数据结构实验报告.
数据结构与算法分析实验报告

数据结构与算法分析实验报告一、实验目的本次实验旨在通过实际操作和分析,深入理解数据结构和算法的基本概念、原理和应用,提高解决实际问题的能力,培养逻辑思维和编程技巧。
二、实验环境本次实验使用的编程语言为 Python,使用的开发工具为 PyCharm。
操作系统为 Windows 10。
三、实验内容(一)线性表的实现与操作1、顺序表的实现使用数组实现顺序表,包括插入、删除、查找等基本操作。
通过实验,理解了顺序表在内存中的存储方式以及其操作的时间复杂度。
2、链表的实现实现了单向链表和双向链表,对链表的节点插入、删除和遍历进行了实践。
体会到链表在动态内存管理和灵活操作方面的优势。
(二)栈和队列的应用1、栈的实现与应用用数组和链表分别实现栈,并通过表达式求值的例子,展示了栈在计算中的作用。
2、队列的实现与应用实现了顺序队列和循环队列,通过模拟银行排队的场景,理解了队列的先进先出特性。
(三)树和二叉树1、二叉树的遍历实现了先序、中序和后序遍历算法,并对不同遍历方式的结果进行了分析和比较。
2、二叉搜索树的操作构建了二叉搜索树,实现了插入、删除和查找操作,了解了其在数据快速查找和排序中的应用。
(四)图的表示与遍历1、邻接矩阵和邻接表表示图分别用邻接矩阵和邻接表来表示图,并比较了它们在存储空间和操作效率上的差异。
2、图的深度优先遍历和广度优先遍历实现了两种遍历算法,并通过对实际图结构的遍历,理解了它们的应用场景和特点。
(五)排序算法的性能比较1、常见排序算法的实现实现了冒泡排序、插入排序、选择排序、快速排序和归并排序等常见的排序算法。
2、算法性能分析通过对不同规模的数据进行排序实验,比较了各种排序算法的时间复杂度和空间复杂度。
四、实验过程及结果(一)线性表1、顺序表在顺序表的插入操作中,如果在表头插入元素,需要将后面的元素依次向后移动一位,时间复杂度为 O(n)。
删除操作同理,在表头删除元素时,时间复杂度也为 O(n)。
数据结构实验报告实验总结

数据结构实验报告实验总结本次数据结构实验主要涉及线性表、栈和队列的基本操作以及链表的应用。
通过实验,我对这些数据结构的特点、操作和应用有了更深入的了解。
下面对每一部分实验进行总结。
实验一:线性表的基本操作线性表是一种常见的数据结构,本实验要求实现线性表的基本操作,包括插入、删除、查找、遍历等。
在实验过程中,我对线性表的结构和实现方式有了更清晰的认识,掌握了用数组和链表两种方式实现线性表的方法。
实验二:栈的应用栈是一种后进先出(LIFO)的数据结构,本实验要求利用栈实现简单的括号匹配和后缀表达式计算。
通过实验,我了解到栈可以方便地实现对于括号的匹配和后缀表达式的计算,有效地解决了对应的问题。
实验三:队列的应用队列是一种先进先出(FIFO)的数据结构,本实验要求利用队列实现银行排队和迷宫求解。
通过实验,我对队列的应用有了更加深入的了解,了解到队列可以解决需要按顺序处理的问题,如排队和迷宫求解等。
实验四:链表的应用链表是一种常用的数据结构,本实验要求利用链表实现学生信息管理系统。
通过实验,我对链表的应用有了更深入的了解,了解到链表可以方便地实现对于数据的插入、删除和修改等操作,并且可以动态地调整链表的长度,适应不同的需求。
通过本次实验,我掌握了线性表、栈、队列和链表的基本操作,并了解了它们的特点和应用方式。
同时,通过实际编程的过程,我对于数据结构的实现方式和效果有了更直观的认识,也锻炼了自己的编程能力和解决问题的能力。
在实验过程中,我遇到了一些问题,如程序逻辑错误和内存泄漏等,但通过调试和修改,最终成功解决了这些问题,对自己的能力也有了更多的信心。
通过本次实验,我深刻体会到了理论与实践的结合的重要性,也对于数据结构这门课程有了更加深入的理解。
总之,本次数据结构实验给予了我很多有益的启发和收获,对于数据结构的概念、特点和应用有了更深入的理解。
在以后的学习中,我会继续加强对数据结构的学习和研究,不断提高自己的编程能力和解决问题的能力。
数据结构实验三实验报告

数据结构实验三实验报告数据结构实验三实验报告一、实验目的本次实验的目的是通过实践掌握树的基本操作和应用。
具体来说,我们需要实现一个树的数据结构,并对其进行插入、删除、查找等操作,同时还需要实现树的遍历算法,包括先序、中序和后序遍历。
二、实验原理树是一种非线性的数据结构,由结点和边组成。
树的每个结点都可以有多个子结点,但是每个结点只有一个父结点,除了根结点外。
树的基本操作包括插入、删除和查找。
在本次实验中,我们采用二叉树作为实现树的数据结构。
二叉树是一种特殊的树,每个结点最多只有两个子结点。
