希望杯第20届(09年)初二第二试试卷
八年级数学希望杯第1-22届试题汇总(含答案与提示)

希望杯第一届(1990)第二试试题 (1)希望杯第二届(1991年)初中二年级第二试试题 (5)希望杯第三届(1992年)初中二年级第二试题 (10)希望杯第四届(1993年)初中二年级第一试试题 (18)希望杯第四届(1993年)初中二年级第二试试题 (24)希望杯第五届(1994年)初中二年级第一试试题 (26)希望杯第五届(1994年)初中二年级第二试试题 (32)第六届(1995年)初中二年级第一试试题 (45)希望杯第六届(1995年)初中二年级第二试试题 (50)希望杯第七届(1996年)初中二年级第一试试题 (56)希望杯第七届(1996年)初中二年级第二试试题 (62)希望杯第八届(1997年)初中二年级第一试试题 (72)希望杯第八届(1997年)初中二年级第二试试题 (79)第九届(1998年)初中二年级第一试试题 (88)希望杯第九届(1998年)初中二年级第二试试题 (98)1999年第十届“希望杯”全国数学邀请赛第二试 (108)2000年第十一届“希望杯”数学竞赛初二第一试 (111)2000年第十一届“希望杯”数学竞赛初二第二试 (114)2001年希望杯第十二届初中二年级第一试试题 (119)2001年希望杯第12届八年级第2试试题 (122)2002年第十三届全国数学邀请赛初二年级第一试 (129)2002年度初二“希望杯”全国数学邀请赛第二试 (132)2003年第十四届“希望杯”全国数学邀请赛初二第1试 (139)2003年第十四届“希望杯”(初二笫2试) (142)2004年第十五届“希望杯”全国数学邀请赛初二 (148)2004年第十五届“希望杯”全国数学邀请赛初二第2试 (151)2005年第十六届希望杯初二第1试试题 (157)2005年第十六届“希望杯”全国数学邀请赛第二试 (159)2006年第十七届“希望杯”全国数学邀请赛第一试 (163)2006年第十七届“希望杯’’数学邀请赛第二试 (166)2007年第十八届”希望杯“全国数学邀请赛第一试 (171)2007年第十八届“希望杯”全国数学邀请赛第二试 (173)2008年第19届“希望杯”全国数学邀请赛初二第2试试题 (179)2009年第二十届“希望杯”全国数学邀请赛第一试 (183)2009年第20届“希望杯”全国数学邀请赛第二试 (186)2010年第二十一届“希望杯”全国数学邀请赛第一试 (193)2010年第二十一届“希望杯”全国数学邀请赛第二试 (195)2011年第二十二届“希望杯”全国数学邀请赛第二试 (201)希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ]A.7.5 B.12. C.4. D.12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ]A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则[ ]A .M >P >N 且M >Q >N.B .N >P >M 且N >Q >MC .P >M >Q 且P >N >Q.D .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1,则∠BDA=[ ]A .30°B .45°.C .60°.D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A .是不存在的.B .恰有一种.C .有有限多种,但不只是一种.D .有无穷多种二、填空题:(每题1分,共5分)1. △ABC 中,∠∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA 的延长线交于N .已知CL=3,则CN=______.2. 2(2)0ab -=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____. 3. 已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4. ΔABC 中, ∠B=300,三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______. 5. 设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n 之和被7除余数都不为1,将所有满足上述条件的自然数n 由小到大排成一列n 1<n 2<n 3<n 4……,试求:n 1·n 2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n.即 n1=4,n2=7∴ n1×n2=4×7=28.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m,n的比是t(t>1).若m+n=s,则m,n中较小的数可以表示为( )A.ts; Bs-ts; C.1tss+; D.1st+.3.y>0时( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a,b,c的关系可以写成( ) A.a<b<c. B.(a-b)2+(b-c)2=0. C.c<a<b. D.a=b≠c5.如图30,AC=CD=DA=BC=DE.则∠BAE是∠BAC的 ( )A.4倍. B.3倍. C.2倍. D.1倍6.D是等腰锐角三角形ABC的底边BC上一点,则AD,BD,CD满足关系式( )A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 27.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为的x 2、y 2的值是( )A.x 2y 22,y 2C. x 2y 22,y 29.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为 ( )A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b a a b +等于( ) A.2213; B.5821; C.240249; D.36538. 二、填空题(每题1分,共10分)1.1989×19911991-1991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______. 6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______.8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______.9.2x x +++______.10.已知两数积ab ≠1.且2a2+1234567890a+3=0,3b2+1234567890b+2=0,则ab=______.三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1.已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO∥FK,OH∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF改成直的.(即两边都是直线)但进水口EF的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989 (1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。
初中二年级历届“希望杯”二试解答题

初中二年1-17届“希望杯”二试解答题1.1、从自然数354 , , 3 , 2 , 1 中仸取178个数,试证:其中必有两个数,它们的差是177。
1.2、平面上有两个边长相等的正方形ABCD 和D C B A '''',且正方形D C B A ''''的顶点A '在正方形ABCD 的中心。
当正方形D C B A ''''绕A '转动时,两个正方形的重合部分的面积必然是一个定值。
这个结论对吗?证明你的判断。
1.3、用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n 之和被7除余数都不为1,将所有满足上述条件的自然数n 由小到大排成一列 <<<<4321n n n n ,试求:21n n ⋅之值。
2.1、已知两个正数的立方和是最小的质数,求证:这两个数之和不大于2。
2.2、一块四边形的地(如图2.2所示)(KG OH FK EO //,//)内有一段曲折的水渠,现在要把这段水渠EOHGKF 改成直的(即两边都是直线)。
但进水口EF 的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠以节省工时,那么新渠的两条边应当怎么作?写出作法,幵加以证明。
A B 图2.23.1、若0 , , , >d c b a ,证明:在方程02212=+++cd x b a x , 02212=+++da x c b x ,02212=+++ab x d c x ,02212=+++bc x a d x 中,至少有两个方程有不相等的实数根。
3.2、(1)能否把1992 , , 3 , 2 , 1 这1992个数分成八组,使得第二组各数之和比第一组各数之和多10,第三组各数之和比第二组各数之和多10,…,最后第八组各数之和比第七组各数之和也多10?请加以说明。
2009年第20届全国希望杯数学邀请赛数学初二第1试试卷

第二十届“希望杯”全国数学邀请赛(2009年)初二第一试一、选择题(每小题4分,共40分)1.在一次视力检查中,初二(1)班的50人中只有8人的视力达标.用扇形图表示视力检查结果,则表示视力达标的扇形的圆心角是()A.64.8ºB.57.6ºC.48ºD.16º2.如图,已知点B在反比例函数y=kx的图象上.从点B分别作x轴和y轴的垂线,垂足分别为A、C.若△ABC的面积是4,则反比例函数的解析式是()A.y=-8x B.y=8x C.y=-4x D.y=4x3.如果a+2ab+b=2,且b是有理数,那么()A.a是整数B.a是有理数C.a是无理数D.a可能是有理数,也可能是无理数4.复印纸的型号有A0、A1、A2、A3、A4等,它们有如下的关系:将上一个型号(例如A3)的复印纸在长的方向对折后得到两张下一型号(A4)的复印纸,且各种型号的复印纸的长与宽的比相等,那么这些型号的复印纸的长与宽的比约为()A.1.141∶1 B.1∶1 C.1∶0.618 D.1.732∶15.The number of integer solutions for the syetem of inequalities⎩⎨⎧x-2a≥0,3-2x>-1about x is just 6,then the range of value for real number a is ()A.-2.5<a≤-2 B.-2.5≤a≤-2 C.-5<a≤-4 D.-5≤a≤-4(integer solutions 整数解syetem of inequalities 不等式组the range of value 取值范围)6.若分式|x|-23x-2的值是负数,则x的取值范围是()A.23<x<2 B.x>23或x<-2C.-2<x<2且x≠23D.23<x<2或x<-27.在100到1000的整数中(含100和1000),既不是完全平方数,也不是完全立方数的有()A.890个B.884个C.874个D.864个8.如图,在正方形ABCD中,E是CD边的中点,点F在BC上,∠EAF=∠DAE,则下列结论中正确的是()A.∠EAF=∠F AB B.BC=3FCC.AF=AE+FC D.AF=BC+FC9.计算:33)7411()7411(-++,结果等于()A.58 B.387C.247D.32710.已知在代数式a+bx+cx2中,a、b、c都是整数,当x=3时,该式的值是2008;当x=7时,该式的值是2009,这样的代数式有()A CBD A .0个 B .1个 C .10个 D .无穷多个二、A 组填空题(每小题4分,共40分)11.某地区有20000户居民,从中随机抽取200户,调查是否已安装电话,结果如右表所示,则该地区已安装电话的户数大约是 .12.