无缝衔接;在导航定位中,通过高斯坐标和大地坐标的转换,可以准确计算航行的航向和距离;在地质勘探中,通过高斯坐标和大地坐标的转换,可以精确定位地下资源的位置和分布。

高斯投影及计算

高斯投影及计算

x y y 2 - 1= y
C
2dδ
ε 2
2dδ
δ21

B
dδ dσ
DA
Tδ12
1
y
x B′
y A′
B dδ
A dδ
η
椭球面上的方向和长度归算至高斯投影平面
• 二、方向改正计算 • 方向改正——正形投影后,椭球面上大地线投影
到平面上仍为曲线,化为直线方向所加的改正δ。 • 适用于三、四等三角测量的方向改正计算公式
2、将椭球面上起算元素和观测元素归算至高斯投影平面, 然后解算平面三角形,推算各边坐标方位角,在平面上进 行平差计算,求解各点的平面直角坐标。
高斯投影计算内容
归算
解算
椭球面
大地坐标
高斯投影 坐标公式


地面观测数据

高斯直角 平面坐标

归算
椭球面
高斯平面
归算
解算平面三角形
平差计算
高斯投影计பைடு நூலகம்内容
Vy 2 项。
项y,4m
西(Cauchy)—黎曼(Riemann)条件,式中,f代 表任意解析函数。
x iy f (q il)
高斯投影坐标计算
• 高斯投影坐标正算——由(B,L)求(x, y)
• 高斯投影坐标反算——由(x,y)求(B, L)
高斯投影坐标计算
大地经度L是从起始子午面开始起算的 起始子午线作为投影的中央子午线
上式的计算精度为0.1″。
椭球面上的方向和长度归算至高斯投影平面
• 三、距离改正计算
• 距离改正——椭球面上大地线长S改换为平面上投
影曲线两端点间的弦长D,要加距离改正△S。

高斯平面直角坐标含大地坐标转换

高斯平面直角坐标含大地坐标转换

高斯平面直角坐标系与大地坐标系1 高斯投影坐标正算公式(1)高斯投影正算:已知椭球面上某点的大地坐标 L , B ,求该点在高斯投影平面上的直角坐标 x, y ,即 L, B( x, y) 的坐标变换。

( 2)投影变换必定满足的条件中央子午线投影后为直线;中央子午线投影后长度不变;投影拥有正形性质,即正形投影条件。

( 3)投影过程在椭球面上有对称于中央子午线的两点P 1 和 P 2 ,它们的大地坐标分别为(L, B )及( l , B ),式中 l 为椭球面上 P 点的经度与中央子午线 (L 0 ) 的经度差: l L L 0 , P 点在中央子午线之东 , l 为正,在西则为负,则投影后的平面坐标必然为P 1(x, y) 和 P 2 (x, y) 。

(4)计算公式x XNsin Bl 2N3B(52242 224 sin B cos t 9)lyNcosBlN 3 B(1 t 2 2)l3N5cos 5 B(5 18t 2 t 4 )l56120当要求变换精度精确至时,用下式计算:xXN2N3B(5 22442 2 sin Bl244 sin B cos t94 )lN 6 sin B cos 5 B(61 58t 2 t 4 )l 6720yNcos BlN 3 cos 3 B(1 t 22)l36N 5 cos 5 B(5 18t 2 t 4 14 2 58 2t 2 )l 57202 高斯投影坐标反算公式( 1)高斯投影反算:已知某点的高斯投影平面上直角坐标x, y ,求该点在椭球面上的大地坐标L, B ,即x, y( L, B) 的坐标变换。

(2)投影变换必定满足的条件x坐标轴投影成中央子午线,是投影的对称轴;x轴上的长度投影保持不变;投影拥有正形性质,即正形投影条件。

(3)投影过程依照 x 计算纵坐标在椭球面上的投影的底点纬度 B f,接着按 B f计算( B f B )及经差l ,最后获取B B f (B f B) 、 L L0 l 。