根据二叉树的特点,我们可以使用递归的方式实现树的插入、删除和查找操作。
三、实验过程1. 实现树的数据结构首先,我们需要定义树的结点类,包括结点值、左子结点和右子结点。
然后,我们可以定义树的类,包括根结点和相应的操作方法,如插入、删除和查找。
2. 实现插入操作插入操作是将一个新的结点添加到树中的过程。
我们可以通过递归的方式实现插入操作。
具体来说,如果要插入的值小于当前结点的值,则将其插入到左子树中;如果要插入的值大于当前结点的值,则将其插入到右子树中。
如果当前结点为空,则将新的结点作为当前结点。
3. 实现删除操作删除操作是将指定的结点从树中移除的过程。
我们同样可以通过递归的方式实现删除操作。
具体来说,如果要删除的值小于当前结点的值,则在左子树中继续查找;如果要删除的值大于当前结点的值,则在右子树中继续查找。
如果要删除的值等于当前结点的值,则有三种情况:- 当前结点没有子结点:直接将当前结点置为空。
- 当前结点只有一个子结点:将当前结点的子结点替代当前结点。
- 当前结点有两个子结点:找到当前结点右子树中的最小值,将其替代当前结点,并在右子树中删除该最小值。
4. 实现查找操作查找操作是在树中寻找指定值的过程。
同样可以通过递归的方式实现查找操作。
具体来说,如果要查找的值小于当前结点的值,则在左子树中继续查找;如果要查找的值大于当前结点的值,则在右子树中继续查找。
数据结构实训实验报告

一、实验背景数据结构是计算机科学中一个重要的基础学科,它研究如何有效地组织和存储数据,并实现对数据的检索、插入、删除等操作。
为了更好地理解数据结构的概念和原理,我们进行了一次数据结构实训实验,通过实际操作来加深对数据结构的认识。
二、实验目的1. 掌握常见数据结构(如线性表、栈、队列、树、图等)的定义、特点及操作方法。
2. 熟练运用数据结构解决实际问题,提高算法设计能力。
3. 培养团队合作精神,提高实验报告撰写能力。
三、实验内容本次实验主要包括以下内容:1. 线性表(1)实现线性表的顺序存储和链式存储。
(2)实现线性表的插入、删除、查找等操作。
2. 栈与队列(1)实现栈的顺序存储和链式存储。
(2)实现栈的入栈、出栈、判断栈空等操作。
(3)实现队列的顺序存储和链式存储。
(4)实现队列的入队、出队、判断队空等操作。
3. 树与图(1)实现二叉树的顺序存储和链式存储。
(2)实现二叉树的遍历、查找、插入、删除等操作。
(3)实现图的邻接矩阵和邻接表存储。
(4)实现图的深度优先遍历和广度优先遍历。
4. 算法设计与应用(1)实现冒泡排序、选择排序、插入排序等基本排序算法。
(2)实现二分查找算法。
(3)设计并实现一个简单的学生成绩管理系统。
四、实验步骤1. 熟悉实验要求,明确实验目的和内容。
2. 编写代码实现实验内容,对每个数据结构进行测试。
3. 对实验结果进行分析,总结实验过程中的问题和经验。
4. 撰写实验报告,包括实验目的、内容、步骤、结果分析等。
五、实验结果与分析1. 线性表(1)顺序存储的线性表实现简单,但插入和删除操作效率较低。
(2)链式存储的线性表插入和删除操作效率较高,但存储空间占用较大。
2. 栈与队列(1)栈和队列的顺序存储和链式存储实现简单,但顺序存储空间利用率较低。
(2)栈和队列的入栈、出队、判断空等操作实现简单,但需要考虑数据结构的边界条件。
3. 树与图(1)二叉树和图的存储结构实现复杂,但能够有效地表示和处理数据。
数据结构实验报告

数据结构实验报告一、实验目的数据结构是计算机科学中重要的基础课程,通过本次实验,旨在深入理解和掌握常见数据结构的基本概念、操作方法以及在实际问题中的应用。
具体目的包括:1、熟练掌握线性表(如顺序表、链表)的基本操作,如插入、删除、查找等。
2、理解栈和队列的特性,并能够实现其基本操作。
3、掌握树(二叉树、二叉搜索树)的遍历算法和基本操作。
4、学会使用图的数据结构,并实现图的遍历和相关算法。
二、实验环境本次实验使用的编程环境为具体编程环境名称,编程语言为具体编程语言名称。
三、实验内容及步骤(一)线性表的实现与操作1、顺序表的实现定义顺序表的数据结构,包括数组和表的长度等。
实现顺序表的初始化、插入、删除和查找操作。
2、链表的实现定义链表的节点结构,包含数据域和指针域。
实现链表的创建、插入、删除和查找操作。
(二)栈和队列的实现1、栈的实现使用数组或链表实现栈的数据结构。
实现栈的入栈、出栈和栈顶元素获取操作。
2、队列的实现采用循环队列的方式实现队列的数据结构。
完成队列的入队、出队和队头队尾元素获取操作。
(三)树的实现与遍历1、二叉树的创建以递归或迭代的方式创建二叉树。
2、二叉树的遍历实现前序遍历、中序遍历和后序遍历算法。
