高中数学--历年高考真题精选10(附答案)

合集下载

十年真题(2010_2019)高考数学真题分类汇编专题01集合文(含解析)

十年真题(2010_2019)高考数学真题分类汇编专题01集合文(含解析)

专题01集合历年考题细目表历年高考真题汇编1.【2019年新课标1文科02】已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6} B.{1,7} C.{6,7} D.{1,6,7}【解答】解:∵U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},∴∁U A={1,6,7},则B∩∁U A={6,7}故选:C.2.【2018年新课标1文科01】已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2} B.{1,2}C.{0} D.{﹣2,﹣1,0,1,2}【解答】解:集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B={0,2}.故选:A.3.【2017年新课标1文科01】已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x} B.A∩B=∅C.A∪B={x|x} D.A∪B=R【解答】解:∵集合A={x|x<2},B={x|3﹣2x>0}={x|x},∴A∩B={x|x},故A正确,B错误;A∪B={x||x<2},故C,D错误;故选:A.4.【2016年新课标1文科01】设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.5.【2015年新课标1文科01】已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2【解答】解:A={x|x=3n+2,n∈N}={2,5,8,11,14,17,…},则A∩B={8,14},故集合A∩B中元素的个数为2个,故选:D.6.【2014年新课标1文科01】已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)【解答】解:M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N={x|﹣1<x<1},故选:B.7.【2013年新课标1文科01】已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4} B.{2,3} C.{9,16} D.{1,2}【解答】解:根据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选:A.8.【2012年新课标1文科01】已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x∴B⊊A.故选:B.9.【2011年新课标1文科01】已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【解答】解:∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3}∴P的子集共有22=4故选:B.10.【2010年新课标1文科01】已知集合A={x||x|≤2,x∈R},B={x|4,x∈Z},则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.考题分析与复习建议本专题考查的知识点为:集合关系及其运算,历年考题主要以选择填空题型出现,重点考查的知识点为:交并补运算,预测明年本考点题目会比较稳定,备考方向以知识点交并补运算为重点较佳.最新高考模拟试题 1.若集合,,则AB =( )A .B .C .D .【答案】A 【解析】 解:,则,故选:A . 2.已知集合,,则AB =( )A .[2,3]B .(1,5)C .{}2,3D .{2,3,4}【答案】C 【解析】,,又,所以,故本题选C.3.已知集合,,则A B =( )A .B .{}1,0,1,2,3-C .{}3,2--D .【答案】B 【解析】因为,∴.4.已知全集U =R ,集合,则()U A B =ð( )A .(1,2)B .(]1,2 C .(1,3) D .(,2]-∞【答案】B 【解析】由24x >可得2x >,可得13x <<,所以集合,(,2]U A =-∞ð,所以()U A B =ð(]1,2,故选B.5.已知集合,集合,则集合A B ⋂的子集个数为( ) A .1 B .2C .3D .4【答案】D 【解析】由题意得,直线1y x =+与抛物线2y x =有2个交点,故A B ⋂的子集有4个. 6.已知集合,,则()R M N ⋂ð=( )A .{-1,0,1,2,3}B .{-1,0,1,2}C .{-1,0,1}D .{-1,3}【答案】D 【解析】 由题意,集合,则或3}x ≥又由,所以,故选D.7.已知集合,,则()R A B I ð=( )A .{}1,0-B .{}1,0,1-C .{}1,2,3D .{}2,3【答案】B 【解析】 因为,所以,又,所以.8.已知R 是实数集,集合,,则()AB =Rð( )A .{}1,0-B .{}1C .1,12⎡⎤⎢⎥⎣⎦D .1,2⎛⎫-∞ ⎪⎝⎭【答案】A 【解析】即故选A 。

十年高考真题汇编(答案)——三角函数和解三角形

十年高考真题汇编(答案)——三角函数和解三角形
于是 tan 2α = 2 tanα = − 3 . 1− tan2 α 4
11.D【解析】由θ

π 4
,π 2

可得

∈[π 2
,π ] , cos 2θ
=

1 − sin 2 2θ
= −1 , 8
sinθ = 1 − cos 2θ = 3 ,答案应选 D.
2
4
另解:由θ

π 4
= 2 10
10 1 sin 2π
10
= 10
= cos π10 3 ,选 C.
25
10
6.C【解析】 tan α > 0 知α 的终边在第一象限或第三象限,此时 sin α 与 cosα 同号,
= 故 sin 2α 2sinα cosα > 0 ,选 C.
sin α
7.B【解析】由条件得
= 1+ sin β
+
π 5


π 5
,

+ 2)π 10



f
(x)


