电子组装工艺与设备(大二下学期)功率器件散热器
散热器的生产工艺

散热器的生产工艺散热器是一种用于散发热量的设备,广泛应用于各种电子设备、汽车、家电等领域。
散热器的生产工艺是指对散热器的制造过程中所采用的工艺和技术。
散热器的生产工艺主要包括以下几个方面:1. 材料准备:散热器主要由铝合金材料制成,所以在生产前需要对铝材进行选材和加工。
首先需要选择符合要求的铝合金材料,直接影响到散热器的质量和散热效果。
然后对铝材进行切割、开槽等加工工序。
2. 模具设计和制造:散热器是通过铝材折弯和焊接而成的,所以需要设计和制造散热器的模具。
根据散热器的外形和尺寸,设计师会制作出一套适用于折弯和焊接的模具,并确保散热器的尺寸和形状的准确性。
3. 折弯和成型:在散热器的生产过程中,需要对铝材进行折弯和成型,将其折弯成散热器的形状。
这一过程需要使用专用的折弯机和成型设备,将铝材按照模具的形状进行处理,并确保散热器的尺寸和角度的准确性。
4. 焊接和连接:折弯完成后的铝材需要进行焊接和连接,形成散热器的最终结构。
通常采用TIG焊接或者氩弧焊接的方法,通过高温将散热器的各个部件进行连接,同时确保焊接的质量和密封性。
5. 表面处理和组装:经过焊接后的散热器需要进行表面处理和组装。
通常采用氧化、喷涂和镀铜等方法进行表面处理,提高散热器的耐腐蚀性和散热效果。
然后将散热器的各个部件进行组装,包括风扇、散热片等。
6. 检测和质量控制:在整个生产过程中,需要对散热器进行多次检测和质量控制,确保产品的质量和性能。
常见的检测方法包括外观检查、尺寸检测、气密性检测等,以确保散热器的正常使用和长久耐用。
以上是散热器的生产工艺的简要描述。
随着科技的不断发展,散热器的生产工艺也在不断创新和改进,以提高产品的质量和散热效果。
散热器设计方法

散热器设计1.常用散热器介绍对于安装在PCB表面的元器件来说,其内部热量主要通过热传导的方式进入PCB和元器件表面,之后通过对流换热和热辐射的方式进入周围环境;由于元器件表面的面积要远小于PCB表面积,所以通过元器件表面散热的热量相对较少,因此我们在元器件表面安装散热器,使得元器件上方的散热面积得到扩展(如上图所示),更多热量通过热传导的方式进入元器件上表面,之后再由散热器进入周围环境中。
散热器的材料、加工工艺和表面处理是散热器生产的三个重要因素,会影响到散热器的性能和价格。
1.1散热器材料散热器的材料主要有:铝、铝合金、铜、铁等。
铝是自然界中存储最丰富的金属元素,而且质量轻、抗腐蚀性强、热导率高,非常适合作为散热器的原材料。
在铝中添加一些金属形成铝合金,可以答复提升材料的硬度。
在上章的材料介绍中,我们知道铜的导热率是最好的(比铝高将近一倍),但是它的密度也比铝要大3倍,所以相同体积的散热器要比铝重很多;铜存在着加工难度大、熔点高、不易挤压加工以及成本高等缺点,所以铜散热器的应用要比铝合金少很多,但是随着对电子产品性能要求的越来越高,导致单位体积的功耗大幅增加,所以铜材料散热器的应用越来越多。
1.2散热器加工工艺散热器的加工工艺主要有CNC、铝挤、压铸、铲齿、插齿、扣Fin。
1. 铝挤型:铝挤型散热器是将铝锭加热至460℃左右,在高压下让半固态铝流经具有沟槽的挤型模具,挤出散热器的初始形状,之后再进行切断和进一步加工。
——铝挤型工艺无法精确保证散热器的平面度等尺寸要求,所以通常后期还需要进一步加工。
1, 铝挤型散热器模具成本可以分摊到每一个散热器中,对于大批量产的应用成本较低;2, 齿片高度和齿片间距的比值(Z/X)有限制,通常不建议超过15。