3、二叉搜索树的操作实现二叉搜索树的插入、删除和查找操作。
(四)图的实现与遍历1、图的表示使用邻接矩阵或邻接表来表示图的数据结构。
2、图的遍历实现深度优先遍历和广度优先遍历算法。
四、实验结果与分析(一)线性表1、顺序表插入操作在表尾进行时效率较高,在表头或中间位置插入时需要移动大量元素,时间复杂度较高。
删除操作同理,在表尾删除效率高,在表头或中间删除需要移动元素。
2、链表插入和删除操作只需修改指针,时间复杂度较低,但查找操作需要遍历链表,效率相对较低。
(二)栈和队列1、栈栈的特点是先进后出,适用于函数调用、表达式求值等场景。
入栈和出栈操作的时间复杂度均为 O(1)。
2、队列队列的特点是先进先出,常用于排队、任务调度等场景。
数据结构 实验报告

数据结构实验报告一、实验目的数据结构是计算机科学中非常重要的一门课程,通过本次实验,旨在加深对常见数据结构(如链表、栈、队列、树、图等)的理解和应用,提高编程能力和解决实际问题的能力。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
操作系统为 Windows 10。
三、实验内容1、链表的实现与操作创建一个单向链表,并实现插入、删除和遍历节点的功能。
对链表进行排序,如冒泡排序或插入排序。
2、栈和队列的应用用栈实现表达式求值,能够处理加、减、乘、除和括号。
利用队列实现银行排队系统的模拟,包括顾客的到达、服务和离开。
3、二叉树的遍历与操作构建一棵二叉树,并实现前序、中序和后序遍历。
进行二叉树的插入、删除节点操作。
4、图的表示与遍历用邻接矩阵和邻接表两种方式表示图。
实现图的深度优先遍历和广度优先遍历。
四、实验步骤及结果1、链表的实现与操作首先,定义了链表节点的结构体:```cppstruct ListNode {int data;ListNode next;ListNode(int x) : data(x), next(NULL) {}};```插入节点的函数:```cppvoid insertNode(ListNode& head, int val) {ListNode newNode = new ListNode(val);head = newNode;} else {ListNode curr = head;while (curr>next!= NULL) {curr = curr>next;}curr>next = newNode;}}```删除节点的函数:```cppvoid deleteNode(ListNode& head, int val) {if (head == NULL) {return;}ListNode temp = head;head = head>next;delete temp;return;}ListNode curr = head;while (curr>next!= NULL && curr>next>data!= val) {curr = curr>next;}if (curr>next!= NULL) {ListNode temp = curr>next;curr>next = curr>next>next;delete temp;}}```遍历链表的函数:```cppvoid traverseList(ListNode head) {ListNode curr = head;while (curr!= NULL) {std::cout << curr>data <<"";curr = curr>next;}std::cout << std::endl;}```对链表进行冒泡排序的函数:```cppvoid bubbleSortList(ListNode& head) {if (head == NULL || head>next == NULL) {return;}bool swapped;ListNode ptr1;ListNode lptr = NULL;do {swapped = false;ptr1 = head;while (ptr1->next!= lptr) {if (ptr1->data > ptr1->next>data) {int temp = ptr1->data;ptr1->data = ptr1->next>data;ptr1->next>data = temp;swapped = true;}ptr1 = ptr1->next;}lptr = ptr1;} while (swapped);}```测试结果:创建了一个包含 5、3、8、1、4 的链表,经过排序后,输出为 1 3 4 5 8 。
