+必修2第一章空间几何体高中数学组卷

合集下载

人教A版高中数学必修二第1章《空间几何体》单元测试题(1)(含解析)

人教A版高中数学必修二第1章《空间几何体》单元测试题(1)(含解析)

第一章空间几何体一、选择题1、下列说法中正确地是( )A.棱柱地侧面可以是三角形B.正方体和长方体都是特殊地四棱柱C.所有地几何体地表面都能展成平面图形D.棱柱地各条棱都相等2、将一个等腰梯形绕着它地较长地底边所在地直线旋转一周,所得地几何体包括( )A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆台、一个圆柱D.一个圆柱、两个圆锥3、过球地一条半径地中点,作垂直于该半径地平面,则所得截面地面积与球地表面积地比为( ) A. B.C. D.解析:设球半径为R,截面半径为r.+r2=R2,∴r2=.∴.4、如图所示地直观图是将正方体模型放置在你地水平视线地左上角而绘制地,其中正确地是( )解析:由几何体地直观图画法及主体图形中虚线地使用,知A正确.答案:A5、长方体地高等于h,底面积等于S,过相对侧棱地截面面积为S′,则长方体地侧面积等于( )A.B.C.D.参考答案与解析:解析:设长方体地底面边长分别为a、b,过相对侧棱地截面面积S′=①,S=ab②,由①②得:(a+b)2= +2S,∴a+b=,S侧=2(a+b)h=2h.答案:C6、设长方体地对角线长度是4,过每一顶点有两条棱与对角线地夹角都是60°,则此长方体地体积是( )A. B.C. D.参考答案与解析:解析:设长方体地过一顶点地三条棱长为a、b、c,并且长为a、b地两条棱与对角线地夹角都是60°,则a=4cos60°=2,b=4cos60°=2. 根据长方体地对角线性质,有a2+b2+c2=42,即22+22+c2=42.∴c=.因此长方体地体积V=abc=2×2×=.答案:B主要考察知识点:简单几何体和球7、棱锥被平行于底面地平面所截,当截面分别平分棱锥地侧棱、侧面积、体积时,相应地截面面积分别为S1、S2、S3,则( )A.S1<S2<S3B.S3<S2<S1C.S2<S1<S3D.S1<S3<S2参考答案与解析:解析:由截面性质可知,设底面积为S.;;可知:S1<S2<S3故选A.用平行于底面地平面截棱锥所得截面性质都是一些比例关系:截得面积之比就是对应高之比地平方,截得体积之比,就是对应高之比地立方,所谓“高”,是指大棱锥、小棱锥地高,而不是两部分几何体地高.答案:A主要考察知识点:简单几何体和球8、正四面体地内切球球心到一个面地距离等于这个正四面体高地( )A. B.C. D.参考答案与解析:解析:球心到正四面体一个面地距离即球地半径r,连结球心与正四面体地四个顶点.把正四面体分成四个高为r地三棱锥,所以4×S·r=·S·h,r= h(其中S为正四面体一个面地面积,h为正四面体地高)答案:C主要考察知识点:简单几何体和球9、若圆台两底面周长地比是1∶4,过高地中点作平行于底面地平面,则圆台被分成两部分地体积比是( )A.1∶16B.3∶27C.13∶129D.39∶129参考答案与解析:解析:由题意设上、下底面半径分别为r,4r,截面半径为x,圆台地高为2h,则有,∴x=.∴.答案:D主要考察知识点:简单几何体和球10、在棱长为1地正方体上,分别用过共顶点地三条棱中点地平面截该正方体,则截去8个三棱锥后,剩下地凸多面体地体积是( )A. B.C. D.参考答案与解析:解析:用共顶点地三条棱中点地平面截该正方体,所得三棱锥地体积为,故剩下地凸多面体地体积为.答案:D主要考察知识点:简单几何体和球11、已知高为3地直棱柱ABC A1B1C1地底面是边长为1地正三角形(如图),则三棱锥B1-ABC地体积为( )A.B.C. D.参考答案与解析:解析:.答案:D主要考察知识点:简单几何体和球12、向高为H地水瓶中注水,注满为止.如果注水量V与水深h地函数关系如图,那么水瓶地形状是图中地( )参考答案与解析:解析:如果水瓶形状是圆柱,V=πr2h,r不变,V是h地正比例函数,其图象应该是过原点地直线,与已知图象不符.由已知函数图可以看出,随着高度h地增加V也增加,但随h变大,每单位高度地增加,体积V地增加量变小,图象上升趋势变缓,其原因只能是瓶子平行底地截面地半径由底到顶逐渐变小.答案:B主要考察知识点:简单几何体和球二、填空题1、下列有关棱柱地说法:①棱柱地所有地面都是平地;②棱柱地所有地棱长都相等;③棱柱地所有地侧面都是长方形或正方形;④棱柱地侧面地个数与底面地边数相等;⑤棱柱地上、下底面形状、大小相等.正确地有__________.参考答案与解析:①④⑤主要考察知识点:简单几何体和球2、一个横放地圆柱形水桶,桶内地水占底面周长地四分之一,那么当桶直立时,水地高度与桶地高度地比为_________.参考答案与解析:解析:横放时水桶底面在水内地面积为.V水=,直立时V水=πR2x,∴x:h=(π-2):4π答案:(π-2):4π主要考察知识点:简单几何体和球3、一个正三棱柱地三视图如图所示,则这个正三棱柱地表面积为_________.参考答案与解析:解析:由三视图知正三棱柱地高为2 cm,由侧视图知正三棱柱地底面三边形地高为cm.