物理模型在圆周运动中的应用
物理圆周运动8种模型

物理圆周运动8种模型
1、天体绕行模型。
2、汽车过桥模型。
3、绳模型。
4、杆模型。
5、火车转弯模型。
6、圆锥摆模型。
7、飞车走壁模型。
8、物块随圆盘一起转动模型。
其中杆模型也就是物体在竖直平面内做圆周运动,有支撑,如:小球和杆相连、小球在弯管内运动。
例题如下:
一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直面内做半径为R的圆周运动,则下列说法正确的是(A)
A、小球过最高点时,杆所受到的弹力可以等于零。
B、小球过最高点的最小速度是√gR。
C、小球过最高点时,杆对球的作用力一定随速度增大而增大。
D、小球过最高点时,杆对球的作用力一定随速度增大而减小。
解析:
轻杆可对小球产生向上的支持力,小球经过最高点的速度可以为零,
当小球过最高点的速度v=√gR时,杆所受的弹力等于零,A正确,B错误;若v<√gR,则杆在最高点对小球的弹力竖直向上,mg-F=mv2/R,随v增大,F减小,若v>√gR,则杆在最高点对小球的弹力竖直向下,
mg+F=mv2/R,随v增大,F增大,故C、D均错误。
杆模型的运动规律:
1、小球在最高点的速度v可以等于零。
2、当小球的速度v=√gR,杆对小球的支持力为零,小球只受重力。
3、当小球的速度v<√gR时,杆对小球有支持力。
4、当小球的速度v>√gR时,杆对小球有拉力。
圆周运动模型中临界问题和功与能(学生版)--2024年高考物理二轮热点模型

圆周运动模型中临界问题和功与能目录1.圆周运动的三种临界情况2.常见的圆周运动及临界条件3.竖直面内圆周运动常见问题与二级结论1.圆周运动的三种临界情况(1)接触面滑动临界:F f=F max。
(2)接触面分离临界:F N=0。
(3)绳恰好绷紧:F T=0;绳恰好断裂:F T达到绳子可承受的最大拉力。
2.常见的圆周运动及临界条件(1)水平面内的圆周运动水平面内动力学方程临界情况示例水平转盘上的物体F f=mω2r恰好发生滑动圆锥摆模型mg tanθ=mrω2恰好离开接触面(2)竖直面及倾斜面内的圆周运动轻绳模型最高点:F T+mg=m v2r恰好通过最高点,绳的拉力恰好为0轻杆模型最高点:mg±F=m v2r恰好通过最高点,杆对小球的力等于小球的重力带电小球在叠加场中的圆周运动等效法关注六个位置的动力学方程,最高点、最低点、等效最高点、等效最低点,最左边和最右边位置恰好通过等效最高点,恰好做完整的圆周运动倾斜转盘上的物体最高点:mg sin θ±F f =mω2r 最低点F f -mg sin θ=mω2r恰好通过最低点3.竖直面内圆周运动常见问题与二级结论【问题1】一个小球沿一竖直放置的光滑圆轨道内侧做完整的圆周运动,轨道的最高点记为A 和最低点记为C ,与原点等高的位置记为B 。
圆周的半径为R要使小球做完整的圆周运动,当在最高点A 的向心力恰好等于重力时,由mg =m v 2R可得v =gR ①对应C 点的速度有机械能守恒mg2R =12mv 2C −12mv 2A 得v C =5gR ②当小球在C 点时给小球一个水平向左的速度若小球恰能到达与O 点等高的D 位置则由机械能守恒mgR =12mv 2c 得v c =2gR ③小结:(1).当v c >5gR 时小球能通过最高点A 小球在A 点受轨道向内的支持力由牛顿第二定律F A +mg =m v 2A R④(2).当v c =5gR 时小球恰能通过最高点A 小球在A 点受轨道的支持力为0由牛顿第二定律mg =m v 2A R。
物理圆周运动圆锥模型结论-概述说明以及解释

物理圆周运动圆锥模型结论-概述说明以及解释1.引言1.1 概述物理圆周运动是指物体在一个平面上绕着一个固定点做连续运动的现象。
它是物理学中一个重要的研究领域,涉及到许多重要的概念和定律,对于我们理解物体运动的规律和性质具有重要意义。
物理圆周运动的特点可以表述为以下几个方面:首先,物理圆周运动的轨迹呈圆形或近似为圆形,这是因为物体在运动时受到一个向心的力作用,导致其运动轨迹局限在一个固定的半径范围内。
其次,物理圆周运动的速度大小是不断变化的,但方向始终垂直于圆的切线方向,并指向圆心。
这是因为物体受到向心力的作用,导致其方向不断改变,但始终指向圆心。
另外,物理圆周运动的加速度大小也是不断变化的,但方向始终指向圆心。