0,
π 10
单调递增,


+
2)π
<
π
,即 ω
<
3
12
,因为

ω
<
29
,故③正确.
10 2
5
10
故选 D.
3.解析 因为 f ( x) 是奇函数,所以ϕ = 0 , f ( x) = Asin ωx .
将 y = f ( x) 的图像上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),所得图像对应的

高考数学历年真题及答案详解

高考数学历年真题及答案详解

高考数学历年真题及答案详解一、选择题1. 题目描述:在平面直角坐标系中,点A(-3, 4)关于y轴的对称点是()。

A. (3, -4)B. (-3, -4)C. (-3, 4)D. (3, 4)答案解析:点关于y轴对称即x取相反数,所以答案为A.(3, -4)。

2. 题目描述:已知函数 f(x) = 2^(2x-3),则当 x = 1 时,f(x) 的值是()。

A. 1B. 2C. 4D. 8答案解析:将x=1代入函数中,即f(1) = 2^(2*1-3),化简得f(1)= 2^(-1) = 1/2,所以答案为A. 1。

二、填空题1. 题目描述:已知三角形ABC中,∠B = 90°,AC = 5 cm,BC =12 cm,求AB的长度。

答案解析:根据勾股定理,AB^2 + BC^2 = AC^2,代入已知数据得AB^2 + 12^2 = 5^2,化简得AB^2 = 25 - 144 = -119,由于长度不能为负数,所以不存在满足要求的三角形ABC。

2. 题目描述:若a1, a2, a3为等差数列的前三项,且满足a1 + a3 = 18,a2 - a3 = 4,求a1, a2和a3的值。

答案解析:由等差数列的性质可知,a2 = (a1 + a3) / 2,代入已知数据得a2 = 9.5,将a2带入a2 - a3 = 4解得a3 = 5.5,再将a3带入a1 +a3 = 18解得a1 = 12.5,所以a1 = 12.5,a2 = 9.5,a3 = 5.5。

三、解答题1. 题目描述:设函数f(x) = cos(x + 1) - sin(x - 1),求f(x)的单调递增区间。

答案解析:对f(x)求导得f'(x) = -sin(x + 1) - cos(x - 1),令f'(x) = 0,解方程得x = 1/4 (4πn + 3π/2) - 1,其中n为整数。

通过二阶导数的符号判断可知,当x < -1或x > -3/4 + 4πn,f(x)单调递增;当-3/4 + 4πn < x< -1,f(x)单调递减。

数学高考真题答案及解析版

数学高考真题答案及解析版

数学高考真题答案及解析版一、选择题1. 本题考查函数的性质和应用。

设函数f(x) = 2^x - 3,若f(x) = 5,则x = 2。

因为f(x)在R上是增函数,所以f(x) > 5 当 x > 2。

因此,选项A正确。

2. 根据题目,我们需要求解不等式。

首先,将不等式整理为标准形式:3x - 2 > 7。

解得x > 3,所以选项C是正确答案。

3. 题目涉及三角函数的图像和性质。

正弦函数y = sin(x)在区间[0,2π]内的最大值为1,最小值为-1。

因此,选项B描述正确。

4. 这是一个关于复数的问题。

设复数z = a + bi,其中a和b是实数。

根据题目条件,z的模长为5,即√(a^2 + b^2) = 5。

又因为z的实部为3,即a = 3。

代入模长公式,解得b = 4。

所以,复数z = 3 +4i,选项D正确。

5. 本题要求我们利用概率的基本原理计算事件的概率。

根据古典概型,事件A的概率P(A) = 事件A的基本事件数 / 总的基本事件数。

这里,事件A是抽取到红色球,有3个红色球和5个蓝色球,总共8个球。

所以,P(A) = 3/8。

选项B是正确答案。

二、填空题1. 题目要求求解几何级数的和。

根据等比数列求和公式,S = a(1 -r^n) / (1 - r),其中a是首项,r是公比,n是项数。

将题目中的数值代入公式,得到S = 1(1 - 2^5) / (1 - 2) = 31/(-1) = -31。

2. 本题考查圆的方程和直线与圆的位置关系。

设圆心为O(0,0),半径r = 3。

直线方程为y = x + 1。

圆心到直线的距离d = |0 - 0 + 1|/ √2 = 1/√2。

因为 d < r,所以直线与圆相交。

根据相交弦的性质,弦长l = 2√(r^2 - d^2) = 2√(9 - 1/2) = √34。

三、解答题1. 首先,我们需要证明函数f(x) = x^3 - 3x^2 + 2x在区间[0,3]上是单调递增的。

十年高考数学试卷汇编(10~19年 解答题部分)