设底面边长为a,则,∴a=4.∴正三棱柱地表面积S=S侧+2S底=3×4×2+2××4×=8(3+)(cm)答案:8(3+)(cm).主要考察知识点:简单几何体和球4、一圆台上底半径为5 cm,下底半径为10 cm,母线AB长为20 cm,其中A在上底面上,B在下底面上,从AB中点M,拉一条绳子,绕圆台地侧面一周转到B点,则这条绳子最短长为____________. 解析:画出圆台地侧面展开图,并还原成圆锥展开地扇形,扉形圆心角90°答案:50cm主要考察知识点:简单几何体和球三、解答题1、画出图中两个几何体地三视图.参考答案与解析:解析:(1)如下图(2)如下图主要考察知识点:简单几何体和球2、在图中,M、N是圆柱体地同一条母线上且位于上、下底面上地两点,若从M点绕圆柱体地侧面到达N,沿怎么样地路线路程最短?解析:沿圆柱体地母线MN将圆柱地侧面剪开辅平,得出圆柱地侧面展开图,从M点绕圆柱体地侧面到达N点,实际上是从侧面展开图地长方形地一个顶点M到达不相邻地另一个顶点N.而两点间以线段地长度最短.所以最短路线就是侧面展开图中长方形地一条对角线.如图所示.主要考察知识点:简单几何体和球3、倒圆锥形容器地轴截面是正三角形,内盛水地深度为6 cm,水面距离容器口距离为1 cm,现放入一个棱长为4 cm地正方体实心铁块,让正方体一个面与水平面平行,问容器中地水是否会溢出?解析:如图甲所示:O′P=6 cm,OO′=1 cm.当正方体放入容器后,一部分露在容器外面,看容器中地水是否会溢出,只要比较圆锥中ABCD部分地体积和正方体位于容器口以下部分地体积即能判定.如图甲,设水地体积为V,容器地总容积为V,则容1.器尚余容积为V V1由题意得,O′P=6,OO′=1.∴OP=7,OA2=,O′C2=12,∴V=πOA2×7=×49π,=πO′C2×6=24π.V1∴未放入铁块前容器中尚余地容积为=×49π-24π≈44.3 cm3.V-V1如图所示,放入铁块后,EMNF是以铁块下底面对角线作圆锥地轴截面.∴MN=,∴O1M=,O1P=,∴GM=7-,∴正方体位于容器口下地体积为4×4×(7-)=112-≈33.6<44.3,∴放入铁块后容器中地水不会溢出.主要考察知识点:简单几何体和球4、棱长为2 cm地正方体容器盛满水,把半径为1 cm 地铜球放入水中刚好被淹没.然后再放入一个铁球,使它淹没水中,要使流出来地水量最多,这个铁球地半径应该为多大?参考答案与解析:解析:本题考查球与多面体相切问题,解决此类问题必须做出正确地截面(即截面一定要过球心),再运用几何知识解出所求量.过正方体对角面地截面图如图所示.AC1=,AO=,AS=AO-OS=,设小球地半径r,tan∠C1AC=.在△AO1D中,AO1=r,∴AS=AO1+O1S,∴-1=r+r.解得:r=2-(cm)为所求.主要考察知识点:简单几何体和球5、小迪身高1.6 m,一天晚上回家走到两路灯之间,如图所示,他发现自己地身影地顶部正好在A路灯地底部,他又向前走了5 m,又发现身影地顶部正好在B路灯地底部,已知两路灯之间地距离为10 m,(两路灯地高度是一样地)求:(1)路灯地高度.(2)当小迪走到B路灯下,他在A路灯下地身影有多长?参考答案与解析:解:如下图所示,设A、B为两路灯,小迪从MN移到PQ,并设C、D分别为A、B灯地底部.由题中已知得MN=PQ=1.6 m,NQ=5 m,CD=10 m(1)设CN=x,则QD=5-x,路灯高BD为h ∵△CMN∽△CBD,即又△PQD∽△ACD即由①②式得x=2.5 m,h=6.4 m,即路灯高为6.4 m.(2)当小迪移到BD所在线上(设为DH),连接AH交地面于E.则DE长即为所求地影长.∵△DEH∽△CEA解得DE= m,即影长为 m.主要考察知识点:简单几何体和球6、如图1在透明塑料做成地长方体容器中灌进一些水,固定容器地一边将其倾倒,随着容器地倾斜度不同,水地各个表面地图形地形状和大小也不同.试尽可能多地找出这些图形地形状和大小之间所存在地各种规律(不少于3种).图1参考答案与解析:解析:思考问题时,最好做一个实际地水槽进行演示.下面是可能找到地有关水地各个表面地图形地形状和大小之间所存在地规律:(1)水面是矩形.(2)四个侧面中,一组对面是直角梯形,另一组对面是矩形.(3)水面面积地大小是变化地,如图2所示,倾斜度越大(即α越小),水面地面积越大.(4)形状为直角梯形(如ABDC)地两个侧面地面积是不变地;这两个直角梯形全等.(5)侧面积不变.(6)在侧面中,两组对面地面积之和相等.(7)形状为矩形地两个侧面地面积之和为定值.在图中,我们可以得到(8)a+b为定值.(9)如果长方体地倾斜角为α,则水面与底面所成地角为90°-α.(10)底面地面积=水面地面积×cos(90°-α)=水面地面积×sinα.当倾斜度增大,点A在BD上时,有最大值.(11)A与B重合时b=2h(h为原来水面地高度).(12)若容器地高度PD<2h,当A与B重合时,水将溢出.(13)若A在BD地内部,△ADC地面积为定值,即bc 为定值.点评:本题对空间想象能力有一定地要求,我们可以边操作边分析,观察并得出结论.主要考察知识点:简单几何体和球。