若14x +5-21x 2=-2,则6x 2-4x +5= .13.不等式x -1>2 x 的最大整数解是 .14.已知m 是整数,以4m +5、2m -1、20-m 这三个数作为同一个三角形三边的长,则这样的三角形有个.15.当x 依次取1,2,3, (2009)1 2, 1 3, 1 4,…, 1 2009时,代数式 x 21+x 2的值的和等于 .16.由直线y =x +2、y =-x +2和x 轴围成的三角形与圆心在点(1,1)、半径为1的圆构成的图形覆盖的面积等于 . 17.在Rt △ABC 中,∠C =90º,斜边AB 边上的高为h ,则两直角边的和a +b 与斜边及其高的和c +h 的大小关系是a +b c +h (填“>”、“=”、“<”). 18.The figure on the right is composed of square ABCD and triangle BCE ,where ∠BEC is right angle .Supposethe length of CE is a ,and the length of BE is b ,then the distance between point A and line CE equals to .(be composed of 由…组成 right angle 直角 length 长度 distance 距离)19.如图,在△ABC 中,AB >BC ,BD 平分∠ABC ,若BD 将△ABC 的周长分为4∶3的两部分,则△ABD与△BCD 的面积比等于 .20.如果将n 个棋子放入10个盒子内,可以找到一种放法,使每个盒子内都有棋子,且这10个盒子内的棋子数都不同;若将(n +1)个棋子放入11个盒子内,却找不到一种放法,能使每个盒子内都有棋子,并且这11个盒子内的棋子数都不同,那么整数n 的最大值等于 ,最小值等于 .三、B 组填空题(每小题8分,共40分)21.如果自然数a 与b (a >b )的和、差、积、商相加得27,那么a = ,b = . 22.若 a b +c = b c +a = ca +b ,则2a +2b +c a +b -3c= 或 .23.若关于x 的方程 1 x -1- a2-x = 2(a +1) x 2-3x +2无解,则a = 或 或 .24.对于正整数k ,记直线y =-k k +1x + 1k +1与坐标轴所围成的直角三角形的面积为S k ,则S k = ,S 1+S 2+S 3+S 4= .25.将 1 2, 1 3, 1 4,…, 1100这99个分数化成小数,则其中的有限小数有 个,纯循环小数有 个(纯循环小数是指从小数点后第一位开始循环的小数).【部分详解】1、解:扇形的圆心角=8÷50×360°=57.6°.故选B.2、解:由题意得:三角形的面积等于1/ 2 |k|,∴|k|=8,又∵反比例函数图象在四象限.∴k<0,∴k=-8,∴反比例函数的解析式是y=-8/ x .故选A.3、4、5、这六个整数解为1,0,-1,-2,-3,-4-5<2a<=-4,故选A6、7、解:在100到1000中(包括100和1000),完全平方的有100、121、144、169、196、225、256、289、324、361、400、441、484、529、576、625、676 729、784、841、900、961,共22个,完全立方的有125、216、343、512、729、1000,共6个,729既是完全平方数,又是立方数,∴既不是完全平方数,也不是完全立方数个数为901-22-6+1=874.故选C.8、9、10、解:根据题意,得a+3b+9c=2008,①a+7b+49c=2009,②,由②-①,得4b+40c=1,③∵a、b、c都是整数,∴③的左边是4的倍数,与右边不等,所以,这样的代数式不存在;故选A.11、解:安装的频率=95/ 200 ,∴该地区已安装电话的户数大约=20000×95 /200 =9500.故答案为:9500.12、13、14、解:根据三角形两边之和大于第三边,可得(4m+5)+(2m-1)>20-m,7m>16①;(4m+5)+(20-m)>2m-1,m>-26②;(2m-1)+(20-m)>4m+5,3m<14③.整理16/7 <m<14/ 3 .∵m取整数∴m=3或4.故这样的三角形有2个.故答案为:2.15、16、17、18、19、20、解:①对于n值为最大的情况,从已知n值最小为出发点,在增加一个盒子之后若出现使得各个盒子中的棋子数不相同,则应该有1、2、3、4、5、6、7、8、9、10、11.而1+2+3+4+5+6+7+8+9+10+11=66,如果n=65,n+1=66,就能够找到11个不重复且不为0的方法了,所以最大值是64个②对于n值最小的情况,必有一盒子中放有1棋子,而其它的也都各不相同,为使总棋子数最小则其它应依次为2、3、4、5、6、7、8、9、10,共有55 颗,若再添一颗棋子则找不到各个不同的方法,所以n值最小为55.故答案为:64、55.21、22、23、24、25、解:分母中只含有质因数2的数是:2,4,8,16,32,64;分母中只含有质因数5的数是:5,25;分母中只含有质因数2和5的数是:10,20,40,50,80,100;一共有:6+2+6=14(个);答:能化成有限小数的分数有14个.故答案为:14.1/2,1/4,1/5,1/8,1/10.1/16.1/20,1/25,1/32,1/40,1/50,1/64,1/80,1/100分母分解的质因数中不含2或5,则该分数为纯循环小数100以内的质数为25个,去掉2和5还有13个还有9,21,33,39,49,51,57,63,69,77,87,91,93,99共14个所以共有39个。
第20届“希望杯”全国数学邀请赛试卷初二第1试

2009 年第 20 届“希望杯”全国数学邀请赛试卷(初二第 1 试)一、选择题(共10 小题,每题 4 分,满分40 分)1.( 4 分)在一次视力检查中,八年级(1)班的 50 人中只有8 人的视力达标,用扇形图表示视力检查结果,则表示视力达标的扇形的圆心角是()A .64.8°B .57.6°C. 48°D. 16°2.(4 分)如图,已知点 B 在反比率函数y=的图象上.从点B分别作x轴和y轴的垂线,垂足分别为A、 C.若△ ABC 的面积是4,则反比率函数的分析式是()A .y=﹣B .y=C. y=﹣D. y=3.( 4 分)假如a+ab+b=,且b是有理数,那么()A .a 是整数B . a 是有理数C. a 是无理数D .a 可能是有理数,也可能是无理数4.( 4 分)复印纸的型号有A0、A1、A2、A3、A4 等,它们有以下的关系:将上一个型号(例如 A3)的复印纸在长的方向对折后获得两张下一型号(A4)的复印纸,且各样型号的复印纸的长与宽的比相等,那么这些型号的复印纸的长与宽的比约为()A .1.414: 1B .1: 1C. 1: 0.618D. 1.732: 15.(4 分) The number of integer solutions for the syetemof inequalities about x is just 6, then the range of value for real number a is()(integersolutions 整数解; syetemofinequalities 不等式组; therangeofvalue 取值范围)A .﹣ 2.5< a≤﹣ 2B .﹣ 2.5≤ a≤﹣ 2C.﹣ 5<a≤﹣ 4D. a 不存在6.( 4 分)若分式的值是负数,则x 的取值范围是()A .<x<2B. x>或x<﹣2C .﹣ 2< x < 2 且 x ≠D .< x < 2 或 x <﹣ 27.( 4 分)在 100 到 1000 的整数中(含 100 和 1000 ),既不是完整平方数,也不是完整立方数的有()A .890 个B .884 个C . 874 个D . 864 个8.( 4 分)如图, 在正方形 ABCD 中, E 是 CD 边的中点, 点 F 在 BC 上, ∠ EAF =∠ DAE ,则以下结论中正确的选项是()A .∠ EAF =∠ FAB B .BC = 3FC C . AF = AE+FCD . AF = BC+FC 9.( 4 分)计算:,结果等于( )A .56B .38C . 24D . 3210.( 4 分)已知在代数式 a+bx+cx 2中, a 、b 、 c 都是整数,当 x = 3 时,该式的值是 2008;当 x = 7 时,该式的值是 2009,这样的代数式有( )A .0 个B .1 个C . 10 个D .无量多个二、填空题(共 15 小题,满分 80分)11.(4 分)某地域有 20000 户居民,从中随机抽取 200 户,检查能否已安装电话,结果如右表所示,则该地域已安装电话的户数大概是.电话安装状况动迁户原住户已安装 60 35未安装456022= .12.( 4 分)若 14x+5 ﹣21x =﹣ 2,则 6x ﹣4x+5 13.( 4 分)不等式 x ﹣ 1> x 的最大整数解是.14.(4 分)已知 m 是整数,以 4m+5、2m ﹣ 1、20﹣ m 这三个数作为同一个三角形三边的长, 则这样的三角形有个.15.( 4 分)当 x 挨次取 1, 2, 3, , 2009, , , , , 时,代数式 的值的和等于.16.( 4 分)由直线 y= x+2 、 y=﹣ x+2 和 x 轴围成的三角形与圆心在点(1,1),半径为 1 的圆构成的图形覆盖的面积等于.17.(4 分)在 Rt△ ABC 中,∠ C= 90°,斜边AB 边上的高为h,则两直角边的和a+b 与斜边及其高的和c+h 的大小关系是a+b c+h(填“>”、“=”、“<”).18.(4 分) The figure on the right is composed of square ABCD and triangle BCE,where∠ BEC is right angle. Suppose the length of CE is a, and the length of BE is b, then the distance between point A and line CE equals to.( be composed of 由构成right angle 直角length 长度distance 距离)如图是由正方形ABCD 和三角形BCE 构成,此中∠ BEC 的是直角.假定CE 长度是 a,BE 的长度是b,那么 A 点和直线CE 之间的距离等于?19.( 4 分)如图,在△ ABC 中, AB> BC,BD 均分∠ ABC,若 BD 将△ ABC 的周长分为4:3 的两部分,则△ ABD 与△ BCD 的面积比等于.20.(4 分)假如将 n 个棋子放入10 个盒子内,能够找到一种放法,使每个盒子内都有棋子,且这 10 个盒子内的棋子数都不一样;若将(n+1 )个棋子放入11 个盒子内,却找不到一种放法,能使每个盒子内都有棋子,而且这11 个盒子内的棋子数都不一样,那么整数n 的最大值等于,最小值等于.21.( 8 分)假如自然数 a 与 b( a> b)的和、差、积、商相加得27,那么a=,b =.22.( 8 分)若==,则=或.23.( 8 分)若以 x 为未知数的方程无解,则a=.24.( 8 分)对于正整数 k,记直线 y=﹣x+与坐标轴所围成的直角三角形的面积为S k,则 S k=,S1+S2+S3+S4=.25.( 8 分)将,,,,这99个分数化成小数,则此中的有限小数有个,纯循环小数有个(纯循环小数是指从小数点后第一位开始循环的小数).2009 年第 20 届“希望杯” 全国数学邀请赛试卷(初二第1试)参照答案与试题分析一、选择题(共10 小题,每题 4 分,满分40 分)1.( 4 分)在一次视力检查中,八年级(1)班的 50 人中只有8 人的视力达标,用扇形图表示视力检查结果,则表示视力达标的扇形的圆心角是()A .64.8°B .57.6°C. 48°D. 16°【剖析】先求出视力达标人数所占百分比,再乘以360°即可求得扇形的圆心角度数.【解答】解:扇形的圆心角=8÷ 50× 360°= 57.6°.应选: B.【评论】本题考察扇形统计图及有关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.2.(4 分)如图,已知点 B 在反比率函数y=的图象上.从点B分别作x轴和y轴的垂线,垂足分别为A、 C.