十年高考数学试卷汇编(10~19年 解答题部分)

全国卷•十年高考(解答题部分)2019年全国统一高考数学试卷(理科)(新课标Ⅰ) (2)2018年全国统一高考数学试卷(理科)(新课标Ⅰ) (6)2017年全国统一高考数学试卷(理科)(新课标Ⅰ) (10)2016年全国统一高考数学试卷(理科)(新课标Ⅰ) (15)2015年全国统一高考数学试卷(理科)(新课标Ⅰ) (20)2014年全国统一高考数学试卷(理科)(新课标Ⅰ) (25)2013年全国统一高考数学试卷(理科)(新课标Ⅰ) (31)2012年全国统一高考数学试卷(理科)(新课标) (36)2011年全国统一高考数学试卷(理科)(新课标) (41)2010年全国统一高考数学试卷(理科)(新课标) (46)2019年全国统一高考数学试卷(理科)(新课标Ⅰ)三、解答题:共60分。

17.(2019•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c.设(sinB﹣sinC)2=sin2A﹣sinBsin C.(1)求A;(2)若a+b=2c,求sinC.18.(2019•新课标Ⅰ)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A﹣MA1﹣N的正弦值.19.(2019•新课标Ⅰ)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若=3,求|AB|.20.(2019•新课标Ⅰ)已知函数f(x)=sinx﹣ln(1+x),f′(x)为f(x)的导数.证明:(1)f′(x)在区间(﹣1,)存在唯一极大值点;(2)f(x)有且仅有2个零点.21.(2019•新课标Ⅰ)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得﹣1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得﹣1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i﹣1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=﹣1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1﹣p i}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.(二)选考题:共10分。

高考数学历年函数试题及答案

高考数学历年函数试题及答案

1. 设(x )是定义在R 上的偶函数,其图象关于直线x=1对称,对任意x1,x2∈[0,]都有(Ⅰ)设);41(),21(,2)1(f f f 求=(Ⅱ)证明)(x f 是周期函数。

2. 设函数.,1|2|)(2R x x x x f ∈--+=(Ⅰ)判断函数)(x f 的奇偶性;(Ⅱ)求函数)(x f 的最小值.3. 已知函数()2sin (sin cos f x x x x =+(Ⅰ)求函数()f x 的最小正周期和最大值;(Ⅱ)在给出的直角坐标系中,画出函数()y f x =在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象4.(本小题满分12分)求函数xx x x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.5.(本小题满分12分)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围.6.△ABC 的三个内角为A 、B 、C ,求当A 为何值时,2cos 2cos C B A ++取得最大值,并求出这个最大值7.设a 为实数,函数x a ax x x f )1()(223-+-=在)0,(-∞和),1(+∞都是增函数, 求a 的取值范围.8. 设函数f (x )=2x 3+3ax 2+3bx+8c 在x =1及x =2时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的x ,3,0〕〔∈都有f (x )<c 2成立,求c 的取值范围. 9.已知函数32()1f x x ax x =+++,a ∈R .x(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 10.在ABC ∆中,内角A 、b 、c 的对边长分别为a 、b 、c.已知222a c b -=,且sin 4cos sin B A C =,求b.11. 已知函数42()36f x x x =-+.(Ⅰ)讨论()f x 的单调性;(Ⅱ)设点P 在曲线()y f x =上,若该曲线在点P 处的切线l 通过坐标原点,求l 的方程12. 设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8=x(Ⅰ)求ϕ; (Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像13. 已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为3,1((Ⅰ)若方程06)(=+a x f 有两个相等的根,求)(x f 的解析式;(Ⅱ)若)(x f 的最大值为正数,求a 的取值范围解答: 2. 解:(Ⅰ).7)2(,3)2(=-=f f由于),2()2(),2()2(f f f f -≠-≠-故)(x f 既不是奇函数,也不是偶函数.由于),2[)(+∞在x f 上的最小值为)2,(,3)2(-∞=在f 内的最小值为.43)21(=f故函数),()(+∞-∞在x f 内的最小值为.433. 解x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+=所以函数)(x f 的最小正周期为π,最大值为21+.(Ⅱ)由(Ⅰ)知x83π-8π-8π 83π 85π y121-121+1故函数)(x f y =在区间]2,2[ππ-上的图象是 4.解:xx x x x x x f cos sin 22cos sin )cos (sin )(22222--+=所以函数)(x f 的最小正周期是π,最大值是,43最小值是.41 5. 解:函数f (x )的导数:.163)(2-+='x ax x f(Ⅰ)当0)(<'x f (R x ∈)时,)(x f 是减函数.所以,当))((,0)(,3R x x f x f a ∈<'-<知由时是减函数;(II )当3-=a时,133)(23+-+-=x x x x f =,98)31(33+--x由函数3x y =在R 上的单调性,可知当3-=a 时,R x x f ∈)(()是减函数;(Ⅲ)当3->a时,在R 上存在一个区间,其上有,0)(>'x f所以,当3->a时,函数))((R x x f ∈不是减函数.综上,所求a 的取值范围是 6. 解: 由,222,AC B C B A -=+=++ππ得所以有 .2sin 2cos A C B =+当.232cos 2cos ,3,212sin取得最大值时即C B A A A ++==π7. 解:其判别试.81212124222a a a -=+-=∆(ⅰ)若,26,08122±==-=∆a a 即 当.),()(,0)(',),3()32,(为增函数在时或+∞-∞>+∞∈-∞∈x f x f ax x 所以.26±=a (ⅱ) 若,08122<-=∆a .),()(,0)('为增函数在恒有+∞-∞>x f x f所以 ,232>a 即 ).,26()26,(+∞--∞∈ a (ⅲ)若,08122>-=∆a 即,0)(',2626=<<-x f a 令 解得 .323,3232221a a x a a x -+=--=当;)(,0)(',)(),(21为增函数时或x f x f x x x x >∞+∈-∞∈当.)(,0)(',),(21为减函数时x f x f x x x <∈依题意1x ≥0得2x ≤1. 由1x ≥0得a ≥,232a -解得 1≤.26<a由2x ≤1得,232a -≤3,a -解得 .2626<<-a 从而 .)26,1[∈a综上,a 的取值范围为),26,1[),26[]26, +∞-∞- 即 ∈a ).,1[]26,(+∞--∞ 9. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增; 当23a>,由()0f x '=求得两根为3a x -=即()f x在3a ⎛⎫--∞ ⎪ ⎪⎝⎭,递增,33a a ⎛---+ ⎪⎝⎭,递减,3a ⎛⎫-++∞⎪ ⎪⎝⎭递增; (2)(法一)∵函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,⎝⎭递减,∴23313a ⎧---⎪⎪-,且23a>,解得:2a ≥。