数据结构实验报告

数据结构实验报告一、实验目的本实验旨在通过对数据结构的学习和实践,掌握基本的数据结构概念、原理及其应用,培养学生的问题分析与解决能力,提升编程实践能力。
二、实验背景数据结构是计算机科学中的重要基础,它研究数据的存储方式和组织形式,以及数据之间的关系和操作方法。
在软件开发过程中,合理选用和使用数据结构,能够提高算法效率,优化内存利用,提升软件系统的性能和稳定性。
三、实验内容本次实验主要涉及以下几个方面的内容:1.线性表的基本操作:包括线性表的创建、插入、删除、查找、修改等操作。
通过编程实现不同线性表的操作,掌握它们的原理和实现方法。
2.栈和队列的应用:栈和队列是常用的数据结构,通过实现栈和队列的基本操作,学会如何解决实际问题。
例如,利用栈实现括号匹配,利用队列实现银行排队等。
3.递归和回溯算法:递归和回溯是解决很多求解问题的常用方法。
通过编程实现递归和回溯算法,理解它们的思想和应用场景。
4.树和二叉树的遍历:学习树和二叉树的遍历方法,包括前序、中序和后序遍历。
通过编程实现这些遍历算法,加深对树结构的理解。
5.图的基本算法:学习图的基本存储结构和算法,包括图的遍历、最短路径、最小生成树等。
通过编程实现这些算法,掌握图的基本操作和应用。
四、实验过程1.具体实验内容安排:根据实验要求,准备好所需的编程环境和工具。
根据实验要求逐步完成实验任务,注意记录并整理实验过程中遇到的问题和解决方法。
2.实验数据采集和处理:对于每个实验任务,根据要求采集并整理测试数据,进行相应的数据处理和分析。
记录实验过程中的数据和结果。
3.实验结果展示和分析:将实验结果进行适当的展示,例如表格、图形等形式,分析实验结果的特点和规律。
4.实验总结与反思:总结实验过程和结果,回顾实验中的收获和不足,提出改进意见和建议。
五、实验结果与分析根据实验步骤和要求完成实验任务后,得到了相应的实验结果。
对于每个实验任务,根据实验结果进行适当的分析。
数据结构课程实验报告

数据结构课程实验报告一、实验目的本次数据结构课程实验的主要目的是通过实践掌握常见数据结构的基本操作,包括线性结构、树形结构和图形结构。
同时,也要求学生能够熟练运用C++语言编写程序,并且能够正确地使用各种算法和数据结构解决具体问题。
二、实验内容本次实验涉及到以下几个方面:1. 线性表:设计一个线性表类,并且实现线性表中元素的插入、删除、查找等基本操作。
2. 栈和队列:设计一个栈类和队列类,并且分别利用这两种数据结构解决具体问题。
3. 二叉树:设计一个二叉树类,并且实现二叉树的遍历(前序遍历、中序遍历和后序遍历)。
4. 图论:设计一个图类,并且利用图论算法解决具体问题(如最短路径问题)。
三、实验过程1. 线性表首先,我们需要设计一个线性表类。
在这个类中,我们需要定义一些成员变量(如线性表大小、元素类型等),并且定义一些成员函数(如插入元素函数、删除元素函数等)。
在编写代码时,我们需要注意一些细节问题,如边界条件、异常处理等。
2. 栈和队列接下来,我们需要设计一个栈类和队列类。
在这两个类中,我们需要定义一些成员变量(如栈顶指针、队头指针等),并且定义一些成员函数(如入栈函数、出栈函数、入队函数、出队函数等)。
在编写代码时,我们需要注意一些细节问题,如空间不足的情况、空栈或空队列的情况等。
3. 二叉树然后,我们需要设计一个二叉树类,并且实现二叉树的遍历。
在这个类中,我们需要定义一个节点结构体,并且定义一些成员变量(如根节点指针、节点数量等),并且定义一些成员函数(如插入节点函数、删除节点函数、遍历函数等)。
在编写代码时,我们需要注意一些细节问题,如递归调用的情况、空节点的情况等。
4. 图论最后,我们需要设计一个图类,并且利用图论算法解决具体问题。
在这个类中,我们需要定义一个邻接矩阵或邻接表来表示图形结构,并且定义一些成员变量(如顶点数量、边的数量等),并且定义一些成员函数(如添加边函数、删除边函数、最短路径算法等)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构实验报告一.题目要求1)编程实现二叉排序树,包括生成、插入,删除;2)对二叉排序树进行先根、中根、和后根非递归遍历;3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。