加速度的大小取决于物体的质量和向心力的大小,而方向始终指向圆心是由于向心力始终朝向圆心。
圆锥模型是一种常用的物理模型,它可以有效地解释物理圆周运动的性质和规律。
圆锥模型假设物体在圆周运动过程中,其运动轨迹可以看作是一个圆锥的侧面。
这个模型可以帮助我们更好地理解物体在圆周运动中的加速度变化和速度方向的变化。
本文将重点介绍物理圆周运动的定义、特点以及圆锥模型在解释物理圆周运动中的应用。
同时,我们还将总结物理圆周运动的特点,评价圆锥模型在解释物理圆周运动中的有效性,并展望物理圆周运动研究的未来。
通过对物理圆周运动和圆锥模型的深入探讨,我们可以更好地理解和应用这一重要的物理现象,为相关领域的研究提供有价值的参考。
1.2文章结构文章结构部分的内容可以包括以下内容:文章结构部分主要介绍整篇文章的组织架构和内容安排,为读者提供一个清晰的脉络,帮助读者更好地理解和把握文章的主旨。
首先,本文将分为三个主要部分:引言、正文和结论。
引言部分主要对本文的主题进行概述,介绍物理圆周运动圆锥模型的研究背景和重要性。
同时,引言还会介绍本文的结构和目的,为读者提供一个对全文内容的预期和概览。
接下来是正文部分,分为三个小节。
山东省实验高中2020人教版物理第二章匀速圆周运动3圆周运动的实例分析55

得F1=16 N
(2)v=4 m/s>v0,杆对小球有拉力 由牛顿第二定律:mg+F2=vm2
L
得:F2=44 N
答案:(1)16 N,支持力 (2)44 N,拉力
【定向训练】 1.(多选)(2019·江苏高考)如图所示,摩天 轮悬挂的座舱在竖直平面内做匀速圆周运 动。座舱的质量为m,运动半径为R,角速度 大小为ω,重力加速度为g,则座舱 ( )
为零,则此时重物对电动机向上的作用力大小等于电动
机的重力,即F1=Mg。 根据牛顿第三定律,此时电动机对重物的作用力向下,大
小为:F′1=F1=Mg
①
对重物:F′1+mg=mω2R ②
由①②得ω= m M③g
mR
(2)当重物转到最低点时,电动机对地面的压力最大,对 重物有:F2-mg=mω2R ④ 对电动机,设它所受支持力为FN,FN=F′2+Mg,F′2=F2
(1)当v=1 m/s时。 (2)当v=4 m/s时。
【审题关键】
序号 ①
②
信息提取 杆的弹力可以向上也可以向下
小球的重力和杆的弹力的合力指向圆 心的分量提供向心力
【解析】杆对小球没有作用力时
v0= gL m5/s≈2.24 m/s (1)v=1 m/s<v0,杆对小球有支持力, 由牛顿第二定律:mg-F1=mv2
二 竖直面内的圆周运动 任务1 轻绳模型中物体在最高点时受力的特点
【思考·讨论】 水流星是一项中国传统民间杂技艺术,杂技演员用一根 绳子兜着两个碗,里面倒上水,迅速地旋转着做各种精 彩表演,即使碗底朝上,碗里的水也不会洒出来。这是 为什么? (模型建构)
提示:当碗底朝上时,水的重力全部用来提供做圆周运 动所需要的向心力。
高中物理重要方法典型模型突破11-模型专题(3) -竖直平面内圆周运动 (解析版)

专题十一模型专题(3)竖直面上的圆周运动【典型模型解读】1.竖直面内匀速圆周运动:注意匀速圆周运动的条件2.竖直平面内非匀速圆周运动的两类典型模型分析轻绳模型轻杆模型实例如球与绳连接、沿内轨道运动的球等如球与杆连接、球在内壁光滑的圆管内运动等图示最高点无支撑最高点有支撑最高点受力特征重力、弹力,弹力方向指向圆心重力、弹力,弹力方向指向圆心或背离圆心受力示意图力学方程mg+F N=mrv2mg±F N=mrv2临界特征F N=0,v min=gr竖直向上的F N=mg,v=0过最高点条件v≥gr v≥0速度和弹力关系讨论分析①能过最高点时,v≥gr,F N+mg=mrv2,绳、轨道对球产生弹力F N②不能过最高点时,v<gr,在到达最高点前小球已经脱离了圆轨道做斜抛运动①当v=0时,F N=mg,F N为支持力,沿半径背离圆心②当0<v<gr时,-F N+mg=mrv2,F N背离圆心,随v的增大而减小③当v=gr时,F N=0④当v>gr时,F N+mg=mrv2,F N指向圆心并随v的增大而增大【典例讲练突破】【例1】(2019高考江苏卷物理6)如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m,运动半径为R,角速度大小为ω,重力加速度为g,则座舱()A.运动周期为2πRω B.线速度的大小为ωRC.受摩天轮作用力的大小始终为mgD.所受合力的大小始终为m ω2R【解析】由于座舱做匀速圆周运动,由公式2πTω=,解得:2πT ω=,故A 错误;由圆周运动的线速度与角速度的关系可知,v R ω=,故B 正确;由于座舱做匀速圆周运动,所以座舱受到摩天轮的作用力是变力,不可能始终为mg ,故C 错误;由匀速圆周运动的合力提供向心力可得:2F m R ω=合,故D 正确。