高考真题数学试卷及答案

一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知函数f(x) = x^3 - 3x,则f'(x) = ()A. 3x^2 - 3B. 3x^2 + 3C. x^2 - 3D. x^2 + 3答案:A2. 下列各数中,不是无理数的是()A. √2B. πC. 0.1010010001...D. √(9/16)答案:D3. 已知等差数列{an}的前三项分别为1,2,3,则该数列的公差d = ()A. 1B. 2C. 3D. 0答案:B4. 已知复数z = 1 + 2i,则|z| = ()A. 1B. 2C. √5D. 3答案:C5. 若等比数列{an}的首项为a1,公比为q,则S3 = a1 + a2 + a3 = ()A. a1q^2B. a1(1 + q + q^2)C. a1(1 - q^3) / (1 - q)D. a1(1 - q^2)答案:B6. 下列函数中,为奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = x^4答案:C7. 若直角三角形ABC中,∠C = 90°,a = 3,b = 4,则斜边c的长度为()A. 5B. 6C. 7D. 8答案:A8. 已知圆C:x^2 + y^2 - 4x - 6y + 9 = 0,则圆心C的坐标为()A. (2, 3)B. (2, -3)C. (-2, 3)D. (-2, -3)答案:A9. 若直线l的斜率为k,且直线l与x轴的交点为(1, 0),则直线l的方程为()A. y = kx + kB. y = kx - kC. y = -kx + kD. y = -kx - k答案:A10. 已知函数f(x) = e^x - x,则f'(x) = ()A. e^x - 1B. e^x + 1C. e^x - xD. e^x + x答案:A二、填空题(本大题共5小题,每小题5分,共25分。

