二次根式知识点总结大全

合集下载

二次根式知识点总结

二次根式知识点总结

二次根式知识点总结1. 二次根式的定义和性质二次根式是指具有形式√a的数,其中a是非负实数。

以下是二次根式的一些重要性质:•非负性:对于任何非负实数a,√a也是一个非负实数。

•平方性:对于任何非负实数a,(√a)2=a。

•唯一性:每个非负实数都有唯一的平方根。

2. 化简和计算二次根式化简和计算二次根式是处理二次根式的基本操作。

下面是一些常见的规则和方法:•合并同类项:如果两个或多个二次根式具有相同的根指数并且根下的值相同,则可以合并它们。

•分解因子:对于某些特定的二次根式,可以将其分解为更简单的形式,例如√ab=√a⋅√b。

•有理化分母:当一个二次根式出现在分母中时,可以通过乘以适当的形式来有理化分母,例如√2=√22。

•乘法和除法规则:二次根式可以与其他数进行乘法和除法运算,例如√a⋅√b=√ab和√a√b =√a√b⋅√b√b=√abb。

3. 二次根式的性质和定理二次根式具有许多重要的性质和定理,这些性质和定理可以帮助我们解决各种问题。

以下是一些常见的性质和定理:•无理数性质:对于大多数非完全平方数a,√a是一个无理数。

•比较大小:对于两个非负实数a和b,如果a<b,那么√a<√b。

•平方根的加法公式:√a+√b不能化简为一个更简单的形式,除非a和b 存在某种特殊关系(例如互为有理数倍)。

•平方根的乘法公式:√a⋅√b=√ab,其中a和b可以是任意非负实数。

4. 解二次根式的方程和不等式解二次根式的方程和不等式是应用二次根式知识的重要方面。

以下是一些解决这类问题的方法:•方程:将方程两边进行平方操作,然后化简为二次根式形式,最后解得方程的解。

•不等式:根据二次根式的性质,可以比较大小或使用其他方法来解决不等式。

5. 与其他数学概念的关系二次根式与其他数学概念之间存在着密切的关系。

以下是一些与二次根式相关的重要概念:•平方数:对于某个非负实数a,如果存在另一个非负实数b,使得b2=a,那么a就是一个平方数。

八年级数学二次根式重点知识点大全

八年级数学二次根式重点知识点大全

一、二次根式的概念与性质1.二次根式的定义:形如√a的式子称为二次根式,其中a≥0。

2.二次根式的性质:a)若a≥0,则√a≥0;b)若a≥b≥0,则√a≥√b;c)若a>b≥0,则√a>√b;d)若a≥0,则√(a²)=,a,其中,a,表示a的绝对值。

二、二次根式的化简与运算1.化简二次根式的常用方法:a)提取因式法:将二次根式中的平方数作为因式提取出来;b)合并相同根号下的项:将根号内的同类项进行合并;c)利用平方公式:将二次根式作为平方差或平方和进行化简。

2.二次根式的四则运算:a)加减运算:合并同类项后,进行加减运算;b)乘法运算:利用分配律,进行乘法运算;c)除法运算:有理化分母,化为二次根式的形式,然后进行乘法运算。

三、含有二次根式的方程1.含有二次根式的方程的解法:a)平方意义法:将方程两边平方,去掉二次根式,解得方程的解;b)分离根号法:将方程中含有二次根式的项移到一边,不含二次根式的项移到另一边,然后平方消去二次根式;c)倒数意义法:将方程两边取倒数,再次运用平方意义法;d)降次法:将方程中的二次根式通过化简变为一次根式,然后解得方程的解。

2.二次根式的绝对值方程:a)若,√a,=√a,则√a为方程的解;b)若,√a,=-√a,则方程无解。

四、二次根式的应用1.二次根式的图像:a)当a>0时,图像为右开口的抛物线;b)当a=0时,图像为直线;c)当a<0时,图像为左开口的抛物线。

2.二次根式的应用:a)二次根式可以表示边长、面积等与几何相关的量;b)二次根式可以表示物质的含量、体积等与实际问题相关的量。

五、解二次根式的几种常用方法1.合并相同根号下的项,然后联立方程求解;2.代入法:将选项代入原方程,判断是否满足等式,找出符合条件的解;3.倒置法:将选项的倒数代入原方程,再运用倒数意义法求解;4.拆解法:将二次根式进行拆解,再利用等式的性质进行求解;5.分离根号法:将方程中含有二次根式的项移到一边,不含二次根式的项移到另一边,然后平方消去二次根式。