若△ ABC 的面积是4,则反比率函数的分析式是()A .y=﹣B .y=C. y=﹣D. y=【剖析】依据反比率函数中比率系数的几何意义,三角形的面积等于|k|,以及函数所在的象限,即可确立k 的符号.从而获得函数的分析式.【解答】解:由题意得:三角形的面积等于|k|,∴|k|= 8,又∵反比率函数图象在四象限.∴k< 0,∴k=﹣ 8,∴反比率函数的分析式是y=﹣.应选: A.【评论】本题考察了反比率函数系数k 的几何意义,由三角形的面积求得k 的值是解决本题的要点.3.( 4 分)假如a+ab+b=,且b是有理数,那么()A .a 是整数B . a 是有理数C. a 是无理数D .a 可能是有理数,也可能是无理数【剖析】先把等式变形为a+b=(1﹣ab),再依据等式一边出现无理数则a,b 中必有一个数为无理数即可进行解答.【解答】解:∵ a+ab+b=,∴a+b=( 1﹣ ab)等式一边出现无理数,若 a, b 均为有理数,则等式恒不建立,又∵ b 为有理数,∴ a 必为无理数.应选: C.【评论】本题考察的是有理数及无理数的观点及运算,能把原式化为a+b=(1﹣ab)的形式是解答本题的要点.4.( 4 分)复印纸的型号有A0、A1、A2、A3、A4 等,它们有以下的关系:将上一个型号(例如 A3)的复印纸在长的方向对折后获得两张下一型号(A4)的复印纸,且各样型号的复印纸的长与宽的比相等,那么这些型号的复印纸的长与宽的比约为()A .1.414: 1B .1: 1C. 1: 0.618D. 1.732: 1【剖析】由题意得,小长方形长:宽=大长方形长:宽,相像比为大矩形的长:小矩形的长,据此求解.【解答】解:设小长方形的宽为x,长为 y,则大长方形的宽为y,长为 2x,由题意得:y: x= 2x:y,∴ x: y=1:,设x= k, y= k,则 2x= k,∴相像比= 2x:y=2k:k=:1≈ 1.414:1.【评论】本题考察相像多边形的性质.相像多边形对应边之比等于相像比.5.(4 分) The number of integer solutions for the syetemof inequalities about x is just 6, then the range of value for real number a is()(integersolutions 整数解; syetemofinequalities 不等式组; therangeofvalue 取值范围)A .﹣ 2.5< a≤﹣ 2B .﹣ 2.5≤ a≤﹣ 2C.﹣ 5<a≤﹣ 4D. a 不存在【剖析】先依据②中 x 的取值范围及x 只有整数 6 这一个解即可得出对于2a 的不等式,求出 a 的取值范围即可.【解答】解:,由②得 x≤﹣ 4,由①得 x≥ 2a,∵x 的值只有整数 6,∴而 x≤﹣ 4,∴不存在知足条件的 a 的值.应选: D .【评论】本题考察的是一元一次不等式组的整数解,由不等式的整数解得出对于 a 的不等式,是解答本题的要点.6.( 4 分)若分式的值是负数,则x 的取值范围是()A .<x<2B. x>或x<﹣2C.﹣ 2< x< 2 且 x≠D.<x<2或x<﹣2【剖析】依据题意列出不等式组,解不等式组则可.【解答】解:∵分式的值是负数,∴< 0,∴或,解得 x<﹣ 2 或<x<2.应选: D .【评论】本题考察分式的值的正负性和解含绝对值的一元一次不等式组的知识点,难度中等.7.( 4 分)在 100 到 1000 的整数中(含100 和 1000 ),既不是完整平方数,也不是完整立方数的有()A .890 个B .884 个C. 874 个D. 864 个【剖析】第一找到100 到 1000 的整数中是完整平方数,或许是完整立方数的数,除掉这些数其余的数既不是完整平方数,也不是完整立方数.【解答】解:在 100 到 1000 中(包含100 和 1000 ),完整平方的有100、 121、144、 169、196、 225、 256、289、 324、 361、 400、 441、 484、529、 576、 625、 676 729、 784、 841、 900、 961,共 22 个,完整立方的有125、 216、343、 512、 729、 1000,共 6 个,729既是完整平方数,又是立方数,∴既不是完整平方数,也不是完整立方数个数为901﹣22﹣ 6+1 =874.应选: C.【评论】本题主要考察完整平方数的知识点,解答本题的要点是找出在100 到 1000 的整数中是完整平方数,或许是完整立方数的数.8.( 4 分)如图,在正方形ABCD 中, E 是 CD 边的中点,点 F 在 BC 上,∠ EAF =∠ DAE ,则以下结论中正确的选项是()A .∠ EAF =∠ FAB B .BC= 3FC C. AF = AE+FC D. AF = BC+FC【剖析】把△ ADE 绕 A 点逆时针旋转 90°得△ ABG,依据旋转的性质得∠ 1=∠ 5,∠ 3 =∠G,∠ADB=∠ABG,DE =BG,则∠GBF=180°,即G,B,F 共线,再依据∠3 =∠2+∠ 4,∠ 1=∠ 2,可获得∠ G=∠ 5+∠ 4,则 AF = GF;而后设正方形 ABCD 的边长为 2a,BF = x,则 AF= x+a,在 Rt △ ABF 中,利用勾股定理获得x=a,则 FC =a,AF=a, BC+FC = 2a+ a=a= AF ,获得正确选项.【解答】解:把△ ADE 绕 A 点逆时针旋转90°得△ ABG,如图,∴∠ 1=∠ 5,∠ 3=∠ G,∠ ADE=∠ ABG, DE= BG,∴∠ GBF= 180°,即 G, B,F 共线,又∵∠ 3=∠ 2+∠4,∠ 1=∠ 2,∴∠ 3=∠ 5+∠ 4,∴∠ G=∠ 5+∠ 4,∴AF= GF ;设正方形ABCD 的边长为2a,则 DE= a,2 2 2设BF = x,则 AF =x+a,在 Rt△ ABF 中,(x+a)=4a +x ,解得 x= a,则FC = a, AF= a,∴BC+FC = 2a+ a= a= AF.因此 D 选项正确.应选: D .【评论】本题考察了旋转的性质,旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等,正方形的性质以及勾股定理.9.( 4 分)计算:,结果等于()A .56B .38C. 24D. 32【剖析】利用=,当 a > 0 时=a;当a≤ 0 时=﹣a,先将开方,再进行运算即可.【解答】解:∵( 11+4 )> 0,( 11﹣ 4 )> 0,∴原式=( 11+4 )+( 11﹣ 4 ),=( 11+4) +( 11﹣ 4 ) ,∵ 2+ > 0, 2﹣< 0,∴原式=( 11+4 )( 2+ ) +( 11﹣ 4 )( ﹣ 2), = 22+11 +8 +28+11﹣22﹣ 28+8,= 38 . 应选: B .【评论】 本题考察二次根式的化简,在化简中注意结果要化到最简二次根式,特别是二次根式的乘除运算要与加减运算划分,防止相互扰乱.10.( 4 分)已知在代数式 a+bx+cx 2中, a 、b 、 c 都是整数,当 x = 3 时,该式的值是 2008;当 x = 7 时,该式的值是 2009,这样的代数式有()A .0 个B .1 个C . 10 个D .无量多个【剖析】 依据已知条件“当 x = 3时,该式的值是 2008;当 x = 7 时,该式的值是 2009”列出对于 a 、b 、c 的三元一次方程组, 而后利用 “加减消元法” 消去 a ,而后依据 “ a 、b 、 c 都是整数”来确立 b 、 c 的值.【解答】 解:依据题意,得,由 ② ﹣① ,得4b+40c =1, ③∵ a 、 b 、 c 都是整数,∴ ③ 的左侧是 4 的倍数,与右侧不等,因此,这样的代数式不存在;应选: A .【评论】 本题主要考察了三元一次不定方程的解法.依据题意列出方程组,及依据已知条件“ a 、 b 、 c 都是整数”来确立未知数的取值范围是解题的要点所在.二、填空题(共 15 小题,满分 80 分)11.(4 分)某地域有 20000 户居民,从中随机抽取200 户,检查能否已安装电话,结果如右表所示,则该地域已安装电话的户数大概是9500 .电话安装状况动迁户原住户已安装 60 35 未安装4560【剖析】 依据频数=总数×频次,可得出答案. 【解答】 解:安装的频次= ,∴该地域已安装电话的户数大概= 20000×= 9500.故答案为: 9500.【评论】 本题考察用样本预计整体的知识,属于基础题,解答本题的要点是掌握频数=总数×频次这个关系.2 2 ﹣4x+5= 7.12.( 4 分)若 14x+5 ﹣21x =﹣ 2,则 6x【剖析】 依据已知条件求得 3x 2﹣ 2x = 1,而后将所求的代数式转变为含有3x 2﹣ 2x 的形式,将 3x 2﹣ 2x = 1 代入此中求解即可.【解答】 解:∵ 14x+5 ﹣ 21x 2=﹣ 2,即 21x 2﹣14x = 7, ∴ 3x 2﹣ 2x = 1,∴ 6x 2﹣ 4x+5,= 2( 3x 2﹣ 2x ) +5,= 7.故答案是: 7.【评论】 本题考察了代数式求值.代数式中的字母表示的数没有明确见告,而是隐含在题设中,第一应从题设中获得代数式3x 2﹣ 2x 的值,而后利用“整体代入法”求代数式的值.13.( 4 分)不等式 x ﹣ 1>x 的最大整数解是 ﹣ 3 .【剖析】 本题需先解出不等式,再依据求出的结果确立不等式的最大整数解.【解答】 解:∵ x ﹣ 1>x ,∴ x ﹣x > 1,( 1﹣) x >1,∵,∴,∴ x<,∴不等式x﹣ 1>x 的最大整数解是﹣3.故填:﹣ 3.【评论】本题主要考察了二次根式的混淆运算和不等式的解法,在解题时要注意符号的变化问题.14.(4 分)已知 m 是整数,以 4m+5、2m﹣ 1、20﹣ m 这三个数作为同一个三角形三边的长,则这样的三角形有2个.【剖析】先依据三角形三边关系列出不等式求出m 的取值范围,再由m 是整数,求出m 的值,从而获得三角形的个数.【解答】解:依据三角形两边之和大于第三边,可得(4m+5 ) +(2m﹣ 1)> 20﹣ m,7m> 16①;(4m+5 ) +(20﹣ m)> 2m﹣ 1,m>﹣ 26②;(2m﹣ 1) +( 20﹣ m)> 4m+5,3m< 14③ .整理< m<.∵m 取整数∴m= 3 或 4.故这样的三角形有 2 个.故答案为: 2.【评论】本题考察了三角形三边关系.本题实质上就是依据三角形三边关系定理列出不等式(组),而后解不等式(组)即可.15.( 4 分)当 x 挨次取 1, 2, 3,, 2009,,,,,时,代数式的值的和等于2008.【剖析】因为当x=时和当x= k 时,分别代入代数式,再把它们所得的和相加的 1.2,3,, 2009,,,,,恰巧分别对应互为相反数,从而问题的得解.【解答】解:∵当 x=时,=,当 x= k 时,=,故这两值相加得:+ = 1,∴当 x 挨次取1,2, 3, 2009 ,,,,,时,原式= + + + + + + + + ,=+(+)+(+)++(+),=+1+1+ 1,=.【评论】本题考察因式分解在分式化简中的运用,在化简中注意不一样的分式相加是一个常数.16.( 4 分)由直线 y= x+2 、 y=﹣ x+2 和 x 轴围成的三角形与圆心在点(1,1),半径为 1 的圆构成的图形覆盖的面积等于4+.【剖析】依据圆心知足直线的分析式获得圆心在直线上,而且圆心到两坐标轴的距离均为1,由此能够获得图形覆盖部分为半径为 1 的半圆加上两直线与坐标轴围成的三角形的面积的和,利用圆的面积计算公式计算出半圆的面积加上三角形的面积即可.【解答】解:∵圆心为点( 1, 1),∴圆心在直线 y=﹣ x+2 上,∵点( 1, 1)到两坐标轴的距离均是 1,且半径为 1,∴图形覆盖部分为半径为 1 的半圆,∴图形覆盖的面积等于× π× 12=.∵两直线分别与 x 轴交于(﹣ 2, 0)和( 2, 0)、与 y 轴交于( 0,2), ∴两直线与坐标轴围成的面积为:× 4× 2= 4,∴图形覆盖的面积= 4+ .故答案为: 4+.【评论】 本题考察了一次函数的有关知识,解决本题的要点是利用已知条件判断重叠部 分是个什么样的图形.17.(4 分)在 Rt △ ABC 中,∠ C = 90°,斜边 AB 边上的高为 h ,则两直角边的和 a+b 与斜 边及其高的和 c+h 的大小关系是 a+b < c+h (填“>”、“=”、“<”).