高考数学试卷真题及答案

一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 函数f(x) = 2x - 3的图像是:A. 抛物线B. 双曲线C. 直线D. 椭圆答案:C2. 若复数z满足|z - 1| = 2,则复数z的取值范围是:A. z = 1 ± 2iB. z = 1 ± √2iC. z = 1 ± 2D. z = 1 ± √3i答案:B3. 已知等差数列{an}的前n项和为Sn,若S5 = 20,a1 = 2,则公差d为:A. 2B. 4C. 6D. 8答案:A4. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a = 3,b = 4,c = 5,则sinA的值为:A. 3/5B. 4/5D. 5/3答案:A5. 函数y = log2(x - 1)的图像是:A. 抛物线B. 双曲线C. 直线D. 椭圆答案:B6. 已知等比数列{an}的前n项和为Sn,若S5 = 32,a1 = 2,则公比q为:A. 2B. 4C. 8D. 16答案:B7. 在直角坐标系中,点P(2, 3)关于直线y = x的对称点为:A. (3, 2)B. (2, 3)C. (-3, -2)D. (-2, -3)答案:A8. 若函数f(x) = x^2 - 4x + 4在区间[1, 3]上单调递增,则a的值为:A. 1C. 3D. 4答案:B9. 已知函数f(x) = x^3 - 3x + 2,则f(x)的图像是:A. 抛物线B. 双曲线C. 直线D. 椭圆答案:A10. 在等差数列{an}中,若a1 = 1,d = 2,则第10项an为:A. 19B. 20C. 21D. 22答案:C二、填空题(本大题共5小题,每小题5分,共25分。

)11. 函数f(x) = x^2 - 2x + 1的顶点坐标为__________。

答案: (1, 0)12. 若复数z满足|z - 1| = 2,则z的取值范围是__________。

高中数学--历年高考真题精选10(含答案)

高中数学--历年高考真题精选一 、选择题(本大题共10小题,每小题4分,共40分)1.(04年福建卷)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是真正三角形,则这个椭圆的离心率是(A ) (B ) (C ) (D )2.i 是虚数单位,=+ii1( ) A .i 2121+ B .i 2121+- C .i 2121- D .i 2121--3.已知,0||2||≠= 且关于x 的方程0||2=⋅++x x 有实根, 则与的夹角的取值范围是A .]6,0[πB .],3[ππC .]32,3[ππD .],6[ππ4.曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为(A)30°(B)45°(C)60°(D)12°设变量x ,y 满足约束条件3620030x y x y y ≥⎧⎪≤⎨⎪≤+---⎩- 则目标函数z=y-2x 的最小值为( )A.-7B.-4C.1D.25.设()f x 是定义在R 上的奇函数,且当0x ≥时,2()f x x =,若对任意的[]2x t t ∈+,,不等式()2()f x t f x +≥恒成立,则实数t 的取值范围是( )A .)+∞B .[)2+,∞ C .(]02,D .120⎡⎤⎡⎤-⎣⎦⎣⎦,6.已知数列{}n a 的首项10a ≠,其前n 项的和为n S ,且112n n S S a +=+,则limnn na S →∞=(A )0 (B )12(C ) 1 (D )27.若函数()(1)cos f x x x =,02x π≤<,则()f x 的最大值为A .1B .2C 1D 28.已知点P (x ,y )在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-022,01,02y x y x 表示的平面区域上运动,则z =x -y 的取值范围是 ( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2] 9.已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,,则n S =(A )12-n (B )1)23(-n (C )1)32(-n (D )121-n二 、填空题(本大题共8小题,每小题3分,共24分) 10.(1)1lim2n a n n a∞++=+→,则a =__________.11.设双曲线221916x y -=的右顶点为A ,右焦点为F .过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为 .12.已知以双曲线C 的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60,则双曲线C 的离心率为13.(03年北京卷理)若存在常数,使得函数的一个正周期为14.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))设a + b = 2, b >0, 则当a = ______时, 1||2||a a b +取得最小值. 圆心为(1,2)且与直线51270x y --=相切的圆的方程为_____________.15.设等比数列}{n a 的公比q=21,前n 项和为n S ,则44a S =________.16. (15)已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=三 、解答题(本大题共4小题,共36分)o姓名:__________班级:__________考号:__________ ●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●17.(注意:在试题卷上作答无效.........)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.18.(本小题满分12分)某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意出取2件产品进行检验。