2. 压铸:压铸是一种将熔化合金液体在高压的作用下高速填充钢制模具的型腔,并使合金液体在压力下凝固而形成铸件的加工方法;压铸散热器如下图所示,其尺寸不够精确、表面不光洁(热辐射小)以及星体复杂等特点,后期需要进一步加工;1, 压铸散热器的成本主要在于压铸模具、原材料、机加工和表面处理等,其模具成本较高,适合大批量生产的场合(分摊模具成本);2, 压铸散热器形态比铝挤压性散热器更加多样性,但是散热性能相对更差;3. 铲齿:铲齿是将长条状金属板材通过机械动作,成一定角度将材料切除片状并进行校直,重复切削形成排列一直的翅片结构,如下图所示;铲齿散热器没有模具费用,适用于小批量生产需要的场合,其生产成本主要是:原材料、铲齿加工、CNC加工、表面处理等,铝合金和铜是常用的铲齿散热器材料。
散热器生产工艺

散热器生产工艺一、散热器的设计散热器设备设计是整个生产过程中最为关键的环节。
设计需要考虑设备要散热的功率大小,散热区域的大小,散热器的安装方式等因素。
设计部门需要根据客户的需求,结合实际工程情况,绘制详细的图纸,包括散热器的形状、材质、尺寸、散热片的排列方式等信息。
二、散热器的选材1. 散热片材料:散热片是散热器的核心部件,直接影响散热效果。
目前常用的散热片材料主要有铜、铝、铜铝合金等。
铜散热效果好,但价格昂贵;铝轻便、价格较低,但散热效果相对差一些;铜铝合金则是两者的结合,综合了两者的优点,取得了较好的散热效果。
2. 散热器外壳材料:外壳一般采用金属材料制作,如铝合金、不锈钢等。
外壳的选材需要考虑散热器的整体强度、耐腐蚀性以及外观光洁度等因素。
三、散热片的生产工艺1. 材料准备:将所需的铜、铝或铜铝合金材料加工成规定尺寸的散热片。
2. 切割加工:根据设计图纸要求,将加工好的散热片进行切割加工,确保尺寸的准确度。
3. 表面处理:对散热片进行氧化、喷砂等表面处理,增加其耐腐蚀性,提高外观质感。
4. 弯曲成型:将加工好的散热片进行弯曲成型,以适应散热器的整体形状。
5. 焊接:将各个散热片焊接在一起,形成整体的散热片组件。
四、散热器的组装1. 散热片装配:将焊接好的散热片组件装配到散热器外壳内,确保散热片与外壳之间的间隙符合设计要求。
2. 导热膏涂抹:在散热片与散热器外壳之间涂抹导热膏,增加热量传递效率。
3. 安装固定:安装散热器支架、风扇等配件,确保散热器的固定稳定。
五、散热器的测试与调试1. 散热器的功率测试:通过专业的测试设备对散热器进行功率测试,确保其散热效果符合设计要求。
2. 散热器温度测试:通过测温仪对散热器进行温度测试,检查散热器工作时的温度是否符合设备要求。
3. 散热器的风阻测试:对安装风扇的散热器进行风阻测试,确保散热器的风量满足要求。
六、散热器的包装与发货1. 散热器的包装:将测试合格的散热器进行包装,采用泡沫箱、木箱等包装材料,保证产品在运输过程中不受损坏。
电子散热工程中风扇选择方法

电子散热工程中风扇选择方法1、工程背景大多数密集封装的电子机箱系统使用风扇或鼓风扇进行强制空气冷却。
较小的机箱系统通常使用轴流冷却风扇,其中气流垂直于风扇叶片。
然而,较大的机箱系统可能需要离心式鼓风扇在高静压情况下提供足够的气流。
在机箱系统设计的最初阶段,工程师就应确定对强制空气冷却风量需求进行预估。
更重要的是,产品设计阶段,必须为发热部件提供良好的气流,并为冷却风扇提供足够的空间和功率。
风扇选择需要考虑的因素包括:所需的空气流量,交流或直流电源,电压,速度,预期寿命,EMI / RFI,散热量,自动重启和噪声影响。
产品设计初始阶段是需要预计通风冷却机箱系统所需的气流风量,这主要是取决于机箱系统内产生的热量和器件允许的最大温升。
在估算机箱系统内热耗时,应该考虑器件负载发生变化或者发热子机箱系统热耗增加的可能性。
因此,应该是在机箱系统满载运行的最坏情况下,使用最大的热耗来估计机箱系统所需的风量。
机箱系统所需的气流可以通过以下计算公式或从图表获得,计算公式为:这里:Q =以cfm为单位所需的气流(ft3 / min。
)W =以瓦为单位的热耗TC =温升例如,对于热耗200W的机箱系统来说,如果其允许的温升为20℃,那么机箱系统需要32cfm的气流。
在下图中,纵轴表示代表气流需要带走的热耗,横轴表示气流的风量;两个轴都是对数的。
倾斜的线条定义了温升(℃)。