4)分别用二叉排序树和数组去存储一个班(50人以上)的成员信息(至少包括学号、、成绩3项),对比查找效率,并说明在什么情况下二叉排序树效率高,为什么?二.解决方案对于前三个题目要求,我们用一个程序实现代码如下#include<windows.h>#include <stdio.h>#include <malloc.h>#include "Stack.h" //栈的头文件,没有用上typedef int ElemType; //数据类型typedef int Status; //返回值类型//定义二叉树结构typedef struct BiTNode{ElemType data; //数据域struct BiTNode *lChild, *rChild;//左右子树域}BiTNode, *BiTree;int InsertBST(BiTree &T,int key){//插入二叉树函数if(T==NULL){T = (BiTree)malloc(sizeof(BiTNode));T->data=key;T->lChild=T->rChild=NULL;return 1;}else if(key<T->data){InsertBST(T->lChild,key);}else if(key>T->data){InsertBST(T->rChild,key);}elsereturn 0;}BiTree CreateBST(int a[],int n){//创建二叉树函数BiTree bst=NULL;int i=0;while(i<n){InsertBST(bst,a[i]);i++;}return bst;}int Delete(BiTree &T){BiTree q,s;if(!(T)->rChild){ //右子树为空重接它的左子树q=T;T=(T)->lChild;free(q);}else{if(!(T)->lChild){ //若左子树空则重新接它的右子树q=T;T=(T)->rChild;}else{q=T;s=(T)->lChild;while(s->rChild){q=s; s=s->rChild;}(T)->data=s->data; //s指向被删除结点的前驱if(q!=T)q->rChild=s->lChild;elseq->lChild=s->lChild;free(s);}}return 1;}//删除函数,在T中删除key元素int DeleteBST(BiTree &T,int key){if(!T) return 0;else{if(key==(T)->data) return Delete(T);else{if(key<(T)->data)return DeleteBST(T->lChild,key);elsereturn DeleteBST(T->rChild,key);}}}int PosttreeDepth(BiTree T){//求深度int hr,hl,max;if(!T==NULL){hl=PosttreeDepth(T->lChild);hr=PosttreeDepth(T->rChild);max=hl>hr?hl:hr;return max+1;}elsereturn 0;}void printtree(BiTree T,int nlayer){//打印二叉树if(T==NULL) return ;printtree(T->rChild,nlayer+1);for(int i=0;i<nlayer;i++){printf(" ");}printf("%d\n",T->data);printtree(T->lChild,nlayer+1);}void PreOrderNoRec(BiTree root)//先序非递归遍历{BiTree p=root;BiTree stack[50];int num=0;while(NULL!=p||num>0){while(NULL!=p){printf("%d ",p->data);stack[num++]=p;p=p->lChild;}num--;p=stack[num];p=p->rChild;}printf("\n");}void InOrderNoRec(BiTree root)//中序非递归遍历{BiTree p=root;int num=0;BiTree stack[50];while(NULL!=p||num>0){while(NULL!=p){stack[num++]=p;p=p->lChild;}num--;p=stack[num];printf("%d ",p->data);p=p->rChild;}printf("\n");}void PostOrderNoRec(BiTree root)//后序非递归遍历{BiTree p=root;BiTree stack[50];int num=0;BiTree have_visited=NULL;while(NULL!