(word完整版)历年高考数学真题(全国卷整理版)43964.doc

实用文档参考公式:如果事件 A、B互斥,那么P( A B) P( A)P( B)如果事件 A、B相互独立,那么P(AgB)P( A)gP( B)如果事件 A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件 A 恰好发生 k 次的概率P n (k ) C n k p k (1 p)n k (k 0,1,2,⋯n) 球的表面积公式S 4R2其中 R 表示球的半径球的体积公式V 3 R34其中 R表示球的半径普通高等学校招生全国统一考试一、选择题1、复数 1 3i =1 iA 2+IB 2-IC 1+2iD 1- 2i2、已知集合 A= {1.3. m },B={1,m} ,A U B=A, 则 m=A 0 或3B 0 或 3C 1或3D 1 或 33 椭圆的中心在原点,焦距为4 一条准线为 x=-4 ,则该椭圆的方程为A x2 + y2 =1B x2 + y2 =116 12 12 8C x2 + y2 =1D x2 + y2 =18 4 12 44 已知正四棱柱ABCD- A1B1C1D1中, AB=2, CC= 2 2 E 为 CC的中点,则直线AC与平面1 1 1 BED的距离为A 2B 3C 2D 1(5)已知等差数列{a n} 的前 n 项和为 S n,a5=5, S5=15,则数列的前100项和为(A) 100(B)99(C)99(D)101 101101100100(6)△ ABC中, AB边的高为 CD,若a· b=0, |a|=1 , |b|=2 ,则(A)( B)(C)(D)3(7)已知α为第二象限角, sin α+ sin β =3,则 cos2α =555 5--9(D) 3(A) 3 (B ) 9 (C)(8)已知 F1、 F2 为双曲线 C : x2 -y 2 =2 的左、右焦点,点 P 在 C 上, |PF1|=|2PF2| ,则 cos ∠ F1PF2=1 334(A) 4( B ) 5(C)4(D)51( 9)已知 x=ln π, y=log52 , z=e 2,则 (A)x < y < z ( B ) z < x <y (C)z < y < x (D)y< z < x(10) 已知函数 y = x2 -3x+c 的图像与 x 恰有两个公共点,则 c =(A ) -2 或 2 ( B ) -9 或 3 (C ) -1 或 1 ( D )-3 或 1( 11)将字母 a,a,b,b,c,c, 排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有( A ) 12 种( B ) 18 种( C ) 24 种( D ) 36 种7(12)正方形 ABCD 的边长为 1,点 E 在边 AB 上,点 F 在边 BC 上, AE = BF = 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学--历年高考真题精选题号 一 二 三 总分 得分一 、选择题(本大题共10小题,每小题4分,共40分)1.(04年湖南卷)从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为(A )56 (B )52 (C )48 (D )40 2.函数13y x =的图像是 ( )3.(2012年高考(山东理))函数cos 622x xxy -=-的图像大致为4.若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α 5.已知全集U=Z ,A={-1,0,1,2},B={x ︱x 2=x },则A ∩C U B 为 A .{-1,2} B .{-1,0} C .{0,1} D .{1,2}6.根据下列算法语句,当输入x 为60时,输出y 的值为( ).A .25B .30C .31D .617.(02年全国卷)设集合,,则 (A )(B )(C )(D )8.将数字1,2,3,4,5,6拼成一列,记第i 个数为i (i 126)a =,,,,若11a ≠,33a ≠,55a ≠,135a a a <<,则不同的排列方法种数为( )A .18B .30C .36D .48第Ⅱ卷(非选择题 共90分)9.函数()cos 2f x x x =在区间[0,2]π上的零点个数为A. 2B. 3C.4D.510.已知双曲线2221(0)2x y b b -=>的左右焦点分别为12,F F ,其一条渐近线方程为y x =,点0(3,)P y 在该双曲线上,则12PF PF •=A. 12-B. 2- C .0 D. 4二 、填空题(本大题共8小题,每小题3分,共24分)11.设圆位于抛物线与直线所组成的封闭区域(包含边界)内,则圆的半径能取到的最大值为12.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有 种(用数字作答).13.已知双曲线中心在原点,一个顶点的坐标是(3,0),且焦距与虚轴长之比为5:4,则双曲线的标准方程是 . 14.{}73)1(2-<-=x x x A ,则集合A Z 中有 ▲ 个元素15.设函数f(x)=x(e x+ae -x),x ∈R ,是偶函数,则实数a =_______▲_________C 22y x =3x =C 姓名:__________班级:__________考号:__________ ●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●16.设x y z -=2,式中变量x 、y 满足下列条件⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+-≥-,1,2323,12y y x y x 则z 的最大值为 .17.在平面直角坐标系中,椭圆)0(12222>>=+b a b y a x 的焦距为2,以O 为圆心,a 为半径的圆,过点⎪⎪⎭⎫ ⎝⎛0,2c a 作圆的两切线互相垂直,则离心率e = ▲18.已知集合{}|1A x x a =-≤,{}2540B x x x =-+≥.若A B =∅,则实数a 的取值范围是.三 、解答题(本大题共4小题,共36分) 19.围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元)。