通过查找该图表,找到表示允许温升的斜线,然后,在该线上找到与热耗相对应的点,此点对应的横轴位置即为机箱系统所需的气流流量。
热耗与机箱系统温升的关系2、机箱系统阻抗确定如何在机箱系统内安装风扇比计算所需空气流量要困难得多。
气流路径中的障碍物导致静压阻力。
下图显示了典型风扇的气流与静压之间的非线性关系。
为了达到最大气流,应尽量减少障碍物。
但是,有时候需要增加挡风板,以将冷气流引导到需要冷却的部件上。
当然,机箱系统组件本身也会阻碍气流、引导气流流动。
轴流风扇风压P-风量Q曲线通过实验方法得到气流的流量是非常准确的,但测试成本高,耗时长,并且繁琐。
散热器生产工艺流程

散热器生产工艺流程
散热器是一种常见的电子产品散热附件,用于散热设备的散热和降温。
下面是散热器的生产工艺流程:
1. 材料准备:散热器的主要材料是铝合金,因其具有良好的导热性能和轻便的特点,所以非常适合用于散热器的制作。
在生产前,需要准备好符合要求的铝合金板材。
2. 材料切割:将铝合金板材按照散热器的设计要求进行切割,通常使用数控切割机对板材进行切割和加工。
3. 冲孔:根据散热器设计的需要,在切割好的铝合金板材上进行冲孔加工,以便后续组装时方便安装其他附件。
4. 折弯成型:通过数控冲床对冲孔后的铝合金板进行折弯成型,使其形成散热器的结构。
折弯成型也可以通过模具和液压机等设备来完成。
5. 焊接:将多个成型的部件进行焊接,使其形成一个完整的散热器。
焊接通常采用TIG焊接(钨极氩弧焊)或MIG焊接
(金属惰性气体焊接)进行,以保证焊接质量和强度。
6. 表面处理:将焊接好的散热器进行表面处理,通常采用喷砂、氧化、喷漆等方式进行,以增加散热器的耐腐蚀性和美观度。
7. 检测和质检:对生产的散热器进行检测和质量检查,确保散热器符合设计要求和使用要求。
8. 包装和出货:将合格的散热器进行包装,并准备好出货相关的文件和运输事宜,以便将散热器送往客户。
以上是散热器的主要生产工艺流程,通过这些工艺流程,可以生产出质量符合要求的散热器产品。
不过需要注意的是,不同的散热器生产厂家可能会有一些差异和特殊的工艺,因此具体生产工艺可能会有所不同。
大功率电子器件的散热技术研究

大功率电子器件的散热技术研究引言:随着电子技术的迅猛发展,大功率电子器件在各个领域的应用越来越广泛。
然而,由于大功率电子器件在工作过程中会产生大量的热量,散热问题成为了亟待解决的难题。
本文将探讨大功率电子器件的散热技术研究,旨在提供一些解决方案和思路。
1. 散热问题的重要性大功率电子器件在工作过程中会产生大量的热量,如果不能及时有效地散热,会导致器件温度升高,从而降低其工作效率、缩短寿命甚至引发故障。
因此,散热问题的解决对于保证大功率电子器件的可靠性和稳定性至关重要。
2. 散热机制分析大功率电子器件的散热机制主要包括传导、对流和辐射三种方式。
传导是指热量通过物质的直接接触传递,对流是指通过流体介质(如空气)的流动传热,辐射则是指热量通过电磁波辐射传递。
在实际应用中,通常会综合运用这三种散热方式来解决大功率电子器件的散热问题。
3. 散热技术的研究与应用针对大功率电子器件的散热问题,研究人员提出了许多散热技术,并在实际应用中取得了一定的成果。
以下将介绍一些常见的散热技术。
3.1 散热片散热片是一种常见的散热技术,通过将散热片与大功率电子器件直接接触,利用传导方式将热量传递到散热片上,再通过对流和辐射的方式将热量散发出去。
散热片的材料通常选择导热性能较好的金属材料,如铝、铜等。
3.2 散热风扇散热风扇是一种通过对流方式进行散热的技术。
通过风扇的转动,可以加速空气流动,增强散热效果。
在实际应用中,通常会将散热风扇与散热片结合使用,以提高散热效率。
3.3 热管技术热管技术是一种利用液体在管道内的循环流动来传导热量的技术。
通过将热管与大功率电子器件连接,热管内的工作介质在热量作用下蒸发成气体,然后在冷却部分重新凝结成液体,形成闭合的循环。
这种技术具有传导散热效果好、散热均匀等优点。