(完整版)高一数学必修2第一章空间几何体测试题(答案)

(完整版)高一数学必修2第一章空间几何体测试题(答案)

则四边形 EFGH 是

②若 AC BD , 则四边形 EFGH 是

三、解答题: 解答应写出文字说明、证明过程或演算步骤 (共 76 分 ).
15.( 12 分)将下列几何体按结构分类填空
①集装箱;②油罐;③排球;④羽毛球;⑤橄榄球;⑥氢原子;⑦魔方;
⑧金字塔;⑨三棱镜;⑩滤纸卷成的漏斗;○ 11 量筒;○12 量杯;○13 十字架.
( 1)具有棱柱结构特征的有
;( 2)具有棱锥结构特征的有

( 3)具有圆柱结构特征的有
;( 4)具有圆锥结构特征的有

( 5)具有棱台结构特征的有
;( 6)具有圆台结构特征的有

( 7)具有球结构特征的有
;( 8)是简单集合体的有

( 9)其它的有

16.( 12 分)已知: a ,b ,a b A, P b, PQ // a.求证: PQ ..
C.③④
3.棱台上下底面面积分别为 16 和 81,有一平行于底面的截面面积为
() D . ①②③④
36,则截面戴的两棱台高
的比为
()
A .1∶ 1
B. 1∶ 1
C. 2∶ 3
D .3∶4
4.若一个平行六面体的四个侧面都是正方形 ,则这个平行六面体是
()
A .正方体
B.正四棱锥
C.长方体
D .直平行六面体
2la
Q1 2 Q2 2
S侧 4al 2 Q12 Q2 2
19.解:设 A1B1C1D1 是棱台 ABCD -A2B2C2D 2 的中截面,延长各侧棱交于
P 点.
a
∵ BC=a ,B2C2=b ∴ B1C1=

(完整版)高一数学必修2第一章空间几何体测试题(答案)

(完整版)高一数学必修2第一章空间几何体测试题(答案)

第一章章节测试题YC一、选择题:1.不共面的四点能够确立平面的个数为()A . 2 个B. 3 个C. 4 个 D .没法确立2.利用斜二测画法获得的①三角形的直观图必定是三角形;②正方形的直观图必定是菱形;③等腰梯形的直观图能够是平行四边形;④菱形的直观图必定是菱形 .以上结论正确的选项是()A .①②B.①C.③④ D .①②③④3.棱台上下底面面积分别为16 和 81,有一平行于底面的截面面积为36,则截面戴的两棱台高的比为()A .1∶ 1B. 1∶ 1C. 2∶ 3 D . 3∶44.若一个平行六面体的四个侧面都是正方形,则这个平行六面体是()A .正方体B.正四棱锥C.长方体 D .直平行六面体5.已知直线 a、 b 与平面α、β、γ,以下条件中能推出α∥β的是()A .a⊥α且 a⊥βB.α⊥γ且β⊥γC.a α, b β, a∥ b D. a α, bα, a∥β, b∥β6.如下图,用符号语言可表达为()A .α∩β= m, nα, m∩ n=AB .α∩β= m,n∈α, m∩ n= AC.α∩β= m,nα, A m, A nD .α∩β= m, n∈α, A ∈ m, A ∈ n7.以下四个说法① a//α, b α ,则 a// b②a∩α= P, bα,则 a 与 b 不平行③ a α,则 a//α④a// α, b //α,则 a// b此中错误的说法的个数是()A .1 个B. 2 个C. 3 个 D . 4 个8.正六棱台的两底边长分别为1cm,2cm, 高是 1cm,它的侧面积为()97B.9 7 cm223 cm2 D . 3 2 cm2A .cm2C.239.将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶ 4.再将它们卷成两个圆锥侧面,则两圆锥体积之比为()A .3∶ 4B. 9∶ 16C. 27∶64 D .都不对10.将边长为 a 的正方形ABCD 沿对角线AC 折起,使BD =a,则三棱锥D— ABC 的体积为()a3a33a32a3A .B.C. D .6121212二、填空题:11.螺母是由 _________和两个简单几何体组成的.12.一个长方体的长、宽、高之比为2:1: 3,全面积为 88cm2,则它的体积为 ___________ .13.如图,将边长为 a 的正方形剪去暗影部分后,围成一个正三棱锥,则正三棱锥的体积是.14.空间四边形、 、 G 、H 分别是ABCD 中, E F、 BC 、CD 、DA 的中点 .①若 AC=BD ,AB则四边形 EFGH 是;②若 ACBD , 则四边形 EFGH 是.