【答案】BD【练1】在考驾驶证的科目二阶段,有一项测试叫半坡起步,这是一条类似于凸型桥面设计的坡道。
圆周运动的三种模型

圆周运动的三种模型一、圆锥摆模型:如图所示:摆球的质量为m,摆线长度为L ,摆动后摆球做圆周运动,摆线与竖直方向成θ角,对小球受力分析,正交分法解得:竖直方向:水平方向:F X=最终得F合=。
用力的合成法得F合=。
半径r=,圆周运动F向==,由F合=F向可得V=,ω=圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。
分析方法同样适用自行车,摩托车,火车转弯,飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。
共同点是由重力和弹力的合力提供向心力,向心力方向水平。
1、小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中θ(小球与半球球心连线跟竖直方向的夹角)与线速度V ,周期T 的关系。
(小球的半径远小于R)2、如图所示,用一根长为l=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T。
求(取g=10m/s2,结果可用根式表示):(1)若要小球离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω'为多大?二.轻绳模型(一)轻绳模型的特点:1. 轻绳的质量和重力不计;2. 只能产生和承受沿绳方向的拉力;(二)轻绳模型在圆周运动中的应用小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: = ,v 临界 =2. 小球能通过最高点的条件: v v 临界(此时,绳子对球产生 力)3. 不能通过最高点的条件: v v 临界 (实际上小球还没有到最高点时,就脱离了轨道)练习:质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v 的速度经过最高点时,对轨道的压力是( )A . 0 B. mg C .3mg D 5mg三.轻杆模型:(一)轻杆模型的特点:1.轻杆的质量和重力不计;2.能产生和承受各方向的拉力和压力(二)轻杆模型在圆周运动中的应用轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:1. 小球能通过最高点的最小速度v= ,此时轻杆对小球的作用力N= ( N 为 力)2. 当 =R v m 2临界( 轻杆对小球的作用力N= 0 ),gR v 临界3 当 (即0<v< v 临界)时,有 =Rv m 2( 轻杆对小球的作用力N 为 力) 4 当(即v>v 临界)时,有 =R v m 2(轻杆对小球的作用力N 为 力) 练习:半径为R=0.5m 的管状轨道,有一质量为m=3kg 的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则( )A. 外轨道受到24N 的压力B. 外轨道受到6N 的压力C. 内轨道受到24N 的压力D. 内轨道受到 6N 的压力一.轻绳模型(一)轻绳模型的特点:1. 轻绳的质量和重力不计;2. 只能产生和承受沿绳方向的拉力;(二)轻绳模型在圆周运动中的应用小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力:2. 小球能通过最高点的条件:(当时,绳子对球产生拉力)3. 不能通过最高点的条件:(实际上小球还没有到最高点时,就脱离了轨道)例:质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v的速度经过最高点时,对轨道的压力是()A . 