4. 散热技术的优化与改进目前,针对大功率电子器件的散热技术仍然存在一些问题,如散热效率不高、成本较高等。
因此,研究人员正在不断努力进行优化与改进。
散热器制造工艺流程
散热器制造工艺流程散热器是一种用于散热的设备,广泛应用于电子设备、汽车发动机、冷却塔等领域。
下面是散热器的制造工艺流程:第一步:原材料准备散热器的主要原材料包括铝合金、铜合金、铜铝复合材料等。
在制造散热器之前,需要对原材料进行检查和准备。
首先,检查原材料的质量和规格是否符合要求。
然后,根据散热器的设计要求,选择合适的原材料进行切割和加工。
第二步:冲压加工冲压是散热器制造流程中的重要环节。
首先,根据设计图纸,将原材料进行冲压、剪断和弯曲等操作,制作出散热器的各个零部件。
冲压过程中,需要控制好冲压力度和角度,以确保零件的尺寸和形状精确、一致。
第三步:焊接焊接是将散热器各个零部件进行连接的过程。
常用的焊接方法包括点焊、氩弧焊和激光焊接等。
在焊接过程中,需要控制好焊接温度和时间,以确保焊接接头的质量和强度。
第四步:铆接和装配铆接是散热器制造过程中的另一个重要环节。
将焊接好的零部件通过铆接将其固定在一起。
铆接可以提高散热器的强度和稳定性。
在装配过程中,需要将各个零部件按照设计要求组装在一起,并进行质量检验和调整。
第五步:表面处理表面处理是为了提高散热器的防腐蚀性能和外观质量。
常用的表面处理方法包括阳极氧化、镀锌、涂装等。
通过表面处理,可以增加散热器的耐用性和美观性。
第六步:质量检验在散热器制造工艺流程的各个环节都需要进行质量检验。
包括原材料质量检验、产品尺寸检测、焊接接头强度测试和表面质量检验等。
通过质量检验,可以确保散热器的质量符合要求。
第七步:包装和运输最后一步是散热器的包装和运输。
根据散热器的规格和尺寸,选择合适的包装材料,将散热器进行包装,以保护其不受损坏。
然后,将包装好的散热器送至仓库或客户现场,准备运输。
散热器的制造工艺流程包括原材料准备、冲压加工、焊接、铆接和装配、表面处理、质量检验以及包装和运输等环节。
每个环节都需要精确控制和严格检验,以确保散热器的质量和性能符合要求。
电子封装的散热设计原理
电子封装的散热设计原理电子封装的散热设计原理在现代电子产品中,散热是一个非常重要的设计考虑因素。
随着电子元件和集成电路的不断发展,电子封装的散热设计原理也变得越来越关键。
本文将介绍一些常见的电子封装散热设计原理。
首先,散热设计的目标是将电子元器件产生的热量迅速有效地传导、辐射和对流到周围环境中。
通过合理的散热设计,可以保持电子元器件的工作温度在安全范围内,提高其工作效率和寿命。
一种常见的散热设计原理是利用导热材料。
导热材料,如硅胶脂、硅胶垫等,具有良好的导热性能,可以将电子元器件的热量迅速传导到散热器或散热片上。
通过选择合适的导热材料,可以提高热量的传导效率,从而减少电子元器件的温度升高。
另一种散热设计原理是利用散热器或散热片。
散热器通常由铝或铜等材料制成,具有良好的热传导性能。
散热器通过增大表面积,提高空气的对流效果,加速热量的辐射。
同时,散热片的设计也非常重要。
通过增加散热片的数量和密度,可以增强散热器的散热能力,有效降低电子元器件的温度。
此外,风扇也是一种常用的散热设计原理。
风扇能够通过强制对流,将散热器表面的热量带走。
通过选择合适的风扇尺寸和转速,可以提供足够的风量,保持电子元器件的工作温度稳定。
最后,设计良好的散热路径也是散热设计的重要原则。
通过合理的散热路径设计,可以确保热量能够顺利地从电子元器件传导到散热器或散热片上,并最终通过对流、辐射等方式散发到周围环境中。
综上所述,电子封装的散热设计原理包括利用导热材料、散热器和散热片、风扇以及设计合理的散热路径等。
通过合理地应用这些原理,可以有效降低电子元器件的温度,提高其工作效率和寿命。
在未来的电子封装设计中,散热设计将继续发挥重要的作用,随着技术的不断发展,也会出现更多创新的散热设计原理。