三、解答题: 解答应写出文字说明、证明过程或演算步骤 (共 76 分 ).15.( 12 分)将以下几何体按构造分类填空①集装箱;②油罐;③排球;④羽毛球;⑤橄榄球;⑥氢原子;⑦魔方;⑧金字塔;⑨三棱镜;⑩滤纸卷成的漏斗;○11量筒;○ 量杯;○ 十字架.1213( 1)拥有棱柱构造特点的有 ;( 2)拥有棱锥构造特点的有 ;( 3)拥有圆柱构造特点的有 ;( 4)拥有圆锥构造特点的有 ;( 5)拥有棱台构造特点的有 ;( 6)拥有圆台构造特点的有 ;( 7)拥有球构造特点的有;( 8)是简单会合体的有;( 9)其余的有.16.( 12 分)已知: a,b ,a b A, P b, PQ // a.求证: PQ ..17.( 12 分)正四棱台的侧棱长为 3cm ,两底面边长分别为 1cm 和 5cm ,求体积.18.( 12 分)直平行六面体的底面是菱形,两个对角面面积分别为 Q 1, Q 2 ,求直平行六面体的侧面积.19.(14 分)已知四棱台上,下底面对应边分别是a,b,试求此中截面把此棱台侧面分红的两部分面积之比.20.( 14 分)如图,直三棱柱 ABC— A1B1C1中, AC = BC =1,∠ ACB = 90°, AA1= 2 ,D是 A1B1中点.(1)求证 C1 D ⊥平面 A1B ;( 2)当点 F 在 BB1上什么地点时,会使得 AB1⊥平面C1DF ?并证明你的结论.参照答案(五)一、 CBCDA ACADD .二、 11.正六棱柱,圆柱; 12.48cm 31313) 13a2; 14.菱形,矩形 .;.(212三、 15.⑴①⑦⑨;⑵⑧;⑶⑾;⑷⑩;⑸⒁;⑹⑿⒃;⑺③⑥⒂;⑻②④⒀;⑼⑤. 16.此题主要考察用平面公义和推论证明共面问题的方法.证明∵ PQ∥ a,∴PQ 与 a 确立一个平面,直线 a,点P.p b,b,p又 a与重合PQ17.解:正四棱台ABCD A1 B1C1 D1O1 , O是两底面的中心A1 C1 2 ,AC 5 2A1O12AO 5 2 222O1O 3 252212211 1 [125212 52]1[1 25 5]31( cm 3 )Vh[ S SSS ]333318.解:设底面边长为 a , 侧棱长为 l , 两对角线分别为c , d.c lQ 1 (1)则d l Q 2 (2)1 21 2c22da (3)2消去 c , d 由( 1)得 cQ 1,由( 2)得 dQ 2, 代入( 3)得ll221 Q 1 1 Q 2a 2Q 1 2 Q 2 2 4l 2a 22laQ 12Q 2 22 l 2 lS 侧 4al2 Q 1 2 Q 2219.解:设 A 1B 1C 1D 1 是棱台 ABCD -A 2B 2C 2D 2 的中截面,延伸各侧棱交于P 点.2 21 1a b∵ BC ∥B 11 S ∵ BC=a ,B C =b ∴ B C =C ∴2S(a b)2∴ S PB 1 C 14a2S PBCPBCa 2 PB 1C 1a b 2 ()2同理SPB 2 C 2b 2SPBCSB 1C 1CBSPB 1C 1SPBCa2∴S B C C BSPB C2SPB C2 2 1 121 1(a b) 24a2122ab2(b3a)(b a) b 3ab3ab 2 (ab) 23b 2 2ab a 2(3b a)(b a)3b aa 24a 2同理:SABB 1 A 1S DCC 1 D 1SADD 1 A 1b 3a SA 1B 1 B 2 A 1SD 1 C 1C 2 D 2SA 1D 1D 2 A 13b a由等比定理,得S 上棱台侧= 3a bS 下棱台侧a 3b20.( 1)证明:如图 ,∵ABC — A 1B 1C 1 是直三棱柱,∴ A 1C 1 = B 1C 1 = 1,且∠ A 1C 1B 1 =90°.又D 是B 的中点 ,∴CD ⊥ A B 1.A 1 111∵ AA 1 ⊥ 平面 A 1B 1C 1 , C 1D 平面 A 1B 1C 1 ,∴ AA 1 ⊥ C 1D ,∴ C 1D ⊥ 平面 AA 1B 1B .(2)解:作DE ⊥ AB 1 交 AB 1 于 E , 延伸 DE 交 BB 1 于 F , 连接 C 1F , 则 AB 1 ⊥ 平面 C 1DF , 点 F 即为所求.事实上,∵C1D ⊥平面 AA1BB , AB1平面 AA1B1B ,∴C1D ⊥AB1.又 AB1⊥DF , DF C1D = D ,∴AB 1⊥ 平面C1DF .。