0 B. mg C .3mg D 5mg分析:内侧轨道只能对小球产生向下的压力,其作用效果同轻绳一样,所以其本质是轻绳模型当小球经过最高点的临界速度为v ,则当小球以2v的速度经过最高点时,轨道对小球产生了一个向下的压力N ,则因为所以根据牛顿第三定律,小球对轨道压力的大小也是,故选c.1.轻杆的质量和重力不计;2.能产生和承受各方向的拉力和压力(二)轻杆模型在圆周运动中的应用轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:1. 小球能通过最高点的临界条件:v=0 ,N=mg (N为支持力)2. 当时,有(N为支持力)3 当时,有(N=0 )4 当时,有(N 为拉力)例:半径为R=0.5m 的管状轨道,有一质量为m=3kg的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则()A. 外轨道受到24N的压力B. 外轨道受到6N的压力C. 内轨道受到24N 的压力D. 内轨道受到6N的压力分析:管状轨道对小球既有支持力又有压力,所以其本质属于杆模型:当小球到最高点轨道对其作用力为零时:有则, =>2m/s所以,内轨道对小球有向上的支持力,则有代入数值得:N=6N根据牛顿第三定律,小球对内轨道有向下的压力大小也为6N ,故选D三.圆锥摆模型:圆锥摆模型在圆周运动中的应用:如图所示:摆球的质量为m,摆线长度为L ,摆动后摆线与竖直方向成θ角,则分析:摆球在水平面上做匀速圆周运动,加速度必定指向圆心,依据牛顿第二定律,对摆球受力分析,得:圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。
高考物理模型之圆周运动模型
其次章 圆周运动解题模型:一、水平方向的圆盘模型1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。
物体和转盘间最大静摩擦力是其正压力的μ倍,求: (1)当转盘的角速度ωμ12=gr时,细绳的拉力F T 1。
(2)当转盘的角速度ωμ232=gr时,细绳的拉力F T 2。
图2.01解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=gr。
(1)因为ωμω102=<gr,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即F T 10=。
(2)因为ωμω2032=>gr,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的其次定律得:F mg m r T 222+=μω,解得F mgT 22=μ。
2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。
A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度ω0为多少时,细线上起先出现张力?(2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102/)图2.02解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。
ω再增大,AB 间绳子起先受到拉力。
由F m r fm =1022ω,得:ω011111055===F m r m gm r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力与摩擦力共同来供应,A 增大的向心力靠增加拉力来供应,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力渐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。
专题09 圆周运动七大常考模型(解析版)
专题09 圆周运动七大常考模型(解析版)2020年高考物理一轮复热点题型归纳与变式演练专题09 圆周运动七大常考模型专题导航】目录题型一水平面内圆盘模型的临界问题在水平面内,圆盘绕自身的对称轴做匀速圆周运动时,当圆盘上一点的速度等于圆盘上任意一点的速度时,该点所在的半径为临界半径。
此时,圆盘上该点所受的向心力最大,达到极限值。
热点题型二竖直面内圆周运动的临界极值问题在竖直面内,圆周运动的临界问题与水平面内的类似,但由于竖直面内的向心力方向不再垂直于重力方向,因此需要通过分解向心力和重力的合力来求解临界速度和临界半径。