电脑散热器生产工艺
电脑散热器生产工艺随着电脑技术的不断发展,电脑的性能越来越强大,但也带来了一个严重的问题——散热。
电脑在运行过程中会产生大量的热量,如果不能及时有效地散热,就会导致电脑的温度过高,从而影响其性能和寿命。
因此,电脑散热器的生产工艺显得尤为重要。
电脑散热器的生产需要选用合适的材料。
散热器通常由铝合金或铜制成,这些材料具有良好的导热性能,能够快速将热量传导到散热器表面。
此外,散热器的外壳通常采用塑料或金属材料,以保护内部散热结构,并具备良好的耐热性能。
电脑散热器的生产过程中需要进行精确的设计和制造。
散热器通常由散热片、散热管和风扇等组成。
散热片的设计要考虑到散热面积的大小和散热片之间的间距,以确保热量能够充分散发。
散热管的设计要考虑到管道的长度和弯曲角度,以提高热量传导效率。
风扇的设计要考虑到风量和噪音等因素,以保证散热器的散热效果和使用体验。
在生产过程中,需要采用先进的加工设备和技术。
例如,散热片的制造通常采用冲压工艺,通过模具将金属板材冲压成所需形状。
散热管的制造通常采用焊接工艺,将散热管与散热片连接起来。
风扇的制造通常采用注塑工艺,将塑料材料注入模具中,形成风扇叶片和外壳。
电脑散热器的生产还需要进行严格的质量控制。
在生产过程中,需要对材料进行检测,确保其符合相关标准和要求。
对于成品散热器,需要进行散热性能测试,以确保其能够满足设计要求。
同时,还需要进行外观检查和功能测试,以确保散热器的外观完好无损,并能正常工作。
电脑散热器的生产工艺是一个复杂而精细的过程。
通过选用合适的材料、精确的设计和制造、先进的加工设备和技术,以及严格的质量控制,可以生产出高质量的电脑散热器,有效地解决电脑散热问题,保证电脑的性能和寿命。
随着科技的不断进步,相信电脑散热器的生产工艺也会不断创新和改进,为用户提供更好的散热解决方案。
半导体器件的散热器设计
半导体器件的散热器设计半导体开关器件所产生的热量,在开关电源中占主导地位,其热量主要来源于半导体开关器件的开通、关断及导通损耗。
采用软开关方式(ZCS或ZVS)可以使电路中的电压或电流在过零时开通或关断,可以最大限度地减少开关损耗,但是也无法彻底消除开关管的损耗,故利用散热器是常用的主要方法之一。
1 散热器的热阻模型散热器是开关电源的重要组成元件,它的散热效果的好与坏关系到开关电源的工作性能。
散热器通常采用铜或铝,虽然铜的热导率比铝高两倍,但其价格比铝高得多,故目前普遍采用铝型材做散热器。
铝型材的表面积越大,其散热效果越好。
散热器的热阻模型及其等效电路如图1(a)、(b)所示。
图1 散热器的热阻模型及其等效电路半导体结温公式如下:式中PC——功率开关管工作时的损耗;PC max——功率开关管的额定最大损耗;Tj——功率开关管的结温;Tj max——功率开关管的最大允许结温;Ta——环境温度;Tc——预定的工作环境温度;Rs——绝垫热阻;Rc——接触热阻(半导体管和散热器的接触部分);Rf——散热器的热阻(散热器与空气);Ri——内部热阻(PN结接合部与外壳封装);Rb——外部热阻(夕卜壳封装与空气)。
根据图(b)所示的热阻等效电路,全热阻可以写成为R j-a=R i+[R b.(R s+R c+R f)]/(R b+R s+R c+R f)因为R b》(R s+R c+R f),故可以近似认为R j-a=R i+R s+R c+R f(1)PN结与外部封装之间的热阻抗(又叫内部热阻抗)R i与半导体PN结构造、所用材料、外部封装内的填充物直接相关,每种半导体都有自身圃有的热阻抗。
(2)接触热阻抗Rc是由半导体、封装形式和散热器的接触面状态所决定的。
接触面的平坦度、粗糙度、接触面积、安装方式等,都会对它产生影响。
当接触面不平整、不光滑或接触面紧固力不足时,就会增大接触热阻抗Rc。
在半导体管和散热器之间涂上硅油时,可以增大接触面积,排除接触面之间的空气,硅油本身又具有良好的导热性,可以大大降低接触热阻抗Rc。