【剖析】 因为线段的和永久为正,因此能够经过比较两线段的和的平方来比较两线段的 和的大小,即平方之差大于零,平方就大,不然就小.【解答】 解:∵( c+h ) 2﹣( a+b )2 2222=( c +2ch+h )﹣( a +2 ab+b ), 且,2222∴( c +2ch+h )﹣( a +2 ab+b )= h 2> 0, ∴ a+b <c+h .故答案为:<.【评论】 本题考察了勾股定理的知识,同时题目还浸透了比较两个正数的大小的方法,即:两正数的平方差大于零,前一个正数大于后边的正数,反之亦然.18.(4 分) The figure on the right is composed of square ABCD and triangle BCE ,where ∠ BECis right angle . Suppose the length of CE is a , and the length of BE is b , then the distancebetween point A and line CE equals toa+b .( be composed of 由 构成right angle 直角length 长度distance 距离)如图是由正方形 ABCD 和三角形 BCE 构成,此中∠ BEC 的是直角.假定CE 长度是 a ,BE 的长度是 b ,那么 A 点和直线 CE 之间的距离等于?【剖析】依据∠ BEC 的是直角, CE 长度是 a, BE 的长度是b,利用勾股定理求出BC,再利用正方形的性质求证△AMB ∽△ CBE,而后可得AM ,再利用勾股定理求出MB,然后可得 CM ,再利用相像三角形的对应边成比率求出MN ,而后用 AM +MN 即可得出答案.【解答】解:∵∠ BEC 的是直角, CE 长度是 a, BE 的长度是 b∴ BC=,又∵ AN⊥ CE,四边形 ABCD 是正方形,∴△ AMB∽△ CBE∴=,即=,∴ AM =,由勾股定理得 MB===,∴ CM = BC﹣ BM =﹣=,∵△ AMB∽△ CMN ,∴=,∴=,∴ MN =,∴ AN= AM+MN =+ = a+b.故答案为: a+b.【评论】本题主要考察正方形的性质,勾股定理,相像三角形的判断与性质等知识点,综合性较强,有必定的拔高难度,属于难题.19.( 4 分)如图,在△ ABC 中, AB> BC,BD 均分∠ ABC,若 BD 将△ ABC 的周长分为4:3 的两部分,则△ ABD 与△ BCD 的面积比等于4: 3 .【剖析】依据角均分线的性质定理及等比定理解答.【解答】解:∵ BD 是∠ ABC 的均分线,∴按角均分线性质定理及合比定理,得===,∴S△ABD: S△DBC= AB× BDsin ∠ABD : BC× BDsin∠ CBD ,又∵∠ ABD =∠ CBD ,∴sin∠ ABD = sin∠ CBD ,∴AB: BC= 4:3,∴S△ABD: S△DBC= 4: 3.故答案为: 4: 3.【评论】本题考察了三角形的面积.解答本题时,利用到了角均分线的性质定理、合比定理及三角形的面积公式.20.(4 分)假如将 n 个棋子放入10 个盒子内,能够找到一种放法,使每个盒子内都有棋子,且这 10 个盒子内的棋子数都不一样;若将(n+1 )个棋子放入11 个盒子内,却找不到一种放法,能使每个盒子内都有棋子,而且这11 个盒子内的棋子数都不一样,那么整数n 的最大值等于64,最小值等于55.【剖析】第一依据n 个棋子放入10 个盒子内,整数的倍值循环,因此获得不一样的状况是1、2、3、4、5、6、7、8、9、10.将( n+1 )个棋子放入11 个盒子内,搁置的状况是1、2、 3、4、 5、 6、 7、 8、 9、 10、 11.从已知 n 值最小为出发点,在增添一个盒子以后若出现使得各个盒子中的棋子数不同样,则应当有 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11.而 1+2+3+4+5+6+7+8+9+10+11 = 66,假如 n= 65, n+1= 66,就可以找到11 个不重复且不为 0 的方法了,因此最大值是64 个②对于 n 值最小的状况,必有一盒子中放有 1 棋子,而其余的也都各不同样,为使总棋子数最小则其余应挨次为2、3、 4、5、 6、 7、 8、 9、 10,共有55 颗,若再添一颗棋子则找不到各个不一样的方法,因此 n 值最小为 55.故答案为: 64、55.【评论】本题考察抽屉原理.解决本题的要点是理清题意,找到恰巧各不同样的状况,做为临界点,分别再增添一颗取最小值,n 不存在;减少两颗取最大值.21.( 8 分)假如自然数 a 与 b( a>b)的和、差、积、商相加得27,那么 a=6,b=2.【剖析】依据题意列出对于a、 b 的等式,由数的整除性可知 b 必能整除 a,设 a= kb,此中 k 为整数,把 k 代入对于a、b 的式子,依据 k 为整数即可求出k 的值,从而求出a、b 的值.【解答】解:由题意得(a+b)+( a﹣ b) +ab+ = 27,即2a+ab+ =27,2整理得, 2ab+ab +a= 27b,故 b 必能整除a,设 a= kb,此中 k 为整数,2代入上式得k( 2b+b +1 )= 27,k( b+1)2= 33,∴k( b+1)= 9,∵ k、 b 为整数,∴k= 3, b= 2,a= 3× 2=6.故答案为: 6, 2.【评论】本题考察的是数的整除性问题,依据题意列出对于a、b 的式子,得出 b 必能整除 a,设出 a= kb 是解答本题的要点.22.( 8 分)若==,则=或﹣5.【剖析】 先依据 = ,易求﹣ c = a+b ( a ﹣b ≠ 0),再把 a+b =﹣ c 整体代入原式计 算即可;还有一种状况是 a ﹣ b = 0,=,易求 c = 2a ( b ﹣ c ≠ 0),再把 a = b , c= 2a 代入原式计算即可.【解答】 解:∵= ,∴ ac+a 2=b 2+bc ,∴若 a ﹣ b ≠ 0,那么﹣ c =a+b ,∴原式== = ;∵当 a = b = c 时,已知条件是建立的,∴原式==﹣ 5.故答案是或﹣ 5.【评论】 本题考察了分式的化简求值.注意分状况议论,除了惯例思路,还要考虑特别状况.23.( 8 分)若以 x 为未知数的方程无解,则 a = ﹣ 1 或﹣ 或 2 .【剖析】 第一解方程求得x 的值,方程无解,即所截方程的解是方程的增根,应等于1或 2,据此即可求解 a 的值.【解答】 解:去分母得: x ﹣ 2+a ( x ﹣ 1)= 2( a+1)解得: x =当 a+1=0 即 a =﹣ 1 时,方程无解.依据题意得:= 1 时,解得 a =﹣ ;当= 2 时,解得: a =﹣ 2故答案是﹣ 1 或﹣或﹣ 2.【评论】 本题主要考察了方程增根产生的条件,假如方程有增根,则增根必定是能使方程的分母等于 0 的值.24.( 8 分)对于正整数 k ,记直线 y =﹣x+ 与坐标轴所围成的直角三角形的面积为S k ,则 S k =, S 1+S 2+S 3+S 4= .【剖析】依据直线的分析式求出直线与两坐标轴的交点坐标,从而用含k 的式子表示出直线与两坐标轴围成的三角形的面积,最后令k 分别等于 1、 2、 3、 4 求出 S1、 S2、 S3、S4的值,而后求出S1+S2+S3+S4的值即可.【解答】解:令 y= 0,得:﹣x+ = 0,解得: x=,∴直线 y=﹣x+ 与 x 轴的交点坐标为(, 0),令 x= 0,得 y=,∴直线 y=﹣x+ 与 y 轴的交点坐标为(0,),k=? ? =,S∴ S1+S2+S3+S4=+ + + ,=+ + + ,=.故答案为:;.【评论】本题考察了一次函数的有关知识,特别是求一次函数与两坐标轴的交点坐标更是常常考察的要点内容之一.25.( 8 分)将,,,,这 99 个分数化成小数,则此中的有限小数有14 个,纯循环小数有26 个(纯循环小数是指从小数点后第一位开始循环的小数).【剖析】有限小数就是利用 1 除以分母能除尽的数,则分母必定是 2 的倍数或 5 的倍数,在从 2 到 100 这 99 个数中,是 2 的倍数或 5 的倍数的数,据此即可判断.而后再在节余的 40 个数中去掉不合适的数就是纯小数.【解答】解:这 99 个分数中分母是 2 的 x 次方的有: 2, 4, 8,, 64,共 6 个;5 的 x 次方有: 5, 25,共 2 个;是 10 以及 2 和 5 但不是10 和其余数的倍数的数有:10,20,40,50,,100,共 6 个;分母能被2、 5 且只好被2、 5 整除的(能化为有限小数的)数共有6+2+6= 14 个.而是2、 5 倍数的数共有50+20﹣ 10= 60 个.能化为纯循环小数的有100﹣ 60﹣14= 26 个.故答案是: 14,26.【评论】本题考察了有理数的观点,理解有限小数就是利用 1 除以分母能除尽的数,则分母必定是 2 的倍数或 5 的倍数是要点.。
八年级数学第11届“希望杯”第2试试题

山东省滨州市无棣县埕口中学八年级数学第11届“希望杯”第2试试题一、选择题:1.-20001999, -19991998, -999998, -1000999这四个数从小到大的排列顺序是 (AA )-20001999<-19991998<-1000999<-999998 (B )-999998<-1000999<-19991998<-20001999(C )-19991998<-20001999<-1000999<-999998 (D )-1000999<-999998<-20001999<-199919982.一个三角形的三条边长分别是a , b , c (a , b , c 都是质数),且a +b +c =16,则这个三角形的形状是(A )直角三角形(B )等腰三角形(C )等边三角形(D )直角三角形或等腰三角形3.已知25x=2000, 80y=2000,则y1x 1+等于 (A )2 (B )1 (C )21(D )23 4.设a +b +c =0, abc >0,则|c |ba |b |ac |a |c b +++++的值是 (A )-3 (B )1 (C )3或-1 (D )-3或15.设实数a 、b 、c 满足a <b <c (ac <0),且|c |<|b |<|a |,则|x -a |+|x -b |+|x +c |的最小值是(A )3|c b a |++ (B )|b | (C )c -a (D )―c ―a 6.若一个等腰三角形的三条边长均为整数,且周长为10,则底边的长为 (A )一切偶数 (B )2或4或6或8 (C )2或4或6 (D )2或4 7.三元方程x +y +z =1999的非负整数解的个数有(A )个 (B )个 (C )2001000个 (D )2001999个 一.8.如图1,梯形ABCD 中,AB23215+215-3cm 4cm 5cm 15162161521617217162xy z r zx y q yz x p 222-=-=-zy x rzqy px ++++23246623+--1n 1m 23-+222c 2a 2x 13x 116n 6n 10n 3n 22-+-+3a 2a 3c 5a 7c a b a 1b 12)1b a (--3图1AB C D EF 345ABCDE F 图2AB CD E58°图3A B CD E 图4A BCD E F图5AD F875118 332 a b a 1b 12)1b a (--a 1b 1)]b a (1[ab a b ---① 若a 、b 同为正数,由ab<1,得a >b , ∴ a -b =ab , a 2-ab =b , 解得b =1a a 2+,∴(a 1-b 1)2)1b a (--=)]b a (1[ab a b ---=ab a b -(1-ab )=-2a 1·a ba -=-4ab=-)1a (a 12+.② 若a 、b 同为负数,由ab<1,得b >a , ∴ a -b =-ab , a 2-ab =-b , 解得b =1a a 2-,∴(a 1-b 1)2)1b a (--=)]b a (1[ab a b ---=ab a b(1+ab )=3a b a +=32a 1a a a -+=)1a (a 1a 22--.综上所述,当a 、b 同为正数时,原式的结果为-)1a (a 12+;当a 、b 同为负数时,原式的结果为)1a (a 1a 22--22.将△ADF 绕A 点顺时针方向旋转90°到△ABG 的位置, ∴ AG =AF ,∠GAB =∠FAD =15°, ∠GAE =15°+30°=45°,∠EAF =90°-(30°+15°) =45°, ∴∠GAE =∠FAE ,又AE =AE , ∴△AEF ≌△AEG , ∴EF =EG ,∠AEF =∠AEG =60°,在Rt △ABE 中,AB =3,∠BAE =30°,∴∠AEB =60°,BE =1,在Rt △EFC 中,∠FEC =180°-(60°+60°)=60°,EC =BC -BE =3-1,EF =2(3-1),∴EG =2(3-1),S △AEG =21EG ·AB =3-3, ∴S △AEF =S △AEG =3-3.23.① 将第一个球先放入,有5种不同的的方法,再放第二个球,这时以4种不同的放法,依此类推,放入第三、四、五个球,分别有3、2、1种放法,所以总共有5×4×3×2×1=120种不同的放法。