高斯投影高斯坐标系与大地坐标系的关系

高斯投影高斯坐标系与大地坐标系的关系

2021/3/7
4
6.3 高斯—克吕格投影
Gauss — Kruger projection
一、高斯-克吕格投影概念 高斯投影三条件 正形条件 中央子午线投影为一直线 中央子午线投影后长度不变
2021/3/7
x F1(B, L)
y
F2
(B,
L)
5
6.3 高斯—克吕格投影
Gauss — Kruger projection
南:北纬 3º52′(南海南沙群岛的曾母暗沙) 北:3北、纬分5带3º的10方′(法黑龙江漠河镇以北的黑龙江江心)
六度带:自零子午线起向东划分,每隔6º为一带
2021/3/7
7
6.3 高斯—克吕格投影
Gauss — Kruger projection
3、分带的方法
三度带:在六度带基础上,其奇数带中央子午线
16
一、高斯投影正算公式 n1ddm 0 q,n21 2d dm 1q,n31 3ddm 2 q,n41 4ddm 3 q,
引m 1 入高斯d d投0 n q,影m2条件1 2 一d d :1 n q 正,m 形3 条 件1 3d d2 n q,m41 4d d3 n q,
xm0m1lm2l2m3l3m4l4..... yn0n1ln2l2n3l3n4l4......
n L0 /3
计算任意经度所在投影带的带号公式
计算任意经度所在投影带的带号公式
n2021L/3//76的整数 ( 1商有余数时) n(L1.5)/3的整数 ( 1商有余 9 数时
6.3 高斯—克吕格投影
Gauss — Kruger projection
二、高斯投影的分带(belt dispartion )

高斯投影坐标正反算公式

高斯投影坐标正反算公式

§8.3高斯投影坐标正反算公式任何一种投影①坐标对应关系是最主要的;②假设是正形投影,除了满足正形投影的条件外〔C-R 偏微分方程〕,还有它本身的特殊条件。

高斯投影坐标正算公式: B,l ⇒ x,y高斯投影必须满足以下三个条件:①中央子午线投影后为直线;②中央子午线投影后长度不变;③投影具有正形性质,即正形投影条件。

由第一条件知中央子午线东西两侧的投影必然对称于中央子午线,即(8-10)式中,x 为l 的偶函数,y 为l 的奇函数;0330'≤l ,即20/1/≈''''ρl ,如展开为l 的级数,收敛。

+++=++++=553316644220l m l m l m y l m l m l m m x 〔8-33〕式中 ,,10m m 是待定系数,它们都是纬度B 的函数。

由第三个条件知:qyl x l y q x ∂∂-=∂∂∂∂=∂∂, (8-33)式分别对l 和q 求偏导数并代入上式----=++++++=+++5533156342442204523164253l dqdm l dq dm l dq dm l m l m l m l dqdm l dq dm dq dm l m l m m (8-34) 上两式两边相等,其必要充分条件是同次幂l 前的系数应相等,即dq dm m dqdm m dqdm m 2312013121⋅=⋅-==(8-35)(8-35)是一种递推公式,只要确定了0m 就可依次确定其余各系数。

由第二条件知:位于中央子午线上的点,投影后的纵坐标x 应等于投影前从赤道量至该点的子午线弧长X ,即(8-33)式第一式中,当0=l时有:0m X x == (8-36) 顾及(对于中央子午线)B V Mr M B N dq dB M dBdXcos cos 2==== 得:B V cB N r dq dB dB dX dq dX dq dm m cos cos 01===⋅===(8-37,38)B B Ndq dB dB dm dq dm m cos sin 22121112=⋅-=⋅-= (8-39)依次求得6543,,,m m m m 并代入(8-33)式,得到高斯投影正算公式6425644223422)5861(cos sin 720)495(cos 24cos sin 2lt t B B N lt B simB N l B B N X x ''+-''+''++-''+''⋅''+=ρηηρρ5222425532233)5814185(cos 120)1(cos 6cos l t t t B N lt B N l B N y ''-++-''+''+-''+''⋅''=ηηρηρρ (8-42) 高斯投影坐标反算公式x,y ⇒B,l投影方程:),(),(21y x l y x B ϕϕ== (8-43)满足以下三个条件:①x 坐标轴投影后为中央子午线是投影的对称轴;② x 坐标轴投影后长度不变;③投影具有正形性质,即正形投影条件。