人教版高一数学必修2第一章《空间几何体》专题检测(含答案)

人教版高一数学必修2第一章《空间几何体》专题检测(含答案)

人教版高一数学必修2第一章《空间几何体》专题检测(含答案)1.在三棱锥P ABC -中, 2,1PA PB AC BC AB PC ======,则三棱锥P ABC -的外接球的表面积为( ) A. 43π B. 4π C. 12π D. 523π 2.直三棱柱111ABC A B C I 的各顶点都在同一球面上,若,则此球的表面积等于( )A. B. 20π C. 10π D. 3.某几何体的三视图如图所示,则此几何体的体积为( )A.23 B. 1 C. 43 D. 834.已知正四棱锥P ABCD -的顶点均在球O 上,且该正四棱锥的各个棱长均为2,则球O 的表面积为A. 4πB. 6πC. 8πD. 16π 5.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是A. 4cm 3B. 5 cm 3C. 6 cm 3D. 7 cm 36.如图,网格纸上正方形小格的边长为1,粗线画出的是某几何体的三视图,则该几何体的最长棱的长度为( )A. B. C. 8 D. 97.我国古代数学名著《孙子算经》中有如下问题:“今有筑城,上广二丈,下广五丈四尺,高三丈八尺,长五千五百五十尺,秋程人功三百尺.问:须工几何?”意思是:“现要筑造底面为等腰梯形的直棱柱的城墙,其中底面等腰梯形的上底为2丈、下底为5.4丈、高为3.8丈,直棱柱的侧棱长为5550尺.如果一个秋天工期的单个人可以筑出300立方尺,问:一个秋天工期需要多少个人才能筑起这个城墙?”(注:一丈等于十尺)A. 24642B. 26011C. 52022D. 780338.已知某几何体是两个正四棱锥的组合体,其三视图如下图所示,则该几何体外接球的表面积为( )A. 2πB.C. 4πD. 8π9.在空间直角坐标系O xyz -中,四面体ABCD 的顶点坐标分别是()0,0,2A , ()2,2,0B , ()1,2,1C , ()2,2,2D .则该四面体的体积V =( )A.13 B. 43 C. 23 D. 3二、填空题10.在平行六面体1111ABCD A B C D - 中, 4AB = , 3AD = , 15A A = , 90BAD ∠=︒ , 1160A AB A AD ∠=∠=︒ ,则1AC = __________.11.Rt ABC ∆中, 30A =︒,斜边4cm AC =,将边BC 绕边AB 所在直线旋转一周,所形成的几何体的表面积为_____________2cm .12.在边长为2的菱形ABCD 中, BD =ABCD 沿对角线AC 对折,使BD =得三棱锥A BCD -的内切球的半径为______________.13.如图,在三棱锥P ABC -中, PC ⊥平面ABC , AC CB ⊥,已知2AC =, PB =PA AB +最大时,三棱锥P ABC -的体积为__________.14.如图,在直三棱柱111ABC A B C -中, 90BAC ∠=, 2AB AC ==,点M 为11A C 的中点,点N 为1AB 上一动点.(1)是否存在一点N ,使得线段//MN 平面11BB C C ?若存在,指出点N 的位置,若不存在,请说明理由.(2)若点N 为1AB 的中点且CM MN ⊥,求三棱锥M NAC -的体积.15.已知边长为2的正方形ABCD 与菱形ABEF 所在平面互相垂直, M 为BC 中点.(1)求证: EMP 平面ADF ;(2)若60ABE ∠=,求四面体M ACE -的体积.16.如图,四棱锥P ABCD -的底面ABCD 是直角梯形, //AD BC , 36AD BC ==, PB =点M 在线段AD 上,且4MD =, AD AB ⊥, PA ⊥平面ABCD .(1)求证:平面PCM ⊥平面PAD ;(2)当四棱锥P ABCD -体积最大时,求四棱锥P ABCD -的表面积.17.如图,正方形ABCD 中, AB = AC 与BD 交于O 点,现将ACD 沿AC 折起得到三棱锥D ABC -, M , N 分别是OD , OB 的中点.(1)求证: AC MN ⊥;(2)若三棱锥D ABC -的最大体积为0V ,当三棱锥D ABC -0,且DOB ∠为锐角时,求三棱锥D MNC -的体积.参考答案1.D 2.B 3.C 4.C 5.A 6.D 7.B 8.D 9.C10 11.12π 12 13.414.【解析】(1)存在点N ,且N 为1AB 的中点.证明如下:如图,连接1A B , 1BC ,点M , N 分别为11A C , 1A B 的中点,所以MN 为11A BC ∆的一条中位线, //MN BC ,MN ⊄平面11BB C C , 1BC ⊂平面11BB C C ,所以//MN 平面11BB C C .(2)如图,设点D , E 分别为AB , 1AA 的中点,连接CD , DN , NE ,并设1AA a =,则221CM a =+,22414a MN +=+ 284a +=, 2254a CN =+ 2204a +=,由CM N ⊥M ,得222CM MN CN +=,解得a =又易得NE ⊥平面11AAC C , 1NE =,M NAC N AMC V V --= 111332AMC S NE ∆=⋅=⨯ 21⨯=所以三棱锥M NAC -的体积为3.15. (1)∵四边形ABCD 是正方形,∴BC ∥AD .∵BC ⊄平面ADF ,AD ⊂平面ADF ,∴BC ∥平面ADF .∵四边形ABEF 是菱形,∴BE ∥AF .∵BE ⊄平面ADF ,AF ⊂平面ADF ,∴BE ∥平面ADF .∵BC ∥平面ADF ,BE ∥平面ADF ,BC ∩BE=B ,∴平面BCE ∥平面ADF .∵EM ⊂平面BCE ,∴EM ∥平面ADF .(2)取AB 中点P ,连结PE .∵在菱形ABEF 中,∠ABE=60°,∴△AEB 为正三角形,∴EP ⊥AB .∵AB=2,∴EP∵平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF=AB ,∴EP ⊥平面ABCD , ∴EP 为四面体E ﹣ACM 的高.∴.16.【解析】(1)由6,4AD DM ==可得2AM =, 易得四边形ABCM 是矩形,∴CM AD ⊥,又PA ⊥平面ABCD , CM ⊂平面ABCD ,∴PA CM ⊥,又PM AD M ⋂=, ,PM AD ⊂平面PAD ,∴CM ⊥平面PAD ,又CM ⊂平面PCM ,∴平面PCM ⊥平面PAD(2)四棱锥P ABCD -的体积为()1132V AD BC =⋅⋅+⋅ 43AB PA AB PA ⋅=⋅⋅, 要使四棱锥P ABCD -的体积取最大值,只需AB PA ⋅取得最大值. 由条件可得22272PA AB PB +==,∴722PA AB ≥⋅,即36PA AB ⋅≤,当且仅当6PA AB ==时, PA AB ⋅取得最大值36.PC =, PD =, CD =,cos CPD ∠= 2222PC PD CD PC PD +-=⋅⋅,则sin CPD ∠=∴1sin 2PCD S PC PD CPD ∆=⋅⋅⋅∠= 则四棱锥P ABCD -的表面积为 ()1162666222⎛⎫⋅+⋅+⋅⋅⋅+ ⎪⎝⎭ (126102⋅⋅=.17.(1)依题意易知OM AC ⊥, ON AC ⊥, OM ON O ⋂=,∴AC ⊥平面OMN ,又∵MN ⊂平面OMN ,∴AC MN ⊥.(2)当体积最大时三棱锥D ABC -的高为DO ,当体积为02时,高为2DO ,OBD 中, OB OD =,作DS OB ⊥于S ,∴DS =,∴60DOB ∠=︒, ∴OBD 为等边三角形,∴S 与N 重合,即DN ⊥平面ABC , 易知D MNC C DMN V V --=.∵CO ⊥平面DOB ,∴2h CO ==,∴1111222DMN ODN S S ==⨯⨯=,∴1123346D MNC C DMN DMN V V S CO --==⋅=⨯⨯=。

人教版高中数学必修2第一章-空间几何体练习题及答案(全)

人教版高中数学必修2第一章-空间几何体练习题及答案(全)

人教版高中数学必修2第一章-空间几何体练习题及答案(全)第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。

8、一个棱柱有10个顶点,所有侧棱长的和为60,则每条侧棱长为————————————9、把等腰三角形绕底边上的高旋转1800,所得的几何体是——————10、水平放置的正方体分别用“前面、后面、上面、下面、左面、右面”表示。

图中是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。

则“祝”“你”“前”分别表示正方体的—————祝你前程似锦一、选择题1、两条相交直线的平行投影是()A 两条相交直线B 一条直线C 一条折线D 两条相交直线或一条直线2、如图中甲、乙、丙所示,下面是三个几何体的三视图,相应的标号是()①长方体②圆锥③三棱锥④圆柱A ②①③B ①②③C ③②④D ④③②。