历届“希望杯”(初二)第二试试题

第十二届“希望杯”(初二)第二试试题一、选择题(每小题5分,共50分)以下每题的四个结论中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内。
1.化简代数式322322++-的结果是( ) A. 3 B. 12+C. 22+D. 222.已知多项式ax bx cx d 32+++除以x -1时,所得的余数是1,除以x -2时所得的余数是3,那么多项式ax bx cx d 32+++除以()()x x --12时,所得的余式是( )A .21x - B. 21x + C. x +1 D. x -1 3.已知a <1且||a b a ba -+=,那么( )A. ab <0B. ab >0C. ab ≤0D. a b +<0 4.若||||a c <,b a c b a =+<22,||||,S a b cS b c a12=-=-||||,,S a c b3=-||,则S S S 123、、的大小关系是( )A. S S S 123<<B. S S S 123>>C. S S S 132<<D. S S S 132>>5.若一个三角形的一个外角的平分线平行于三角形的一条边,则此三角形肯定是( )A. 直角三角形B. 等边三角形C. 等腰三角形D. 等腰直角三角形6. 若∆ABC 的三边长是a 、b 、c ,且满足a b c b c 44422=+-,b c a a c 44422=+-,c a b a b 44422=+-,则∆ABC 是( )A. 钝角三角形B. 直角三角形C. 等腰直角三角形D. 等边三角形7. 平面内有n 条直线(n ≥2),这n 条直线两两相交,最多可以得到a 个交点,最少可以得到b 个交点,则a b +的值是( ) A. n n ()-1 B. n n 21-+ C.n n 22- D.n n 222-+8.In fig. 1, let ∆ABC be an equilateral triangle, D and E be points on edges AB and AC respectively, F be intersection of segments BE and CD, and∠=BFC 120, then the magnitude relation between Ad and CE is ( )A. AD CE >B. AD CE <C. AD CE =D. indefinite(英汉词典:equilateral 等边的;intersection 交点;magnitude 大小,量;indefinite 不确定的)9. 已知两个不同的质数p ,q 满足下列关系:p p m q q m 222001020010-+=-+=,,m 是适当的整数,那么p q 22+的数值是( )A. 4004006B. 3996005C. 3996003D. 400400410.小张上周工作a 小时,每小时的工资为b 元,本周他的工作时间比上周减少10%,而每小时的工资数额增加10%,则他本周的工资总额与上周的工资总额相比( )A. 增加1%B. 减少1%C. 增加1.5%D. 减少1.5% 二、填空题:(每小题6分,共60分) 11. 化简:2532306243+--+的结果是_________。
第希望杯初二第2试试题及答案
第二十一届“希望杯”全国数学邀请赛初二第 2 试一、选择题(每题 4 分,共 40 分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后边圆括号内.1.计算21259,得数是()A.9 位数B.10 位数C. 11 位数D.12 位数2.若xy 1 ,则代数式9xy18的值()239x y18A.等于7B.等于5C.等于5或不存在D.等于7或不存在57753( x a) 2 ≥ 2(1 2x a)3. The integer solutions of the inequalities about x :x b b x are 1,2,332then the number of integer pairs(a,b)is()A. 32B.35C. 40D.48(英汉字典: integer整数)4.已知三角形三个内角的度数之比为x : y : z ,且 x y z ,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形 D .等腰三角形5.如图 1 ,三个凸六边形的六个内角都是120 ,六条边的长分别为 a ,b ,c ,d ,e, f ,则以下等式中建立的是()bacf de图1A.a b c d e f B.a c e b d fB . a b d eC . a c b d6.在三边互不相等的三角形中,最长边的长为 a ,最长的中线的长为 m ,最长的高线的长为 h ,则()A . a m hB . a h mC . m a hD . h m a7.某次足球竞赛的计分规则是:胜一场得 3 分,平一场得 1 分,负一场得 0 分,某球队参赛 15场,积 33 分,若不考虑竞赛次序,则该队胜、平、负的状况可能有()A .15 种B .11 种C .5 种D .3 种8.若 xy0 ,x y0 ,11与 x y 成反比,则 x y2与 x 2 y 2 ()x yA .成正比B .成反比C .既不可正比,也不可反比D .关系不确立9.如图 2,已知函数 y2 k ,点 A 在正 y 轴上,过点 A 作 BC ∥ x 轴,交两个函( x 0) ,y(x 0)xx数的图象于点 B 和 C ,若 AB : AC 1:3 ,则 k 的值是()yCABO x图2A . 6B .3C . 3D . 610 .10 个人围成一圈做游戏,游戏的规则是:每一个人内心都想一个数,并把自己想的数告诉与他相邻的两个人, 而后每一个人将与他相邻的两个人告诉他的数的均匀数报出来,若报出来的数如图 3所示,则报出来的数是3 的人内心想的数是( )A .2B . 2C .4D . 4110 29384756图 3二、填空题(每题4 分,共 40 分)11 .若 x 2 2 7 x 2 0 , 则 x 4 24x 2.12 .如图 4 ,已知点 A( a ,b) , O 是原点, OAOA 1 ,OA OA 1 ,则点 A 1 的坐标是.yA ( a ,b )A 1O x图 413 .已知 ab0 ,而且 a b 0 ,则ab1 1 b 22____________.(填“ ”、“ ”、“≥ ”或“ ≤ ”)aab14 .若 a 2b 2a 2 b2 0 ,则代数式 a a b b a b的值是.15 .将代数式 x 3 2a 1 x 2 a 2 2a 1 x a 2 1 分解因式,得16 . A 、B 、C 三辆车在同一条直路上同向行驶,某一时辰, A 在前, 10 分钟后, C 追上 B ;又过了 5 分钟, C 追上 A .则再过.C 在后, B 在 A 、C 正中间,分钟, B 追上 A .17 .边长是整数,周长等于 20 的等腰三角形有 种,此中面积最大的三角形底边的长是.18 .如图 5 ,在 △ ABC 中, AC BD ,图中的数听说明 ABC .A30°B40° CD 图519 .如图 6,直线 y31 与 x 轴、 y 轴分别交于 A 、B ,以线段 AB 为直角边在第一象限内作x3等腰直角 △ ABC , BAC90 .在第二象限内有一点P a , 1,且 △ABP 的面积与 △ ABC 的面积2相等,则 △ ABC 的面积是; a ___________________yCBPO Ax 图 620 .Given the area of△ ABC is S 1 ,and the length of its three sides are311,9 3,101313respectively . And the perimeter of △ABCis 18 ,its area is S 2 .Then the relationship between S 1 and S 2 isS 1S 2 .( fill in the blank with“ ”,“= ”or “ ”)(英汉字典: area 面积; length长度; perimeter 周长)三、解答题每题都要写出计算过程.21 .(此题满分 10 分)解方程:2 x34 4 x 3 .42 x 334 x【分析】 令2x 3a ,4xb ,43则a1 b 1 ,ab 整理得ab 10 ,aab所以 a b 或 ab1,即3x 34 x , ①4 3或2 x3 4 x 1 ,②43由①得x7 ,10由②得 x0 或 x52经查验,知7 ,0,5都是原方程的解.10222.(此题满分15分)如图7,等腰直角△ABC 的斜边 AB 上有两点 M、N ,且知足MN 2BN 2AM 2,将△ABC绕着 C 点顺时针旋转90 后,点M、N的对应点分别为T、S .⑴请画出旋转后的图形,并证明△MCN△MCS⑵求MCN 的度数.BBNN MC AM SC A r图 7【分析】⑴将△ ABC 绕着C点顺时针旋转90,如图.依据旋转前后的对应关系,可知BN AS ,CN CS , NBC SAC45所以MAS MAC SAC90.由色股定理,得MS 2AM 2AS2AM 2BN 2MN2,所以M N.M S又因为CN CS ,CM 是公共边,所以△MCN △MCS .⑵因为 CN 顺时针旋转 90后获得 CS ,所以NCS90,上边已证得△MCN △MCS ,故MCN MCS 145.NCS223 .(此题满分 15 分)已知长方形的边长都是整数,将边长为 2 的正方形纸片放入长方形,要求正方形的边与长方形的边平行或重合,且随意两个正方形重叠部分的面积为0,放入的正方形越多越好.⑴假如长方形的长是4,宽是 3 ,那么最多能够放入多少个边长为 2 的正方形?长方形被覆盖的面积占整个长方形面积的百分比是多少?⑵假如长方形的长是 n(n ≥ 4) ,宽是 n 2 ,那么最多能够放入多少个边长为2 的正方形?长方形被覆盖的面积占整个长方形面积的百分比是多少?⑶关于随意知足条件的长方形,使长方形被覆盖的面积小于整个长方形面积的55% 求长方形边长的全部可能值.(已知0.55 0.74 )【分析】 ⑴ 最多能够放入 2 个正方形,长方形被覆盖的面积占整个长方形面积的百分比是2 22 2 .4 366.7%3⑵当 n 是偶数时, n 2 也是偶数,最多能够放入1 个正方形,长方形被覆盖的面n( n 2)4 积占整个长方形面积的百分比是 100% .当 n 是奇数时, n2 也是奇数,最多能够放入1 3) 个正方形,长方形被覆盖的(n 1)(n4面积占整个长方形面积的百分比是 n 1 n 3n n2100% .⑶设长方形的宽与长分别是x ,y .若 x ,y 都是偶数,则长方形被覆盖的面积占整个长方形面积的100% ,不切合题意.若 x ,y 中一个是偶数 2a ,一个是奇数 2b 1 ( a ,b 是正整数),则4ab 4ab2b0.55 .xy2a (2b 1) 2b 1解得 b 0.61.没有知足此结果的正整数b ,这类状况也不切合题意.所以, x ,y 都是奇数.x 2a 1 ,令 y 2b 1 , a ≤ b ,a ,b 是正整数,则有4ab0.55 .2a 1 2ba4ab4a4a2因为2a2a 1 2b a11,12a12a 12a22ba22a所以0. 55.2a 12a得0. 7 ,4a 1.,42a 1因为 a 是正整数,所以 a 1代入①式,得4b0. 55, 3 ( 2b1)解得 b 2.4 ,因为 b 是正整数,所以 b 1 或 2故有x 3 ,y3或 5.即长方形长为 5,宽为 3,或长与宽都是 3.