二次根式知识点归纳

二次根式知识点归纳

二次根式知识点归纳定义:一般的,式子a ( a ≥ 0 ) 叫做二次根式。

其中“”叫做二次根号,二次根号下的a 叫做被开方数。

性质:1、2≥0,等于a;a<0,等于-a 3、4、 反过来:56、最简二次根式:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.7、同类二次根式:几个二次根次化成最简二次根式以后如果被开数相同,这几个二次根式就叫做同类二次根式8、数的平方根与二次根式的区别:①4的平方根为±2,算术平方根为2;②4=2,二次根式即是算术平方根9、二次根式化运算及化简:①先化成最简 ②合并同类项二次根式中考试题精选一.选择题:1.【05宜昌】化简20的结果是 ( ).A. 25B.52C. .D.54 2.【05南京】9的算术平方根是 ( ).A.-3B.3C.± 3D.813.【05南通】已知2x <, ).A 、2x -B 、2x +C 、2x --D 、2x -A .a 2+a 3=a 5B .(-2x)3=-2x 3C .(a -b)(-a +b)=-a 2-2ab -b 2D =5.【05无锡】下列各式中,与y x 2是同类项的是( )A 、2xyB 、2xyC 、-y x 2D 、223y x 6.【05武汉】若a ≤1,则化简后为( ).A.B. C. D.7.【05绵阳】化简时,甲的解法是:==,乙的解法是:,以下判断正确的是( ).A. 甲的解法正确,乙的解法不正确B. 甲的解法不正确,乙的解法正确C. 甲、乙的解法都正确D. 甲、乙的解法都不正确8.【05杭州】设22a b c ===,则,,a b c 的大小关系是: ( ). (A)a b c >> (B)a c b >> (C)c b a >> (D)b c a >> 9.【05丰台】4的平方根是( ). A. 8B. 2C. ±2D. ±210.【05北京】下列根式中,与3是同类二次根式的是( ). A.24B.12C.32D.1811.【05南平】下列各组数中,相等的是( ).A.(-1)3和1B.(-1)2和-1C.|-1|和-1 和112.【05宁德】下列计算正确的是( ).A 、x 2·x 3=x 6B 、(2a 3)2=4a 6C 、(a -1)2=a 2-1D 、 4 =±213.【05毕节―a 的正整数a 的值有( ).A .1个B .2个C .3个D .4个14.【05黄岗】已知y x ,为实数,且()02312=-+-y x ,则y x -的值为( ).A .3B .– 3C .1D .– 115.【05湘潭】下列算式中,你认为错误的是 ( ). A .aa b ++b a b+=1 B .1÷b a×a b=1 C +1 D .21()a b +·22a b a b--=1a b+二、填空题1.【05连云港】计算:)13)(13(-+= .2.【05南京】10在两个连续整数a 和b 之间,a<10<b, 那么a , b 的值分别是 。

二次根式知识点总结

二次根式知识点总结

二次根式知识点总结王亚平1. 二次根式的概念二次根式的定义: 形如)0(≥a a 的式子叫二次根式,其中a 叫被开方数,只有当a 是一个非负数时,a 才有意义.2. 二次根式的性质1. 非负性:)0(≥a a 是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到. 2.)0()(2≥=a a a注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:)0()(2≥=a a a 3. ⎩⎨⎧<-≥==)0()0(2a a a a a a 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.3. 最简二次根式和同类二次根式1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式4. 二次根式计算——分母有理化1.分母有理化定义:把分母中的根号化去,叫做分母有理化。

2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。

有理化因式确定方法如下:①单项二次根式:利用a a a =⋅来确定,如:a 与a ,b a +与b a +,b a -与b a -等分别互为有理化因式。

②两项二次根式:利用平方差公式来确定。

如b a +与b a -,b a +与b a -,y b x a +与y b x a -分别互为有理化因式。

3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;5. 二次根式计算——二次根式的乘除1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。