球-绳模型或单轨道模型球-绳模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的竖直圆周做匀速圆周运动的模型。
单轨道模型则是一个质量为m 的小球沿着一个半径为R的水平圆周滑行的模型。
这两个模型的分析方法类似,都需要通过分解合力来求解运动的参数。
球-杆模型或双轨道模型球-杆模型指的是一个质量为m的小球沿着一个质量忽略不计的细杆滚动的模型。
双轨道模型则是一个质量为m的小球沿着两个半径分别为R1和R2的圆轨道滚动的模型。
这两个模型的分析方法也类似,都需要通过分解合力来求解运动的参数。
热点题型三斜面上圆周运动的临界问题在斜面上,圆周运动的临界问题与水平面内的类似,但由于斜面的存在,需要通过分解合力来求解临界速度和临界半径。
热点题型四圆周运动的动力学问题圆周运动的动力学问题主要涉及到角加速度、角速度和角位移等参数的计算。
在这类问题中,需要利用牛顿第二定律和角动量守恒定律等物理定律来分析运动状态。
圆锥摆模型圆锥摆模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的圆锥面做匀速圆周运动的模型。
在分析这种模型时,需要考虑到向心力和重力的合力方向与竖直方向的夹角,以及圆锥面的倾角等因素。
车辆转弯模型车辆转弯模型主要涉及到车辆在转弯时所受的向心力和摩擦力等因素。
圆周运动实例1汽车过拱桥
汽车过拱桥的速度和加速度分析
速度分析
01
汽车在拱桥上行驶的速度大小和方向不断变化,导致向心力大
小和方向也随之变化。
加速度分析
02
由于向心力的作用,汽车在拱桥上行驶时会产生加速度,加速
度的大小和方向也随速度的变化而变化。
安全速度限制
03
为了确保汽车安全通过拱桥,应限制汽车的速度在安全范围内。
险。
拓展研究
通过对圆周运动实例的研究,可 以进一步探索更复杂的运动形式 和现象,推动科学技术的发展。
02
圆周运动的基本概念
角速度
角速度是指单位时间内物体转过的角 度,用希腊字母ω表示,单位是弧度/ 秒。
角速度的公式:ω=θ/t,其中θ是物体 转过的角度,t是时间。
线速度
线速度是指物体在圆周上移动的快慢程度,用符号v表示,单 位是米/秒。
汽车过拱桥是一个典型的圆周运 动问题,需要建立数学模型来描 述汽车的运动轨迹和受力情况。
定义变量和参数
需要定义汽车的质量、速度、摩 擦力、重力加速度等参数,以及 拱桥的高度、宽度、曲率半径等 参数。
建立方程
根据牛顿第二定律和向心力公式, 建立汽车过拱桥的数学方程,包 括运动方程和受力方程。
05
结论
研究成果总结
汽车在通过拱桥时,受到重力和支持力的作用,同时由于向心力的作用,汽车会沿 着圆周路径运动。
实验结果表明,汽车在过拱桥时,向心力与速度、质量和半径有关,速度越大、质 量越小、半径越小,所需的向心力越大。
实验还发现,当汽车的速度达到一定程度时,向心力会超过路面所能承受的极限, 导致汽车发生侧滑或翻滚。
重力与支持力的关系
高三物理水平面内圆周运动的两种模型专题辅导
胡勇
一、两种模型
模型Ⅰ圆台转动类
小物块放在旋转圆台上,与圆台保持相对静止,如图1所示.物块与圆台间的动摩擦因数为μ,离轴距离为R,圆台对小物块的静摩擦力(设最大静摩擦力等于摩擦力)提供小物块做圆周运动所需的向心力.水平面内,绳拉小球在圆形轨道上运动等问题均可归纳为“圆台转动类”.
例3长度为2l的细绳,两端分别固定在一根竖直棒上相距为l的A、B两点,一质量为m的光滑小圆环套在细绳上,如图6所示.则竖直棒以多大角速度匀速转动时,小圆环恰好与A点在同一水平面内?
图6
【解析】此题属于“火车拐弯类”,当小圆环做匀速圆周运动时,小圆环受到重力G、绳OB的拉力F和绳OA的拉力F的作用,如图7所示
图1
临界条件圆台转动的最大角速度ωmax= ,当ω<ωmax时,小物块与圆台保持相对静止;当ω>ωmax时,小物块脱离圆台轨道.
模型Ⅱ火车拐弯类
如图2所示,火车拐弯时,在水平面内做圆周运动,重力mg和轨道支持力N的合力F提供火车拐弯时所需的向心力.圆锥摆、汽车转弯等问题均可归纳为“火车拐弯类”.
图2
图7
隐含条件一是小圆环与棒具有相同角速度ω,隐含条件二是小圆环光滑,两侧细绳拉力大小相等,隐含条件三是小圆环做匀速圆周运动的圆心为A点、半径为r(OA).