高中数学必修2第一章空间几何体试题(含答案)

高中数学必修2第一章空间几何体试题(含答案)

高一数学必修2第一章测试题班别姓名考号得分一、选择题:(每小题5分,共50分)1. 下图中的几何体是由哪个平面图形旋转得到的()A B C D2.若一个几何体的三视图都是等腰三角形,则这个几何体可能是()A.圆锥B.正四棱锥C.正三棱锥D.正三棱台3.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2=()A. 1:3B. 1:1C. 2:1D. 3:14.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为()A.1:2:3B.1:3:5C.1:2:4D.1:3:95.棱长都是1的三棱锥的表面积为()A. 3B. 32 C. 33 D. 346.如果两个球的体积之比为8:27,那么两个球的表面积之比为()A.8:27B. 2:3C.4:9D. 2:97.有一个几何体的三视图及其尺寸如下(单位cm),则该几何体的表面积及体积为:()俯视图主视图侧视图A.24πcm2,12πcm3B.15πcm2,12πcm3C.24πcm2,36πcm3D.以上都不正确8.下列几种说法正确的个数是()①相等的角在直观图中对应的角仍然相等②相等的线段在直观图中对应的线段仍然相等③平行的线段在直观图中对应的线段仍然平行④线段的中点在直观图中仍然是线段的中点A.1 B.2 C.3 D.49.正方体的内切球和外接球的半径之比为()10.将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶4. 再将它们卷成两个圆锥侧面,则两圆锥的高之比为( ) A .3∶4 B .9∶16 C .27∶64 D .都不对二、填空题:(每小题6分,共30分)11.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱。

12.图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图(2)中的三视图表示的实物为_____________。

高中数学人教A版必修二第一章《空间几何体》单元试卷(含解析)

因此V Sh (1 2 1) 2 1,选 C. 2
4.答案:A 解析:依据斜二测画法的原则可得,
BC=BC=2 , OA 2 3 3 , 2
∴AB=AC=2,故△ 解析:设圆柱的底面半径为 r,母线长为 l,依题意得 l=2r,而 S 侧=2πrl,S 全=2πr2+ 2πrl, ∴S 侧∶S 全=2πrl∶(2πr2+2πrl)=2∶3,故选 B. 6.答案:D 解析:正方体的三视图都是正方形,所以①不符合题意,排除 A、B、C. 7.答案:C
3
,那么原△ABC 是一个( ).
2
A.等边三角形
B.直角三角形
C.三边中有两边相等的等腰三角形
D.三边互不相等的三角形
5.轴截面为正方形的圆柱的侧面积与全面积的比是( ).
A.1∶2
B.2∶3
C.1∶3
D.1∶4
6.下列几何体各自的三视图中,有且仅有两个视图相同的是( ).
A.①② C.①④
第一章空间几何体单元检测
(时间:120 分钟,满分:150 分)
一、选择题(本大题共 12 个小题,每小题 5 分,共计 60 分)
1.过棱柱不相邻两条侧棱的截面是( ).
A.矩形
B.正方形
C.梯形
D.平行四边形
2.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正视图、
俯视图如右图;②存在四棱柱,其正视图、俯视图如右图;③存在圆柱,其正视图、俯视
则 S1=2π×4×2=16π,S2=π×4×5=20π, 故此旋转体的表面积为 S=S1+S2=36π.
19.解:由题意可知正三棱柱的高为 2,底面三角形的高为 2 3 ,设底面三角形的边长
为 a,则 3 a 2 3 , 2

2019-2020年高中数学必修二第一章《空间几何体》整章测试卷及答案解析

第 1 页 共 10 页 2019-2020年高中数学必修二
第一章《空间几何体》整章测试卷
第Ⅰ卷(选择题,共60分)
一、选择题(本大题共12小题,每题5分,共60分)
1.下列说法不正确的是( )
A .圆柱的侧面展开图是一个矩形
B .圆锥的过轴的截面是一个等腰三角形
C .直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥
D .圆台平行于底面的截面是圆面
答案 C
2.如图所示的直观图的原平面图形是(
)
A .任意三角形
B .直角梯形
C .任意四边形
D .平行四边形
答案 B
3.三视图如图所示的几何体是(
)
A .三棱锥
B .四棱锥
C .四棱台
D .三棱台
答案 B
4.下图中的图形经过折叠不能围成棱柱的是(
)
答案 D。

(人教a版)数学高一必修二:第一章《空间几何体》单元试卷(1)(word版,含解析)