=p||num>0){while(NULL!=p){stack[num++]=p;p=p->lChild;}p=stack[num-1];if(NULL==p->rChild||have_visited==p->rChild){printf("%d ",p->data);num--;have_visited=p;p=NULL;}else{p=p->rChild;}}printf("\n");}int main(){//主函数printf(" ---------------------二叉排序树的实现-------------------");printf("\n");int layer;int i;int num;printf("输入节点个数:");scanf("%d",&num);printf("依次输入这些整数(要不相等)");int *arr=(int*)malloc(num*sizeof(int));for(i=0;i<num;i++){scanf("%d",arr+i);}BiTree bst=CreateBST(arr,num);printf("\n");printf("二叉树创建成功!");printf("\n");layer=PosttreeDepth(bst);printf("树状图为:\n");printtree(bst,layer);int j;int T;int K;for(;;){loop:printf("\n");printf(" ***********************按提示输入操作符************************:");printf("\n");printf(" 1:插入节点2:删除节点3:打印二叉树4:非递归遍历二叉树5:退出");scanf("%d",&j);switch(j){case 1:printf("输入要插入的节点:");scanf("%d",&T);InsertBST(bst,T);printf("插入成功!");printf("树状图为:\n");printtree(bst,layer);break;case 2:printf("输入要删除的节点");scanf("%d",&K);DeleteBST(bst,K);printf("删除成功!");printf("树状图为:\n");printtree(bst,layer);break;case 3:layer=PosttreeDepth(bst);printtree(bst,layer);break;case 4:printf("非递归遍历二叉树");printf("先序遍历:\n");PreOrderNoRec(bst);printf("中序遍历:\n");InOrderNoRec(bst);printf("后序遍历:\n");PostOrderNoRec(bst);printf("树状图为:\n");printtree(bst,layer);break;case 5:printf("程序执行完毕!");return 0;}goto loop;}return 0;}对于第四小问,要储存学生的三个信息,需要把上面程序修改一下,二叉树结构变为typedef int ElemType; //数据类型typedef string SlemType;typedef int Status; //返回值类型//定义二叉树结构typedef struct BiTNode{SlemType name;ElemType score;ElemType no; //数据域struct BiTNode *lChild, *rChild;//左右子树域}BiTNode, *BiTree;参数不是key,而是另外三个int InsertBST(BiTree &T,int no,int score,string name){//插入二叉树函数if(T==NULL){T = (BiTree)malloc(sizeof(BiTNode));T->no=no;T->name=name;T->score=score;T->lChild=T->rChild=NULL;return 1;}else if(no<T->no){InsertBST(T->lChild,no,score,name);}else if(key>T->data){InsertBST(T->rChild, no,score,name);}elsereturn 0;}其他含参函数也类似即可完成50个信息存储用数组存储50个信息,查看以往代码#include<iostream>#include<string>using namespace