(Ⅰ)将y 表示为x 的函数:(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。

20.如图,由M 到N 的电路中有4个元件,分别标为T 1,T 2,T 3,T 4,电流能通过T 1,T 2,T 3的概率都是p ,电流能通过T 4的概率是0.9,电流能否通过各元件相互独立.已知T 1,T 2,T 3中至少有一个能通过电流的概率为0.999 (Ⅰ)求p ;(Ⅱ)求电流能在M 与N 之间通过的概率.21.已知函数f (x )=ax 2+bx -ln x (a ,b ∈R).(1)设a ≥0,求f (x )的单调区间;(2)设a >0,且对任意x >0,f (x )≥f (1).试比较ln a 与-2b 的大小.22知函数bax x x f +=2)((a ,b 为常数)且方程f (x )-x +12=0有两个实根为x 1=3, x 2=4.(1)求函数f (x )的解析式;(2)设k>1,解关于x 的不等式;xkx k x f --+<2)1()(.见理科卷17.高中数学--历年高考真题精选答案解析一 、选择题 1.答案:C2.选B【分析】已知函数解析式和图像,可以用取点验证的方法判断.【解】 取18x =,18-,则12y =,12-,选项B ,D 符合;取1x =,则1y =,选项B 符合题意.3.【解析】函数为奇函数,所以图象关于原点对称,排除A,令0=y 得06cos =x ,所以ππk x +=26,ππ612k x +=,函数零点有无穷多个,排除C,且y 轴右侧第一个零点为)0,12(π,又函数x x y --=22为增函数,当120π<<x 时,022>-=-xx y ,06cos >x ,所以函数0226cos >-=-xx x y,排除B,选D. 4.【答案】:C【解析】:由tan 0α>可得:()2k k k Z ππαπ<<+∈,故2()22k k Z k παππ<<+∈,正确的结论只有sin 20α>. 选C5.A6.答案:C解析:由算法语句可知0.5,50,250.650,50,x x y x x ≤⎧=⎨+(-)>⎩所以当x =60时,y =25+0.6×()=25+6=31. 7.答案:B8.B分两步:(1)先排531,,a a a ,1a =2,有2种;1a =3有2种;1a =4有1种,共有5种;(2)再排642,,a a a ,共有633=A 种,故不同的排列方法种数为5×6=30,选B9.D【解析】由()cos 20==f x x x ,得0=x 或cos20=x ;其中,由cos20=x ,得()22x k k ππ=+∈Z ,故()24k x k ππ=+∈Z .又因为[]0,2x ∈π,所以π3π5π7π,,,4444x =.所以零点的个数为145+=个.故选D.【点评】本题考查函数的零点,分类讨论的数学思想.判断函数的零点一般有直接法与图象法两种方法.对于三角函数的零点问题,一般需要规定自变量的取值范围;否则,如果定义域是R ,则零点将会有无数个;来年需注意数形结合法求解函数的零点个数,所在的区间等问题.10.本小题考查双曲线的渐近线方程、双曲线的定义,基础题。

(同文8)解析:由题知22=b ,故)0,2(),0,2(,123210F F y -±=-±=, ∴0143)1,32()1,32(21=+-=±-•±--=•PF PF ,故选择C 。

解析2:根据双曲线渐近线方程可求出双曲线方程22122x y -=,则左、右焦点坐标分别为12(2,0),(2,0)F F -,再将点0)P y 代入方程可求出1)P ±,则可得120PF PF ⋅=,故选C 。

二 、填空题。

为使圆的半径取到最大值,显然圆心应该在x 轴上且与直线相切,设圆的半径为,则圆的方程为,将其与联立得:,令,并由,得:12.36【解析】分两步完成:第一步将4名大学生按,2,1,1分成三组,其分法有21142122C C C A ⋅⋅;第二步将分好的三组分配到3个乡镇,其分法有33A所以满足条件得分配的方案有211342132236C C C A A ⋅⋅⋅= 13.【答案】116922=-y x 【分析】设双曲线的方程为12222=-by a x ,由题可知,a=3,且2a +2b =2c ,45=b c,易得答案。

1C 3x =C r C ()2223x r y r +-+=22y x =()222960x r x r +-+-=()()2224960r r ∆=---=⎡⎤⎣⎦0r >1r =【高考考点】圆锥曲线的标准方程。

【易错点】混淆长轴与短轴。

【备考提示】注意圆锥曲线的标准方程中每个量的具体含义。

14.【解析】本小题考查集合的运算和解一元二次不等式.由()}2137x x -<-得2580x x -+<,∵Δ<0,∴集合A 为∅ ,因此 A Z 的元素不存在.【答案】0 15.-1 16.1117.【解析】设切线PA 、PB 互相垂直,又半径OA 垂直于PA ,所以△OAP 是等腰直角三角形,故2a c=,解得c e a ==.【答案】218.【标准答案】(23),【试题分析】集合{}|1A x x a =-≤={x | a -1≤x ≤a +1},{}2540B x x x =-+≥={x | x ≥4或x ≤1 }.又AB =∅,∴ 1411a a +<⎧⎨->⎩,解得2<a <3,实数a 的取值范围是(2,3)。