列出圆周运动方程F+Fcosθ=mω2r
由平衡条件有Fsinθ-mg=0
其中cosθ= ,sinθ=
联立解得ω=
小试身手
1、如图8所示,质量均为m的A、B两物体用细绳悬着,跨过固定在圆盘中央光滑的定滑轮.物体A与圆盘问的动摩擦因数为μ,离圆盘中心距离R.为使物体A与圆盘保持相对静止,则圆盘角速度ω的取值范围为多少?(设最大静摩擦力等于滑动摩擦力)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理模型在圆周运动中的应用
摘要:在圆周运动中常见的物理模型有轻绳,轻杆和圆锥摆模型,正确认识每一中模型的特点,善于识别形已质同的模型,建立正确的物理模型,是分析和解决物理问题的关键。
关键词:轻绳模型;轻杆模型;圆锥摆模型
一.轻绳模型
1. 轻绳模型的特点:
○
1. 轻绳的质量和重力不计; ○
2. 可以任意弯曲,伸长形变不计,只能产生和承受沿绳方向的拉力; ○
3. 轻绳拉力的变化不需要时间,具有突变性. 2. 轻绳模型在圆周运动中的应用
小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:
○1. 临界条件:小球通过最高点,绳子对小球刚好没有 力的作用,由重力提供向心力: R
v m mg 2
= ∴gR v =临界
○2. 小球能通过最高点的条件:gR v ≥(当gR v ≥时,绳子对球产生拉力)
○
3. 不能通过最高点的条件:gR v <(实际上小球还没有到最高点时,就脱离了轨道) 例:质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以v 2的速度经过最高点时,对轨道的压力是( )
A 0
B mg
C mg 3
D mg 5
分析:内侧轨道只能对小球产生向下的压力,其作用效果同轻绳一样,所以其本质是轻绳模型
当小球经过最高点的临界速度为v ,则
gR v =
当小球以v 2的速度经过最高点时,轨道对小球产生了一个向下的压力N ,则
R
v m mg N 2
)2(=+ gR v =
∴ mg N 3=
根据牛顿第三定律,小球对轨道压力的大小也是mg 3,故选C .
二.轻杆模型:
1. 轻杆模型的特点:
○
1.轻杆的质量和重力不计; ○
2.任意方向的形变不计,只能产生和承受各方向的拉力和压力 ○
3. 轻杆拉力和压力的变化不需要时间,具有突变性. 2. 轻杆模型在圆周运动中的应用
轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:
○1. 小球能通过最高点的临界条件:0=v ,mg N =(N ○2. 当gR v <<0时,有R
v m N m g 2
=-(N 为支持力) ○3 当gR v =时,有R
v m mg 2
=(0=N ) ○4 当gR v >时,有R
v m m g N 2
=+(N 为拉力) 例:半径为m R 5.0=的管状轨道,有一质量为kg m 0.3=的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是s m /2,2g =A. 外轨道受到N 24的压力
B. 外轨道受到N 6的压力
C. 内轨道受到N 24的压力
D. 内轨道受到N 6的压力
分析:管状轨道对小球既有支持力又有压力,所以其本质属于杆模型:
当小球到最高点轨道对其作用力为零时:有R
v m mg 2
= 则,gR v ==s m /5
gR s m v <
=/2 所以,内轨道对小球有向上的支持力N ,则有R
v m N m g 2
=- 代入数值得:N N 6=
根据牛顿第三定律,小球对内轨道有向下的压力大小也为N 6,故选D
三.圆锥摆模型:
圆锥摆模型在圆周运动中的应用:
1. 如图所示:摆球的质量为m ,摆线长度为L ,摆动后
2. 摆线与竖直方向成θ角,则
分析:摆球在水平面上做匀速圆周运动,加速度必定指
向圆心,依据牛顿第二定律,对摆球受力分析,得:
22
t a n ωθmr R
v m mg F ===向 拓展延伸,解决水平面内的匀速圆周的问题仍然是牛顿定律的问题,运用规律时采用的基本方法是正交分解法,圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。
例:小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中θ(小球与半球球心连线跟竖直方向的夹角)与线速度v ,周期T 的关系。
(小球的半径远小于R )
分析:小球做匀速圆周运动的圆心在和小球等高的
水平面上(不在半径的球心),向心力是重力和支持力的
合力,所以是一个圆锥摆模型,则:
22)2(s i n s i n t a n T
mR R mv mg πθθθ== 由此可得:θθsin tan gR v =
g R T θπ
cos 2= 本题是一个圆锥摆模型,分析方法同样适用自行车,摩托车,火车转弯,飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。
共同点是由重力和弹力的合力提供向心力,向心力方向水平。
在物理学中,不论是概念模型,过程模型,条件模型,还是理论模型,都是突出主要矛盾,屏弃次要矛盾,对客观事物抽象和理想化的结果。
同一个客观事物,在不同的情况下,可以抽象为不同的物理模型,一般,建立什么物理模型,必须根据问题的要求,条件而定,不能一概而论,更不能张冠李戴,乱套公式。