高斯平面直角坐标系与大地坐标系相互转化

高斯平面直角坐标系与大地坐标系相互转化

高斯平面直角坐标系与大地坐标系相互转化高斯平面直角坐标系与大地坐标系转换 1. 高斯投影坐标正算公式(1) 高斯投影正算:已知椭球面上某点的大地坐标(L,B),求该点在高斯投影平面上的直角坐标(x,y),即(L,B)->(x,y)的坐标变换。

(2) 投影变换必须满足的条件中央子午线投影后为直线; 中央子午线投影后长度不变; 投影具有正形性质,即正形投影条件。

(3) 投影过程在椭球面上有对称于中央子午线的两点P 1 和P 2 ,它们的大地坐标分别为(L,B)及(l,B),式中l 为椭球面上P 点的经度与中央子午线(L 0 )的经度差:l=L-L 0 ,P 点在中央子午线之东,l 为正,在西则为负,则投影后的平面坐标一定为P 1 ’(x,y)和P 2 ’(x,-y)。

(4) 计算公式 4 ' ' 2 2 3 4 ' ' 2 ' ' 2 ' ' ) 9 5 ( cos sin 2 sin 2 l t B B N Bl N X x 5 ' ' 4 2 5 5 ' ' 3 ' ' 2 2 3 ' ' ' ' ' ' ) 18 5 ( cos 120 ) 1 ( 6 cos l t t B N l t B N Bl N y 当要求转换精度精确至0.001m时,用下式计算: 6 ' ' 4 2 5 6 ' ' 4 ' ' 4 2 2 3 4 ' ' 2 ' ' 2 ' ' ) 58 61 ( cos sin 720 ) 4 9 5 ( cos sin 24 sin 2 l t t B B N l t B B N Bl N X x5 ' ' 2 2 2 4 2 5 5 ' ' 3 ' ' 2 2 3 3 ' ' ' ' ' ' ) 58 14 18 5 ( cos 720 ) 1( cos 6 cos l t t t B N l t B N Bl N y2. 高斯投影坐标反算公式(1) 高斯投影反算:已知某点的高斯投影平面上直角坐标(x,y),求该点在椭球面上的大地坐标(L,B),即(x,y)->(L,B)的坐标变换。

高斯—克吕格投影正反算公式的应用

高斯—克吕格投影正反算公式的应用

高斯—克吕格投影正反算公式的应用【摘要】高斯-克吕格正算公式是把大地坐标换算成高斯-克吕格投影平面上的直角坐标,而高斯-克吕格反算公式是把高斯-克吕格投影平面直角坐标换算到椭球面上的大地坐标。

为了城市坐标与国家统一坐标取得一致,需要进行城市坐标与国家坐标之间的换算,高斯-克吕格正反算公式为不同投影带之间的坐标换算提供了精确的坐标公式。

【关键词】高斯-克吕格投影坐标中央子午线1 引言目前,大比例尺地形图广泛应用在市政建设、路桥、管道铺设和城市规划等工程建设中。

为了满足城市大比例尺1:500地形测图精度要求,《城市测量规范》要求,控制点之间的投影长度变形不得大于 2.5cm/km。

当控制点之间的长度变形大于2.5cm/km时,要采取适当的措施进行改化,以达到城市大比例尺1:500地形测图精度要求。

国家坐标系是6°带或3°带投影的高斯-克吕格直角坐标系,根据它的变形规律,离中央子午线越远,所产生的投影变形越大。

城市独立坐标系的建立,通常是选择过城市的某国家控制点为地方坐标系的起算点,过这点的经线为其中央子午线并联测国家高等级的控制点建立起来的。

这样,国家坐标系与城市独立坐标系的中央子午线存在一个差值λ。

为了更好的进行数据共享,城市平面控制坐标最理想的是和国家坐标系相统一,这就要进行城市独立坐标与国家坐标之间的坐标换算。

高斯-克吕格投影正反算公式能很好的解决不同投影带之间的坐标换算问题。

其方法是:先将已知的平面坐标,按高斯-克吕格投影反算公式求得其大地坐标(B,L),然后根据大地纬度B和经差λ,再按高斯-克吕格投影正算公式求得其在另一投影带中的平面坐标。