std;class student{private:int num;string name;int ob1;int ob2;int ara;public:void set(int a,string b,int c,int d);void show();int average();};void student ::set(int a,string b,int c,int d){num=a;name=b;ob1=c;ob2=d;ara=(c+d)/2;}void student::show(){cout<<"学号:"<<num<<" :"<<name<<" 科目一:"<<ob1<<" 科目二:"<<ob2<<" 平均成绩:"<<ara<<endl;}int student::average(){return ara;}int main(){cout<<" 欢迎来到学生管理系统"<<endl;cout<<" 0.查询学号信息:"<<endl;cout<<" 1.删除学号信息:"<<endl;cout<<" 2.添加学号新信息"<<endl;cout<<" 3.按平均分降序显示所有学生信息"<<endl;cout<<" 4. 退出"<<endl;student *ptr=new student[21];ptr[1].set(1,"小明",88,67);//已存入的学生信息ptr[2].set(2,"小",68,82);ptr[3].set(3,"小王",68,62);ptr[4].set(4,"小",79,82);ptr[5].set(5,"小",63,82);ptr[6].set(6,"小红",68,73);ptr[7].set(7,"小木",62,77);ptr[8].set(8,"小添",65,86);ptr[9].set(9,"小天",68,82);ptr[10].set(10,"三",88,82);ptr[11].set(11,"四",98,82);ptr[12].set(12,"王五",88,81);ptr[13].set(13,"小月",58,82);ptr[14].set(14,"小鑫",78,80);ptr[15].set(15,"小良",68,92);ptr[16].set(16,"小成",68,82);ptr[17].set(17,"小敏",98,92);ptr[18].set(18,"小问",88,88);ptr[19].set(19,"小文",48,82);ptr[20].set(20,"小瑞",98,62);//已存入的学生信息int numlock;int j=0;int i,k,m;int q,e,r;string w;while(1){cout<<" 按0,1,2,3,4进行操作"<<endl;cin>>numlock;switch(numlock){case 0:cout<<"输入想查询的学号"<<endl;cin>>i;if(i==j){cout<<"该学号信息已被删除"<<endl;break;}ptr[i].show();break;case 1:cout<<"输入想删除的学号"<<endl;cin>>j;delete[j]ptr;cout<<"删除成功"<<endl;break;case 2:cout<<"输入想添加的学号信息"<<endl;cin>>k;if(k!=j){cout<<"该学号信息已经存在,添加失败"<<endl;break;}cout<<"重新输入添加的学号"<<endl;cin>>q;cout<<"输入"<<endl;cin>>w;cout<<"输入科目一的成绩"<<endl;cin>>e;cout<<"输入科目二的成绩"<<endl;cin>>r;ptr[k].set(q,w,e,r);break;case 3:for( m=1;m<20;m++){for(int n=m+1;n<20;n++){if(ptr[m].average()<ptr[n].average()){student a;a=ptr[m];ptr[m]=ptr[n];ptr[n]=a;}}ptr[m].show();}break;case 4:cout<<"使用"<<endl;return 0;default:cout<<"number out of 0 to 4"<<endl;break;}}return 0;}三.测试结果二叉排序树储存数据界面(储存学生信息略)创建二叉树:插入节点:删除节点:非递归遍历:退出:数组储存学生信息界面分析查找效率:因为二叉树查找要创建二叉树,而数组查找只创建一个数组,二叉树的创建时间比较长,所以对于数据量较少的情况下数组的查找效率比较高。