第二十一届“希望杯”全国数学邀请赛参照答案及评分标准初二第 2 试一、选择题(每题4 分.)题号1 21 3 4 5 6 7 8 9 10答案BDBCCADADB二、填空题(每题 4 分,第 17 、19 题,每空 2 分.)题号111213141516 17 1819 20答案 -4b ,a≥1x 1 x a 1 x a 115 4;6402;3421. 21259 23 109 8 109 ,∴得数是 10 位数.2.∵xy 1 ,∴ y 3 x 32 329x 33 189 x y 18 x21x42 7 x22将其代入代数式,得315x 30 5 x 29 x y 189x3 18x2当 x2 时,原式7;当 x 2 时,原式的值不存在.53x 3a 2 ≥ 4 x 2 2ax ≥ 1a113.原不等式7 b2 x 2b 3b 3x1 7a ≤ xx 5b5于是 01a ≤ 1 , 31b≤ 4所以 a 有 7个不一样的取值, b 有 5 个不一样的取值,75于是整数对 a , b 共有7535个.4.∵x y z ,∴x y z 2 z ,即1802z,∴z90,三角形为钝角三角形.5.如图,补三个等边三角形,则 a b c c d e a f e ,于是a b d e.a b ca cdfee6.利用直角三角形中斜边大于直角边易得结论a m h .7.设该球队胜、平、负的场数分别为x 、y、 15 x y ,则 3x y33 .x ≥ 0y ≥ 0 x ,于是 0 ≤ y ≤ 6 ,又y能整除 3 ,于是 y 0 , 3 , 6 .y ≤ 153x y 33对应的 x 11 , 10 , 9 ,共3种状况.8.∵11与 x y 成反比,∴x y11m ,此中 m 为非零常数.x y x y于是yx m 2 ,所以y为定值.x y x2y2而 x y22y y1, x2y2x2 1 ,联合y为定值xxx x x所以 x y2与x2y2成正比.9. B 与 C 的纵坐标相等,即k2,∴k2AC6AC AB AB10.假定报出来的数是 3 的人内心想的数是 x ,则报出来的 12345678910数4 x x8 x 4 x12 x内心想的数于是 4x 12x20 ,解得 x2 .11. x 4 24x 22 7 x 224 2 7 x 228 x 28 7 x4 48 7x 4828x 2 56 7x 5222 8 2 x7 25 6x 752.412. 过 A 、 A 1 作 x 轴的垂线,利用弦图简单获得A 1 b , a .aba 2ba 211a b13.a bba b∵b 2a 2b 2aba 2,ab11ba2222而a2b2 ≥ 2 a 2 b 22bab a∴ab a b ≥1 1a b ,即ab1 1 .b 2a 2a bb 2 a 2 ≥ a b14. ∵a 2 b 2a 2 b 2a 2b21 , b 1110 ,∴a于是 a a b b a b 12 10 1 .15.x 3 2 a 1 x 2 a 2 2 a 1 x2a 1x 3 2ax 2 a 2 1 x x 2 2ax a 2 1x 1 x 22axa1 a 1x 1 x a 1 x a116. 设当 B 在 A 、C 正中间是 ABBC1,则 C 相对 B 的速度为1,C 相对 A 的速度为 2 ,1015所以 B 相对 A 的速度为1,故 B 追上 A 需要时间为 30 分钟.30于是再过 15 分钟, B 追上 A .17. 设等腰三角形的腰长为x ,则底边长为 20 2x ,于是 0 20 2xxx ,有 5 x 10 ,∴x 的可能取值有 6 , 7 , 8 , 9,共 4 种.其面积为10 1022 x10 ,∴当 x7 时三角形面积最大,此时底边长为6 .x18. 在 BC 上取一点 E ,使得 CE CA ,简单证明 △ AEB ≌△ ADC ,于是 ABC 40 .19. ∵ A 3 , 0 ,B 0,1,∴ AB 2于是 S △ ABC 12AB22∵S△ ABP1 1 1 a1 3 11 3 a 12 ,解得 a3 4 .2 2222220. △ ABC 的面积不小于三边长分别为 3 , 9 , 10 的三角形面积,于是S △ABC ≥ 11 11 3 11 9 11 10262 ;而 △A B C 的面积不大于周长为 18 的正三角形面积,于是3 2S 2 ≤18243 .49 33∴S 1 S 2 .。
历年初中希望杯数学竞赛试题大全
历年初中希望杯数学竞赛试题大全 ][真诚为您服务试试题希望杯”全国数学邀请赛初二第2· 2009年第20届“次· 161· [4-30]★详细简介请参考下载页]· [竞赛 2试试题届“希望杯”全国数学邀请赛初一第年第· 200920 次· 153· [4-28]详细简介请参考下载页★]· [竞赛数学大赛初赛试卷(扫描版)届5“希望杯”年湖北省黄冈市第· 2009 · 76次· [4-17]★详细简介请参考下载页]· [竞赛试试题”全国数学邀请赛初二第1· 2009年第20届“希望杯次· 133· [4-7]对不起,尚无简介☆]竞赛· [ 试试题全国数学邀请赛初一第1届“希望杯”20· 2009年第· 122次· [4-7]详细简介请参考下载页★]· [竞赛全国数学邀请赛初二训练题”第十四届“希望杯·次· 44· [9-9]详细简介请参考下载页★]竞赛· [ 2试试题“希望杯”全国数学邀请赛初一第19· 2008年第届次· 203· [9-4]详细简介请参考下载页★]· [竞赛 1”“19· 2008年第届希望杯全国数学邀请赛初一第试试题次· 169· [9-4]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第219年第届“希望杯”· 2008 次· 156· [9-2]详细简介请参考下载页★]· [竞赛 1试试题希望杯”全国数学邀请赛初二第“· 2008年第19届· 146次· [9-2]详细简介请参考下载页★]竞赛· [ 2试试题”届“希望杯全国数学邀请赛初二第18· 2007年第· 101次· [9-2]详细简介请参考下载页★]竞赛· [ 1全国数学邀请赛初二第试试题”“18· 2007年第届希望杯次· 95· [9-2]详细简介请参考下载页★]竞赛· [ 试试题”全国数学邀请赛初二第2· 2006年第17届“希望杯次· 76· [9-2]详细简介请参考下载页★]竞赛· [ 1试试题“希望杯”全国数学邀请赛初二第届· 2006年第17 · 76次· [9-2]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第2希望杯· 2005年第16届“”次· 65· [9-1]详细简介请参考下载页★]· [竞赛 1试试题全国数学邀请赛初二第届· 2005年第16“希望杯”次· 52· [9-1]详细简介请参考下载页★]· [竞赛试试题全国数学邀请赛初二第希望杯”2· 2004年第15届“次· 47· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第115届“希望杯”年第· 2004 次· 38· [9-1]详细简介请参考下载页★]· [竞赛 2试试题希望杯”全国数学邀请赛初二第届· 2003年第14“次· 30· [9-1]详细简介请参考下载页★]竞赛· [ 1试试题希望杯届“”全国数学邀请赛初二第年第· 200314 · 26次· [9-1]详细简介请参考下载页★]竞赛· [ 2试试题全国数学邀请赛初二第希望杯届年第· 200213“”· 31次· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第1”年第13届“希望杯· 2002 次· 23· [9-1]详细简介请参考下载页★]竞赛· [ 2试试题“希望杯”全国数学邀请赛初二第· 2001年第12届· 17次· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第112年第届“希望杯”· 2001 · 17次· [9-1]详细简介请参考下载页★]竞赛· [ 试试题2“届希望杯”全国数学邀请赛初二第11· 2000年第次· 15· [9-1]★详细简介请参考下载页]· [竞赛试试题”全国数学邀请赛初二第1“· 2000年第11届希望杯次· 15· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第210届“希望杯”· 1999年第次· 13· [9-1]详细简介请参考下载页★]· [竞赛试试题1希望杯”全国数学邀请赛初二第· 1999年第10届“次· 15· [9-1]详细简介请参考下载页★]竞赛· [ 2试试题“希望杯”全国数学邀请赛初二第9· 1998年第届次· 11· [8-29]详细简介请参考下载页★]· [竞赛 1”“9· 1998年第届希望杯全国数学邀请赛初二第试试题次· 10· [8-29]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第28年第届“希望杯”· 1997 次· 13· [8-29]详细简介请参考下载页★]· [竞赛 1试试题希望杯”全国数学邀请赛初二第“· 1997年第8届· 10次· [8-29]详细简介请参考下载页★]竞赛· [ 2试试题”届“希望杯全国数学邀请赛初二第7· 1996年第· 11次· [8-29]详细简介请参考下载页★]竞赛· [ 1全国数学邀请赛初二第试试题”“7· 1996年第届希望杯次· 10· [8-29]详细简介请参考下载页★]· [竞赛试试题”希望杯全国数学邀请赛初二第2· 1995年第6届“次· 14· [8-29]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第16届“希望杯”· 1995年第次· 14· [8-29]★详细简介请参考下载页]· [竞赛 2试试题希望杯”全国数学邀请赛初二第5· 1994年第届“次· 12· [8-29]详细简介请参考下载页★]竞赛· [ 1试试题“届希望杯”全国数学邀请赛初二第· 1994年第5 · 12次· [8-29](每一、选择题 :年第五届希望杯全国数学邀请赛1994 初中二年级第一试试题 [] Ax 1.303小题分,共分)使等式成立的的值是.是]· [竞赛试试题初二第2”年第4届“希望杯全国数学邀请赛· 1993 次· 9· [8-29]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第14届“希望杯”· 1993年第次· 10· [8-29]详细简介请参考下载页★]· [竞赛试试题2希望杯”全国数学邀请赛初二第· 1992年第3届“次· 11· [8-29]详细简介请参考下载页★]竞赛· [ 1试试题“希望杯”全国数学邀请赛初二第3· 1992年第届次· 9· [8-29]详细简介请参考下载页★]· [竞赛 2”“2· 1991年第届希望杯全国数学邀请赛初二第试试题· 14次· [8-28]详细简介请参考下载页★]· [竞赛试试题”全国数学邀请赛初二第1年第· 19912届“希望杯次· 12· [8-28]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第21届“希望杯”· 1990年第· 13次· [8-28]详细简介请参考下载页★]· [竞赛试试题”全国数学邀请赛初二第1希望杯· 1990年第1届“次· 11· [8-28]分,(每题1 ”全国数学邀请赛初二第一试一、选择题:“1990年第一届希望杯() 倍,那么这个角是 1.一个角等于它的余角的5分)共10]竞赛· [ 2试试题全国数学邀请赛初一第希望杯届年第· 200718“”· 94次· [8-28]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初一第118届“希望杯”· 2007年第次· 42· [8-28]详细简介请参考下载页★]· [竞赛试试题”希望杯全国数学邀请赛初一第2· 2006年第17届“次· 41· [8-28]详细简介请参考下载页★]竞赛· [ 试试题1希望杯”全国数学邀请赛初一第“· 2006年第17届次· 43· [8-28]试第1全国数学邀请赛初一希望杯年第十七届2006“”……中考资源网,竞赛试题任你选!更多数学竞赛试题请点击。
希望杯第届初二第试试题及参考答案