(人教a 版)数学高一必修二:第一章《空间几何体》单元试卷(时间90分钟,满分100分)知识点分布表1.下列说法中正确的是(A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有几何体的表面都能展成平面图形D.棱柱的各条棱都相等 2.下列命题正确的是(A.线段的平行投影可能是一点B.圆的平行投影是圆C.圆柱的平行投影是圆D.圆锥的平行投影是等腰三角形3.若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是(A.21 B.41 C.1 D.12939 4.圆锥的高扩大到原来的2倍,底面半径缩短到原来的21,则圆锥体积(A.缩小到原来的一半B.扩大到原来的两倍C.不变D.缩小到原来的61 5.如图所示,水平放置的圆柱形物体的三视图是(6.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为1,6,3,且四面体的四个顶点在一个球面上,则这个球的表面积为(A.16πB.32πC.36πD.64π7.如图所示,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图(斜二测),若A 1D 1∥O 1y 1,A 1B =∥C 1D 1,2321111==D C B A ,A 1D 1=1,则四边形ABCD 的面积是(A.10C.25D.2108.如图,在一个侧置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的一条侧棱和高作截面,正确的截面图形是(9.如图所示,三视图的几何体是(A.六棱台B.六棱柱C.六棱锥D.六边形10.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )A.3cm 34000B.3cm 38000C.2 000 cm 3D.4 000 cm 3二、填空题(本大题共4小题,每小题4分,共16分)11.圆锥的轴截面是一个正三角形,则它的侧面积是底面积的_____________倍. 12.如图是一个空间几何体的三视图,则该几何体为___________.13.设矩形边长分别为a ,b (a >b ).将其按两种方式卷成高为a 和b 的圆柱筒,以其为侧面的圆柱的体积分别为V a 和V b ,则V a____________V b14.正方体的表面积是a 2,它的顶点都在球面上,则这个球的表面积是__________. 三、解答题(本大题共4小题,共44分15.(10分)已知圆台外切于球,圆台的侧面积和球面积之比为4∶3,求圆台的体积和球的体积比. 16.(10分)如图所示,已知几何体的三视图,用斜二测画法画出它的直观图17.(12分)根据下图所给出的一个物体的三视图,求出该物体的体积和表面积18.(12分)一个圆锥形容器和一个圆柱形容器的轴截面如图所示,两容器内所盛液体的体积正好相等,且液面高度h 也相等,用a 将h 表示出来参考答案1解析:由棱柱的特点,知侧面均为平行四边形,但底面可为三角形;其所有棱长不一定相等,但侧棱相等,所以A 、D 均错.又知球的表面不能展成平面图形,所以C 错答案:B 2答案:A3解析:由题意设上、下底面半径分别为r 、4r ,截面半径为x ,圆台的高为2h ,则有213=-r r x ,∴r x 25=∴12939)164(31)(312222=++++=r rx x h x rx r h V V ππ下上. 答案:D 4解析:原变原V h r V h r V 212)2(31,3122=⋅⋅=⋅=ππ. 答案:A5解析:水平放置的圆柱的正视图和俯视图都是矩形,侧视图为圆形答案:A6解析:将四面体补形为长方体,此长方体的对角线即为球的直径, ∴(2r )2=1+6+9=16,则S 球=4πr 2=π(2r )2=16π.答案:A 7答案:B 8答案:B9解析:由俯视图可知,底面为六边形,又由正视图和侧视图知,该几何体为六棱锥. 答案:C10解析:由三视图可得几何体如下图所示,面EBC ⊥面ABCD ,四边形ABCD 为边长是20的正方形,棱锥高为∴)cm (3800020203132=⨯⨯=V . 答案:B11解析:由题意可知l =2r∴222221221r r r l r S πππ=⋅⋅⋅=⋅⋅⋅=侧S 底=πr 2∴2222==rr S S ππ底侧. 答案:2 12答案:六棱台13解析:πππ4)2(22ab a b V a =⋅=,πππ4)2(22b a b a V b =⋅=又∵a >b ,∴V a <V b .答案:<14解析:设正方体的边长为b ,则R b 23=,2223)23(44b b R S πππ=⋅==球又a 2=6b 2,∴22a S π=球.答案:22a π 15解:设球的半径为r ,圆台的上、下底面圆的半径分别为r 1、r 2连结OD ,OC ,OG ,则OD ⊥O∴r 2=DG ·GC =DE ·CF =r 1·r2S 圆台侧∶S 球=[π(r 1+r 2)·DC ]∶4πr 2=4∶又∵DC =r 1+r2∴(r 1+r 2)2∶4r 2=4∶∴(r 12+r 22+2r 1·r 2)∶4r 2=4∶∴22221310r r r =+∴222212132)(31r rr r r r V V ππππ⋅++=球圈台 613231022222222121=+=++=r r r r r r r r . 16分析:由几何体的三视图知道,这个几何体是一个简单组合体,它的下部是一个圆台,上部是一个圆锥,并且圆锥的底面与圆台的上底面重合,我们可以先画出下部的圆台,再画出上部的圆锥. 画法:(1)画轴.如图(1),画x 轴、y 轴、z 轴,使∠xOy =45°,∠xOz =90°.(2)画圆台的两底面.利用斜二测画法,画出底面⊙O ,在z 轴上截取OO′,使OO′等于三视图中的相应高度过O′作Ox 的平行线O′x′,Oy 的平行线O′y′,利用O′x′与O′y′画出上底面⊙O′(与画⊙O一样(3)画圆锥的顶点.在Oz 上截取点P ,使PO′等于三视图中的相应高度(4)成图.连结P A′、PB′、A′A 、B′B ,整理得到三视图表示的几何体的直观图,如图17解:根据三视图可知原立体图形为长方体,由三视图中的数据,还原出原长方体如下图体积V =4×5×3=表面积S =2(4×5+3×4+3×5)=94. 18解:32hh V ⋅=π圆锥液,haV ⋅⋅=2)2(π圆柱液由已知得h a h 23)2(3ππ=,∴a h 23=.。

高中数学《空间几何体》单元测试


A.两条平行直线
B.一点和一条直线 C.两条相交直线
3.如图所示的几何体是由下面哪一个平面图形旋转而形成的
D.棱柱 D.两个点
第1页共8页
A.
B.
C.
D.
4.如图,△A'B'C'是△ABC 的直观图,其中 A'B'=A'C',A'B'∥x' 轴,A'C'∥y' 轴,那么△ABC 是
A.等腰三角形
B.钝角三角形
22.(本小题满分 12 分) 一个棱长为 6cm 的密封正方体盒子中放一个半径为 1cm 的小球,无论怎样摇动盒子,求小 球在盒子不能到达的空间的体积.
第5页共8页
数学必修 2 第一章《 空间几何体》测试答案
第6页共8页
第7页共8页
第8页共8页
A.1
B.2
C.3
D.4
11.已知 ABCD 是直角梯形,AD∥BC,AB⊥BC,且 AD=2,BC=4,AB=2.按照斜二测画法作
出它的直观图 A'B'C'D',则直观图 A'B'C'D'的面积为
A. 3
B.2 2
C. 3 2 4
12.一个几何体的三视图如图所示,则几何体的体积是
D. 3 2 2
4
意两点的连线段;③用一个平面截一个球面,得到的是一个圆;④球常用表示球心的字母表 示.其中说法正确的是_________. 15.一个圆柱侧面展开是正方形,它的高与底面直径的比值是_________. 16.底面是直角三角形的直棱柱的三视图如图,网格中的每个小正方形的边长为 1,则该棱柱 的表面积是_________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修2第一章空间几何体高中数学组卷
必修2第一章空间几何体高中数学组卷一.选择题(共30小题)
C
2.(2013•四川)一个几何体的三视图如图所示,则该几何体的直观图可以是()
.C D.
4.(2013•山东)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()
C D
5.(2013•湖南)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则.D.
6.(2013•湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是
7.(2013•广东)某四棱台的三视图如图所示,则该四棱台的体积是(