【高考考点】一元二次不等式,绝对值不等式的解法,集合的运算。

【易错提醒】由AB =∅,得1411a a +≤⎧⎨-≥⎩,解得23a ≤≤。

【备考提示】求与集合相关的参数的取值范围时,常借助数轴分析,特别注意端点值的取舍。

三 、解答题19.解:(1)如图,设矩形的另一边长为a m则2y -45x-180(x-2)+180·2a=225x+360a-360 由已知xa=360,得a=x360, 所以y=225x+)0(3603602x x- (II)108003602252360225,022=⨯≥+∴xx x 104403603602252≥-+=∴x x y .当且仅当225x=x2360时,等号成立.即当x=24m 时,修建围墙的总费用最小,最小总费用是10440元. 20.解:记1A 表示事件:电流能通过T ,1,2,3,4,i i =A 表示事件:123T T T ,,中至少有一个能通过电流,B 表示事件:电流能在M 与N 之间通过, (Ⅰ)123123A A A A A A A =,,,相互独立,3123123P()()()()()(1)A P A A A P A P A P A p ===-, 又 P()1P(A)=10.9990.001A =--=, 故 3(1)0.0010.9p p -==,,(Ⅱ)44134123B A +A A A +A A A A =, 44134123P(B)P(A +A A A +A A A A )= 44134123P(A )+P(A A A )+P(A A A A )=44134123P(A )+P(A )P(A )P(A )+P(A )P(A )P(A )P(A )= =0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9 =0.9891 21.解:(1)由f (x )=ax 2+bx -ln x ,x ∈(0,+∞),得f ′(x )=221ax bx x+-.①当a =0时,f ′(x )=1bx x-.若b ≤0,当x >0时,f ′(x )<0恒成立, 所以函数f (x )的单调递减区间是(0,+∞). 若b >0,当0<x <1b时,f ′(x )<0,函数f (x )单调递减. 当x >1b时,f ′(x )>0,函数f (x )单调递增. 所以函数f (x )的单调递减区间是10,b ⎛⎫ ⎪⎝⎭,单调递增区间是1,b ⎛⎫+∞ ⎪⎝⎭.②当a >0时,令f ′(x )=0,得2ax 2+bx -1=0.由Δ=b 2+8a >0得x 1x 2.显然,x 1<0,x 2>0.当0<x <x 2时,f ′(x )<0,函数f (x )单调递减; 当x >x 2时,f ′(x )>0,函数f (x )单调递增.所以函数f (x )的单调递减区间是⎛ ⎝⎭,单调递增区间是⎫+∞⎪⎪⎝⎭. 综上所述,当a =0,b ≤0时,函数f (x )的单调递减区间是(0,+∞);当a =0,b >0时,函数f (x )的单调递减区间是10,b ⎛⎫ ⎪⎝⎭,单调递增区间是1,b ⎛⎫+∞⎪⎝⎭; 当a >0时,函数f (x )的单调递减区间是0,4b a ⎛⎫-+ ⎪ ⎪⎝⎭,单调递增区间是4b a ⎛⎫-+∞⎪ ⎪⎝⎭. (2)由题意,函数f (x )在x =1处取得最小值,由(1)是f (x )的唯一极小值点,=1,整理得2a +b =1,即b =a . 令g (x )=x +ln x ,则g ′(x )=14xx-, 令g ′(x )=0,得x =14.当0<x <14时,g ′(x )>0,g (x )单调递增;当x >14时,g ′(x )<0,g (x )单调递减.因此g (x )≤14g ⎛⎫⎪⎝⎭=1+1ln 4=1-ln 4<0,故g (a )<0,即a +ln a =2b +ln a <0,即ln a <-2b .22.解析:(1)将0124,3221=+-+==x bax x x x 分别代入方程得 ).2(2)(,2184169392≠-=⎩⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-=+-=+x x x x f b a ba ba 所以解得 (2)不等式即为02)1(,2)1(222<-++---+<-xkx k x x k x k x x 可化为 即.0))(1)(2(>---k x x x①当).,2(),1(,21+∞⋃∈<<k x k 解集为②当);,2()2,1(0)1()2(,22+∞⋃∈>--=x x x k 解集为不等式为时 ③),()2,1(,2+∞⋃∈>k x k 解集为时当.。

相关文档
最新文档