第十七届“希望杯’’全国数学邀请赛初二第2试2006年4月16日上午8:30至lO:30 得分___________一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内.1.下列四组根式中,是同类二次根式的一组是( )2.要使代数式有意义,那么实数x的取值范围是( )3.以线段a=13,b=13,c=10,d=6为边作梯形,其中a,c为梯形的两底,这样的梯形( )(A)能作一个. (B)能作两个. (C)能作无数个. (D)一个也不能作.(英汉词典:Fig.figure的缩写,图;quadrilateral四边形;diagonal对角线;value数值;variable变量;to depend on取决于;position位置)(A)是完全平方数,还是奇数. (B)是完全平方数,还是偶数.(C)不是完全平方数,但是奇数. (D)不是完全平方数,但是偶数.6.将任意一张凸四边形的纸片对折,使它的两个不相邻的顶点重合,然后剪去纸片的不重合部分,展开纸片,再一次对折,使另外的两个顶点重合,再剪去不重合的部分后展开,此时纸片的形状是( )(A)正方形. (B)长方形. (C)菱形. (D)等腰梯形.7.若a,b,c都是大于l的自然数,且c a=252b,则n的最小值是( )(A)42. (B)24. (C)21 (D)15(英汉词典:two-placed number两位数;number数,个数;to satisfy满足;complete square完全平方(数);total总的,总数)9.下表是某电台本星期的流行歌曲排行榜,其中歌曲J 是新上榜的歌曲,箭头“↑”或“↓”分别表示该歌曲相对于上星期名次的变化情况,“↑”表示上升,“↓”表示下降,不标注的则表明名次没有变化,已知每首歌的名次变化都不超过两位,则上星期排在第1,5,7名的歌曲分别是( )(A)D ,E ,H . (B)C ,F ,I . (C)C ,E ,I . (D)C ,F ,H . 10.设n(n ≥2)个正整数1a ,2a ,…,n a ,任意改变它们的顺序后,记作1b ,2b ,…,n b ,若P=(1a -1b )(2a -2b )(33b a -)…(n a 一n b ),则( )(A)P 一定是奇数. (B)P 一定是偶数.(C)当n 是奇数时,P 是偶数. (D)当”是偶数时,P 是奇数. 二、填空题(每小题4分,共40分.)11.消防云梯的长度是34米,在一次执行任务时,它只能停在离大楼16米远的地方,则云梯能达到大楼的高度是______米.15.从凸n 边形的一个顶点引出的所有对角线把这个凸n 边形分成了m 个小三角形,若m 等于这个凸n 边形对角线条数的94,那么此n 边形的内角和为_____.16.某种球形病毒,直径是0.01纳米,每一个病毒每过一分钟就能繁殖出9个与自己同样的病毒,假如这种病毒在人体中聚集到一定数量,按这样的数量排列成一串,长度达到1分米时,人就会感到不适,那么人从感染第一个病毒后,经过_______分钟,就会感到不适.(1米=109纳米)19.如图2,等腰△ABC 中,AB=AC ,P 点在BC 边上的高AD 上,且21=PD AP , BP 的延长线交AC 于E ,若ABC S ∆=10,则ABE S ∆=______,DEC S ∆=_______.20.一个圆周上依次放有1,2,3,…,20共20个号码牌,随意选定一个号码牌(如8),从它开始,先把它拿掉,然后每隔一个拿掉一个(如依次拿掉8,10,12,…),并一直循环下去,直到剩余两个号码牌时停止,则最后剩余的两个号码的差的绝对值是______或_______.三、解答题(本大题共3小题,共40分.) 要求:写出推算过程. 21.(本小题满分10分)如图3,正方形ABCD 的边长为a ,点E 、F 、G 、H 分别在正方形的四条边上,已知EF ∥GH .EF=GH .(1)若AE=AH=a 31,求四边形EFGH 的周长和面积;(2)求四边形EFGH 的周长的最小值.22.(本小题满分15分)已知A 港在B 港的上游,小船于凌晨3:00从A 港出发开往B 港,到达后立即返回,来回穿梭于A 、B 港之间,若小船在静水中的速度为16千米/小时,水流速度为4千米/小时,在当晚23:OO 时,有人看见小船在距离A 港80千米处行驶.求A 、B 两个港口之间的距离.23.(本小题满分15分)在2,3两个数之间,第一次写上5132=+,第二次在2,5之间和5,3之间分别写上27252=+和4235=+,如下所示:第k 次操作是在上一次操作的基础上,在每两个相邻的数之间写上这两个数的和的k1. (1)请写出第3次操作后所得到的9个数,并求出它们的和;(2)经过k 次操作后所有数的和记为k S ,第k+1次操作后所有数的和记为1+k S ,写出1+k S 与k S 之间的关系式; (3)求6S 的值.第十七届“希望杯”全国数学邀请赛参考答案及评分标准 初中二年级 第2试 一.选择题(每小题4分)二.填空题(每小题4分)三、解答题21.(1)如图1,连结HF .由题知四边形EFGH 是平行四 边形,所以又 所以 所以(3分)所以△AHE 和△DHG 都是等腰直角三角形,故∠EHG=090,四边形EFGH 是矩形. 易求得所以四边形EFGH 的周长为2a 2,面积为294a .(5分)(2)如图2,作点H 关于AB 边的对称点H ',连结H F ',交AB 于E ',连结 E 'H .显然,点E 选在E '处时.EH+EF 的值最小,最小值等于H F '.(7分)仿(1)可知当AE≠AH 时,亦有(8分)所以因此,四边形EFGH周长的最小值为2a2.(10分)22.设A、B两个港口之间的距离为L,显然(1分)(1)若小船在23:00时正顺流而下,则小船由A港到达下游80千米处需用即19:00时小船在A港,那么在3:00到19:00的时间段内,小船顺流行驶的路程与逆流行驶的路程相同,而所用的时间与速度成反比,设小船顺流行驶用了t小时,则逆流行驶用了(16一t)小时,所以解得 t=6 (5分)即顺流行驶了由于所以A、B两个港口之间的距离是120千米.(7分)(2)若小船在23:00时正逆流而上,则小船到达A港需再用即小船在内顺流行驶的路程与逆流行驶的路程相同,而所用的时间与速度成反比,设小船顺流行驶用了t 小时,则逆流行驶用了小时,所以解得(12分)即顺流行驶了由于所以A、B两个港口之间的距离可能是100千米或200千米. (14分)(15综上所述,A、B两港口之间的距离可能是100千米或120千米或200千米.分)23.(1)第3次操作后所得到的9个数为它们的和为255(4分) (2)由题设知0S =5,则(10分)(3)因为所以(15分)。
2009第20届希望杯初2第2试试题及答试题及答案24
第二十届“希望杯”全国数学逑诜赛初二 第2试Q 妙1.篆刻是中国独特的传统艺术,篆刻出束的艺术品冏印章•印章的文宇刻成凸状 ---的称丹阳文”,刻成凹状的称为“阴文二如图1的“希釦即为阳文印章尢纸上盖岀的 茶崔 效果■此印章是下列选顼中的(別影彖示印索中的宾体專分.白色灰杀叩索中技空的序L11L.巴(B)2.如果x<y <一 1,那么代数式乂£¥ —工的伯层( >x+ J X(A) 0. (B)正比 (C)女数. (D)祥貝数. 3•将工的整数部分记为[x],z 的小数部分记为{刃,易知工=[x]+ {x)«J<U}<D.若无=丁3_扃—丿3+岳•那么[幻等于( )<A) -2. (B) -1. (C) 0. (D) 1. 4.某种产品由甲.乙•丙三种元件杓成.根据图2•为使生产效 率堆高,在表示工人分配的朋形因中,生产甲.乙■丙元件的工人的 效S:所対应的沏形的圆心角的大小依次是()(A) 12O\18O\6C°. <B) 108\U4\108\ <C) 90°,180390°. (D) 72\216\72°・5.面积是48的矩形的边长和对角线的长祁是整数,则它的周 ■俎蕨一伶嚴爲丸妥钟龙仲耳敷童 长等于( > S EZ(A) 20・ (B) 28. (C) 36. (D) 40.6. In the rectangular coordioates, ab$assa and ordinate of the intersection point of the lines y = x —k and y — kx +2.are integers for integer k f then the number of the possib ]匕 values of R is ()<A) 4. ⑻ 5. (C) 6・(D) 7.0 ............. OO .............. O ............... :••5至 ・凶«巴@(A) m W 专. (B) mC5.(C) m = y ・ (D) m = 5.2009年4月12日 上牛9:00至11:00 得分选择题(舟小赵a 分■共3分.〉以下每减的四个选项中,仅有一个是正确的,请将农示正硝答 案的英文字母垮在每題后面的麗括号虫.(D)平行四雄形.) ・(英:abscissa 橫生标$ordinate 纵A# limerwetion pome fell 1 7•将〜张四边形纸片沿页组对边的中点连统剪开,得到四张小纸片,如窗3所示.用这四张小纸片一定可拼成一个()(A)丼形. (B)矩形. (C〉菱形・8.若不等式组[;::;◎"的解竝25(和二第一方共四買等于( 〉(A) 4 yi3.(B) 8V3.<C) 12・(D) 10摒.10•任何一个正整数和都可以写成两个正整数相乘的形式•对于两个乘救的菱 的绝对值聂小的一种分可称为正整数并的最佳分解,并规定 F<n) = Z 如;12 = 1 X 12 =2 X6 = 3X4,^j F(12)=舟・g4则在以下结论② F ⑵)=*③ 若〃是一个完全平方数,则F5) = 1.④ 若就是一个完全立方数,即“二刃心足正整则F(Q =丄.*Q屮,正御的结论有()(A) 4 卜 (B) 3 个.二、填空题(毎小題4分,兵40分・〉11 •将一根钢筋锯成〃段,需要b 分钟•按此速度将同样的钢筋锯成c 段都是大于】的自卷 我几需要 ________________ 分钟.(用衣承)12. 给机器人下一个指令[$"]($ > 0・Q° <A< 180°),它将完成下列动作,①先在原地向左琰转角良A ;②再觀它面对的方向沿克线行走s 个单住长度的距离. 现以机器人站立的位置为坐标原点,取它面对的方向为刁轴的正方向,取它的左侧为v 轴的正方 向•要想让机器人移动到点(-5.5)处•应下指令: ____________________________ ・13. 已知实数 x,y,z 足匚気 y+ 2 = z~+3 二 ~ ^'3 Mx + ^ + z = _________________________ 或 14. 巳知实数心了満足2尤一3〉=4,并且夂工00<1,则工一y 的最大値足_ 15. 汽车燃油价税费改革从2009年元旦起实施:取消养路费■罔时汽油消费税每升提高0・8元•若某车一年的养路费是1440元,百公里耗 油8升,在録费改税”前后该车的年支出与年行殃里程的关系分别如图5 中的厶&所示,则A 与b 的交点的横坐标加= _______________________ •(不才恵除M40养路费和熾沟费以外的其它费刖) "16. Given /(x) = 4~&r 2 十cr 十when x takes the value of its inverse number^ the corresponding value oi is also the inversec.一 Jnumber? and f(2) = 0, then ―—=・a +b ---------------(英inverse number 相反数.)17. 8人参加象棋循环赛,规定胜1局得2分•平1局得1分,败者不得分,比赛结果是第二名的 得分与最后4名的得分之和相同,那么第二名得 ____________ 分・18•若正整数sb 使等式a 十@±空尹二12 = 2009成立,则a = __________ yb n __ •19. 6.长为2的三羅段/1A\BB\OC Z 交于O 点,并且ZB’OA =Z.COB = ZA0C = 60°■则三个三角形的面积的和$ +$ + $ ___________________ (填20. 已知正整数工“满足2・+ 49 = ? •则x = _____________ p = _____________ ・初二第二页共四页(C) 2 个. (D) 1 个. D10C_瑕小值是. 年支出/元&三、解答超每■题都要写出推算过程.21.(本题満分M分)■在分母小于15的最简分数中,求不等于|■但与壬最接近的那个分数.22.(未趣海分15分)如图7,—次函数歹=一届+松的图象与久釉、y轴分别交于点.A、®,以线段AB为直角边在第一象限内作ROABC,且使ZABC = 30°.(1)求Z\ABC的面积,〈2)如果在第二象限内有一点P(协,警),试用含皿的代数式表示四边形国7 AOPB的面积,并衣当△ARB与AABC面积相等时柬的值$(3)是否存在使AQAB是等腰三角形并且在坐标轴上的点Q?若存在,请身出点Q所有可能的坐标;若不存在,请说明理由.23.(冬题满分】5分〉点A<4,0>,B(0,3)与点C构成边长分别是3,4,5的査角三角形,如果点C在反比例函数y -的图象上■求k可能取的一切值・第二十屈“希盟杯"全国數学逊诜赛鼻考咨案及秤分标准初二 第2试M f*23<5 6 78 g 10« 5|D GA'B nBADCA cm tii 1213「 RM151617 IB1920< <W<-1> a~ t匸“WJ 3|7X500一412S6i75:9三i 廉笞燧21・役所求的农简分載是牛S”)祈分数・ <1022.⑴依題意•西暂y =-届:十旧的图叙与x 轴*轴分聘久于点A 』•fflm 2 | _ |— Zu I1 Fl5 15n因为-j.flm.n 是疋整数、«u! £m — 2n I 1. ⑴t5 1 5M —2n l« 1 时■ ti当〉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