2 高斯-克吕格投影正反算公式2.1 高斯-克吕格投影正算公式:(1)其中:,为中央子午线弧长,其计算公式为:、、、为常数,其计算公式为:2.2 高斯-克吕格投影反算公式:其中:。

(1)、(4)式中的N、的计算公式为:上述诸式中,a、e分别为椭球长半径和第一偏心率,B、L分别为大地经度和大地纬度,L0中央子午线经度,N为卯酋圈曲率半径,B、L、L0单位为弧度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昆明冶金高等专科学校测绘学院 (4)计算公式
3 2 2 2 4 ( 5 3 t 9 t ) y f f f f 2M f N f 2 4M f N 3 f tf 2 4 6 (6 1 9 0t f 4 5t f ) y 7 2 0M f N 5 f 1 1 2 2 3 l y (1 2t f f ) y 3 N f co s B f 6 N f co s B f 1 2 5 (5 2 8t 2 t4 2 2 f 24 f 6 f 8 f t f )y 5 1 2 0N f co s B f B Bf tf y2 tf
式中:

2 e 2 cos2 B
t 2 tan2 B l (L L0) X为B对应子午线弧长 N为卯酉圈曲率半径 20626 5
昆明冶金高等专科学校测绘学院
2
高斯投影坐标反算公式
(1)高斯投影反算:
已知某点 x, y ,求该点 L, B ,即 x, y ( L, B) 的坐标变换。 (2)投影变换必须满足的条件
昆明冶金高等专科学校测绘学院
二、高斯投影坐标正反算得实用公式及算例
1 高斯投影坐标正算公式 (1)高斯投影正算: 已知某点的 L, B ,求该点的 x, y ,即 (2)投影变换必须满足的条件: 中央子午线投影后为直线; 中央子午线投影后长度不变; 投影具有正形性质,即正形投影条件。 (3)投影过程 在椭球面上有对称于中央子午线的两点 P1 和 P2 ,它们的大地坐标 分别为 ( L1 , B1 )或(l1 , B1)及 (L2 , B2)或(l2 , B2 ) 式中 l 为椭球面上点的经 度与中央子午线 ( L0 ) 的经度差:l L L0 ,点在中央子午线之东, l 为正,在西则为负,则投影后的平面坐标一定为P1 ( x1 , y1 ) 和 P2 ( x 2 , y 2 ) 。
x 坐标轴投影成中央子午线,是投影的对称轴; x 轴上的长度投影保持不变;
投影具有正形性质,即正形投影条件。
(3)投影过程 根据计算纵坐标在椭球面上的投影的底点纬度 B f ,接着按 B f 计算 ( B f B )及经差 l ,最后得到 B Bf (Bf B) 、 L L0 l 。
当要求转换精度至0.01 时,可简化为下式:
2 2 2 2 4 ( 5 3 t 9 t ) y f f f f 2M f N f 24M f N 3 f 1 1 2 2 3 l y ( 1 2 t ) y f f N f cos B f 6N 3 cos B f f 1 2 4 5 (5 28t f 24t f ) y 120N 5 cos B f f B Bf tf y2 tf
L, B ( x, y) 的坐标变换精度精确至0.00lm时,用下式计算。
xX
N N 2 3 2 2 4 4 sin B l sin B cos B ( 5 t 9 4 ) l 2 2 24 4 N 5 2 4 6 sin B cos B ( 61 58 t t ) l 720 6 N N y cos Bl cos3 B(1 t 2 2 )l 3 3 6 N 5 2 4 2 2 2 5 cos B ( 5 18 t t 14 58 t ) l 5 720
相关文档
最新文档