C
D
8.(2012•陕西)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为 ( )

C
D .
10.(
2012•湖南)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是( )

C
D .
. π π

C
D .
14.(2011•浙江)几何体的三视图如图所示,则这个几何体的直观图可以是( )

C
D .
15.(2011•山东)如图是长和宽分别相等的两个矩形.给定下列三个命题: ①存在三棱柱,其正(主)视图、俯视图如图; ②存在四棱柱,其正(主)视图、俯视图如图; ③存在圆柱,其正(主)视图、俯视图如图. 其中真命题的个数是 ( )
16.(2011•辽宁)已知球的直径SC=4,A ,B 是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则棱锥S ﹣ABC
D 17.(2011•江西)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图( )

C
D .
18.(2011•广东)正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五
19.(2010•上海)如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的正视图是( )

C
D .
20.(2010•辽宁)有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成),
,)21.(2010•广东)如图,A 1B 1C 1为正三角形,与平面不平行,且CC 1>BB 1>AA 1,则多面体的正视图(也称主视图)是( )

C
D .
22.(2010•广东)如图,△ABC 为三角形,AA ′∥BB ′∥CC ′,CC ′⊥平面ABC 且3AA ′=BB ′=CC ′=AB ,则多面体△ABC ﹣A ′B ′C ′的正视图(也称主视图)是( )

C
D .
.C D.
24.(2010•北京)一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的
俯视图为()
.C D.
25.(2010•北京)如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上.点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,A1E=y(x,y大于零),则三棱锥P﹣EFQ的体积()
26.(2010•北京)如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上,动点P,Q分别在棱AD,CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积()
.C D.
.C D.
29.(2009•宁夏)如图,在长方体ABCD﹣A1B1C1D1中,EF∥B1C1,用平面BCFE把这个长方体分成了(1)、(2)两部分后,这两部分几何体的形状是()
30.(2011•辽宁)己知球的直径SC=4,A,B是该球球面上的两点.AB=2,∠ASC=∠BSC=45°,则棱锥S﹣ABC的
.C D.
必修2第一章空间几何体高中数学组卷
参考答案与试题解析
一.选择题(共30小题)
C
h==V=h=,﹣
2.(2013•四川)一个几何体的三视图如图所示,则该几何体的直观图可以是()
.C D.
,根据球的表面积公式算出它们的表面积之比为=,解之得,由此
∴==,解之得=
因此,这两个球的体积之比为=(
4.(2013•山东)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示该四棱锥侧面积和体积分别是()
C D
V=
5.(2013•湖南)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则.D.
的正方形,侧视图是一个面积为

6.(2013•湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是
C D.
;当正视图为对角面时,其面积最大为
皆有可能,而
7.(2013•广东)某四棱台的三视图如图所示,则该四棱台的体积是()
C D
V=.
8.(2012•陕西)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为().
C D.
10.(2012•湖南)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()
.C D.
.ππ
的距离为,
的距离为所以球的半径为:.
所以球的体积为:π
13.(2011•浙江)若某几何体的三视图如图所示,则这个几何体的直观图可以是()
.C D.
14.(2011•浙江)几何体的三视图如图所示,则这个几何体的直观图可以是()
.C D.
的正视图为
答案中侧视图为
15.(2011•山东)如图是长和宽分别相等的两个矩形.给定下列三个命题:
①存在三棱柱,其正(主)视图、俯视图如图;
②存在四棱柱,其正(主)视图、俯视图如图;
③存在圆柱,其正(主)视图、俯视图如图.
其中真命题的个数是()
16.(2011•辽宁)已知球的直径SC=4,A,B是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则棱锥S﹣ABC
D
SA=2
SB=2
SD==
==
V=AB
SD=CD=)=(+
=
S=SDC=
V==
17.(2011•江西)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图()
.C D.
18.(2011•广东)正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五
19.(2010•上海)如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的正视图是()
.C D.
20.(2010•辽宁)有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成),,)
,则有
2

21.(2010•广东)如图,A1B1C1为正三角形,与平面不平行,且CC1>BB1>AA1,则多面体的正视图(也称主视图)是()
.C D.
22.(2010•广东)如图,△ABC为三角形,AA′∥BB′∥CC′,CC′⊥平面ABC 且3AA′=BB′=CC′=AB,则多面体△ABC
﹣A′B′C′的正视图(也称主视图)是()
.C D.
BB
BB
.C D.
的余弦值等于
24.(2010•北京)一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的
俯视图为()
.C D.
25.(2010•北京)如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上.点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,A1E=y(x,y大于零),则三棱锥P﹣EFQ的体积()
26.(2010•北京)如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上,动点P,Q分别在棱AD,CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积()
面积的,
.C D.
,则底面半径为.
h=

.C D.
,高为的四棱锥,求出棱锥的体积,
,高为
××=
29.(2009•宁夏)如图,在长方体ABCD﹣A1B1C1D1中,EF∥B1C1,用平面BCFE把这个长方体分成了(1)、(2)两部分后,这两部分几何体的形状是()
30.(2011•辽宁)己知球的直径SC=4,A,B是该球球面上的两点.AB=2,∠ASC=∠BSC=45°,则棱锥S﹣ABC的.C D.
,∠
垂直,则
=。

相关文档
最新文档