希望杯第二十届(2009年) 初二第二试一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内.1.篆刻是中国独特的传统艺术,篆刻出来的艺术品叫印章.印章的文字刻成凸状的称为“阳文”,刻成凹状的称为“阴文”.如图1的“希望”即为阳文印章在纸上盖出的效果,此印章是下列选项中的(阴影表示印章中的实体部分,白色表示印章中镂空的)( )2.如果1-<<y x ,那么代数式xyx y -++11的值是( ) (A ) 0 (B ) 正数 (C )负数 (D )非负数3.将x 的整数部分记为[x ],x 的小数部分记为{x },易知=x [x ]+{x }({}10<<x ).若5353+--=x ,那么[x ]等于( )(A ) 2- (B )1- (C ) 0 (D )1 4.某种产品由甲、乙、丙三种元件构成.根据图2,为使生产效率最高,在表示工人分配的扇形图中,生产甲、乙、丙元件的工人数量所对应的扇形圆心角的大小依次是( )(A )120°,180°,60°(B )108°,144°,108° (C )90°,180°,90° (D ) 72°,216°,72°5.面积是48的矩形的边长和对角线的长都是整数,则它的周长等于 ( ) (A )20 (B ) 28 (C ) 36 (D )406.In the rectangular coordinates,abscissa and ordinate of the intersection pointofthe lines k x y -= and 2+=kx y are integers for imteger k ,then the number of the possible values of k is ( ) (A )4 (B )5 (C )6 (D )7(英汉小词典:abscissa 横坐标;ordinate 纵坐标;intersection point 交点;integer 整数)7.将一张四边形纸片沿两组对边的中点连线剪开,得到四张小纸片,如图3所示.用这四张小纸片一定可以拼成( )(A )梯形 (B )矩形 (C )菱形 (D )平行四边形 8.若不等式组⎩⎨⎧>++<+-m x x m x 1104的解集是4>x ,则( )(A )29≤m (B )5≤m (C )29=m (D )5=m9.如图4,四边形ABCD 中,∠A=∠C=90°,∠ABC=60°,AD=4,CD=10,则BD 的长等于( )(A ) 134 (B )38 (C )12 (D )31010.任何一个正整数n 都可以写成两个正整数相乘的形式,对于两个乘数的差的绝对值最小的一种分解q p n ⨯=(q p ≤)可称为正整数n 的最佳分解,并规定qpn F =)(.如:12=1×12=2×6=3×4,则43)12(=F . 则在以下结论 ①21)2(=F ②2(24)3F = ③若n 是一个完全平方数,则1)(=n F④若n 是一个完全立方数,即3a n =(a 是正整数),则an F 1)(=. 中,正确的结论有( )(A ) 4个 (B )3个 (C )2个 (D )1个二、填空题(每小题4分,共40分)11.将一根钢筋锯成a 段,需要b 分钟,按此速度将同样的钢筋锯成c 段(a ,b ,c 都是大于1的自然数),需要 分钟.12.给机器人下一个指令[s ,A ](0≥s ,1800<≤A ),它将完成下列动作: ①先在原地向左旋转角度A ;②再朝它面对的方向沿直线行走s 个单位长度的距离. 现机器人站立的位置为坐标原点,取它面对的方向为x 轴的正方向,取它的左侧为y 轴的正方向,要想让机器人移动到点(5-,5)处,应下指令: .13.已知实数x ,y ,z 满足3321zy x z z y y x x ++=+=+=+,则_________或=++z y x . 14.已知实数x ,y 满足432=-y x ,并且0≥x ,1≤y ,则y x -的最大值是 ,最小值是 .15.汽车燃油价税费改革从2009年元旦起实施:取消养路费,同时汽油消费税每升提高0.8元.若某车一年的养路费是1440元,百公里耗油8升,在“费改税”前后该车的年支出与年行驶里程的关系分别如图5中的1l 、2l 所示,则1l 与2l 的交点的横坐标=m .(不考虑除养路费和燃油费以外的其它费用)16.Given d cx bx ax x f +++=23)(,if when x takes the value of its inverse number ,the corresponding value of )(x f is also the inverse number,and0)2(=f ,then=++ba dc .(英汉小词典:inverse number 相反数) 17.8人参加象棋循环赛,规定胜1局得2分.平1局得1分,败者不得分,比赛结果是第二名的得分与最后4名的得分之和相同,那么第二名得 分.18.若正整数a ,b 使等式20092)1)((=-+++b a b a a 成立,则=a ,=b .19.如图6,长为2的三条线段'AA 、'BB 、'CC 交于O 点,并且OB C OA B ''∠=∠=∠=OC A '60°,则这三个三角形的面积的和321S S S ++3.(填“<”、“=”、“>”)20.已知正整数x ,y 满足2492y x =+,则=x ,=y .三、解答题(每题都要写出推算过程) 21.(本题满分10分)在分母小于15的最简分数中,求不等于52但与52最接近的那个分数.22.(本题满分15分)如图7,一次函数33+-=x y 的函数图象与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作Rt △ABC ,且使∠ABC=30°.(1)求△ABC 的面积;(2)如果在第二象限内有一点P (m ,23),试用含m 的代数式表示四边形AOPB 的面积,并求当△APB 与△ABC 面积相等时m 的值;(3)是否存在使△QAB 是等腰三角形并且在坐标轴上的点Q ?若存在,请写出点Q 所有可能的坐标;若不存在,请说明理由.23.(本题满分15分)点A (4,0),B (0,3)与点C 构成边长分别为3,4,5的直角三角形,如果点C 在反比例函数xky =的图象上,求k 可能取的一切值.第二十届“希望杯”全国数学邀请赛参考答案及评分标准初二第2试(每小题4分)(每小题4分,含两个空的小题,每空2分)【详解】1解:易得“望”字应在左边,字以外的部分为镂空部分,故选D.23、4、5、解:∵假设面积是48的矩形的边长分别为x,y,且边长和对角线的长都是整数,∴xy=48,∴x,y,中一定有一个偶数,∴可能是:2×24,3×16,4×12,6×8,四种可能.∵对角线的长是整数,∴只有6×8符合要求;即矩形的边长为6,8,∴它的周长等于28.故选:B.6、7、解:四边形JFCG绕点F顺时针旋转180°,四边形HAEJ绕点E顺时针旋转180°,余下的四边形DHJG沿着DB方向进行平移,刚好构成一个平行四边形.故选D.8、9、10、11、12、13、14、15、16、17、从最后4名选手来分析,他们共要比赛6场,每一场的得分时2分,结果4场下来,就是12分,所以答案是12。
18、19、20、三、解答题21.设所求的最简分数是n m ,()1,=n m ,n m <<0,15<n , 则 nn m n m 52552-=-, 因为52≠n m ,且m ,n 是正整数, 所以 125≥-n m .(1)当125=-n m 时,有125=-n m (当52>n m 时),或125-=-n m (当52<n m 时),所以 512+=n m 或512-=n m . 由m 是整数,知2n +1或2n -1(n <15)是5的倍数.(5分) 要使nn m 5152=-最小,则n 应最大. 由2n +1或2n -1(n <15)是5的倍数,知n 最大取13,对应的m=5,此时 65152=-n m .(8分)(2)当125>-n m 时,因为n <15,m ,n 是正整数,所以nn m n m 52552-=-≥6513511452>=⨯. 综上可知,52-n m 的最小值是651,此时对应的m =5,n =13, 故135是最接近52,但分母小于15的最简分数. (10分) 22.(1)依题意,函数y =3-x +3的图象与x 轴、y 轴分别交于点A 、B ,当y =0时,x =1;当x =0时,y =3,所以点A 的坐标是(1,0),点B 的坐标是(0,3)于是 AB =22OB OA +=2.在Rt △ABC 中,∠ABC =30º,AB =2.设AC =x ,则BC =2x ,由勾股定理,得222)2(2x x =+,得342=x ,332=x . 所以 AC =332, S △ABC =21AB ·AC =332. (5分) (2)点P 在第二象限内,且P ⎪⎪⎭⎫ ⎝⎛23,m , 则m<0,S 四边形AOPB = S △AOB +S △BOP =21×1×3+21×3×(-m )=()m -123. 又S △APB = S 四边形AOPB - S △AOP =()23121123⨯⨯--m =()m 2143-, 由△APB 与△ABC 的面积相等,得()3322143=-m ,解得 65-=m . (10分)(3)这样的点存在,一共有6个,分别是:以AB 为底边的等腰三角形有两个,这时,Q 点的坐标是(-1,0)或(0,33); 以AB 为一条腰的等腰三角形有四个,这时,Q 点的坐标是(0,23+),(0,23-),(0,3-),(3,0). (15分) 23.点A 和点B 之间的距离是5,所以它们之间的连线是直角三角形的斜边, 设点C 的坐标是(a ,b ),则()()⎪⎩⎪⎨⎧=-+=+-.163942222b a b a , ① 或者()()⎪⎩⎪⎨⎧=-+=+-.931642222b a b a , ② (5分) 对于①,有⎪⎩⎪⎨⎧=+-+=+-+.169691682222b b a a b a , 两式相减,得 01468=--b a ,因此 )74(31-=a b , 将它代入①的第二个式子,得0)2825)(4(91=--a a , 解得 4=a ,或2528=a ,对应的b 的值是3或2521-,所以点C 的坐标是(4,3)或⎪⎭⎫ ⎝⎛-25212528,. 对应的k 的值是12或625588-. (10分) 对于②,有⎪⎩⎪⎨⎧=+-+=+-+.996161682222b b a a b a , 两式相减,得 068=-b a ,因此 a b 34=, 将它代入②的第一个式子,得0)7225(91=-a a , 解得 =a 0,或2572=a ,对应的b 的值是0或2596. 因为原点不可能在反比例函数的图象上,所以点C 的坐标是⎪⎭⎫ ⎝⎛25962572,,对应的k 的值是6256912. 综上所述,k 的值是12或625588 或6256912. (15分)。