)0,0(≥≥⋅=b a b a ab2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。

二次根式总结归纳

二次根式总结归纳

二次根式总结归纳一、二次根式的定义及性质1. 二次根式的定义二次根式是指形如√a的根式,其中a为一个非负实数。

2. 二次根式的化简二次根式可以进行化简,满足以下规则: - √a⋅√b=√ab,其中a≥0,b≥0。

- √a√b =√ab,其中a≥0,b>0。

3. 二次根式的运算二次根式可以进行加、减、乘、除等基本运算。

- 加法:√a+√b无法化简,保留原样。

- 减法:√a−√b无法化简,保留原样。

- 乘法:(√a)(√b)=√ab。

-除法:√a√b =√ab,其中b≠0。

二、二次根式的应用1. 二次根式的几何意义二次根式在几何学中有着重要的应用,特别是在求解面积和边长时。

- 面积应用:当我们需要计算一些形状的面积时,经常会遇到二次根式。

例如,矩形的对角线长度可以表示为√a2+b2,其中a和b分别是矩形的两个边长。

- 边长应用:在某些情况下,已知一个图形的面积,需要求解该图形某一个边的长度。

二次根式的运算可以帮助我们求解这些问题。

例如,等边三角形的边长可以表示为√√3,其中S是等边三角形的面积。

2. 二次根式的化简与证明二次根式的化简和证明是数学中的重要内容,常见的方法包括有理化分母、提取公因式等。

- 有理化分母:当二次根式出现在分母中时,为了简化运算,可以通过有理化分母的方法消除分母中的二次根式。

例如,√2可以通过乘以√2√2来有理化分母得到√22。

- 提取公因式:当一个二次根式等于另一个二次根式的倍数时,可以通过提取公因式的方式进行化简。

例如,√24可以化简为2√6,因为√6是√24的公因式。

三、二次根式的解法1. 二次根式的简单求解对于形如x 2=a 的二次根式方程,可以通过平方根的性质求解,得到x =±√a 。

例如,对于方程x 2=16,其解为x =±4。

2. 二次根式的复杂求解对于形如x 2+bx +c =0的二次根式方程,可以通过求解二次根式的不同情况来得到解。

二次根式知识点总结

二次根式知识点总结

二次根式知识点总结
一、二次根式的定义
二次根式是指形如 $\sqrt{a}$ 的无理数或代数式,其中 $a$ 是一个
非完全平方数,即 $a$ 不能表示为某个正整数的平方。

二、简化二次根式
1. 将二次根式 $\sqrt{a}$ 化简为 $\sqrt{b}$ 的形式,其中
$b$ 是 $a$ 的正因子;
2. 对于 $\sqrt{a}\pm\sqrt{b}$,可通过有理化分母的方法化为
$\frac{\sqrt{c}\pm\sqrt{d}}{e}$ 的形式,其中 $c$、$d$、$e$ 均
为整数。

三、二次根式的运算
1. 二次根式加减法:将同类项合并,并对结果进行简化;
2. 二次根式乘法:利用分配律,将每一项分别与另一个二次根式相乘,并化简结果;
3. 二次根式除法:将除数、被除数都乘以分母的共轭复数,化为分母
为整数的形式后进行约分。

四、二次根式的应用
1. 应用勾股定理求直角三角形的一条边;
2. 当面积或体积为二次根式时,可通过二次根式的运算得到结果。

五、注意事项
1. 化简二次根式时,应将完全平方因子提出;
2. 二次根式运算时,不同二次根式之间不能进行加减法;
3. 对于 $\sqrt{a}$,$a$ 不能为负数。

二次根式的有关概念和性质

专题01二次根式的概念和性质(知识点考点串编)【思维导图】◎考点1:二次根式的值例.(2022·浙江·九年级专题练习)当0x =的值等于( )A .4B .2CD .0【答案】B【解析】【分析】把0x =解题即可【详解】◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a ≥0)的式子叫做二次根式,“”称为二次根号。

【注意】1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。

2.二次根式是一个非负数。

3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。

解:把0x =2=故选:B .【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是( )个A .3个B .4个C .5个D .6个【答案】B 【解析】【分析】0)a >的代数进行分析得出答案.【详解】共4个.故选:B .【点睛】0)a >的代数式,正确把握定义是解题关键.练习2.(2021·河北·结果相同的是( ).A .321-+B .321+-C .321++D .321--【答案】A【解析】【分析】根据有理数运算和二次根式的性质计算,即可得到答案.【详解】2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.练习3.(2021·河南林州·八年级期末)已知当12a <<a -的值是( )A .3-B .12a -C .32a -D .23a -【答案】C【解析】【分析】由题意直接根据二次根式的性质以及去绝对值的方法,进行分析运算即可.【详解】解:∵12a <<,212132a a a a a a -=---=-+-=-.故选:C.【点睛】本题考查二次根式和去绝对值,熟练掌握二次根式的性质以及去绝对值的方法是解题的关键.◎考点2:求二次根式中的参数例.(2021·n 的最小值是( )A .2B .4C .6D .8【答案】C【解析】【分析】=,则6n 是完全平方数,满足条件的最小正整数n 为6.【详解】解:=∴6n 是完全平方数;∴n 的最小正整数值为6.【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且0x +=,则2019x y æöç÷èø的值( )A .-2B .1C .2D .-1【答案】D【解析】【分析】根据非负数的性质可求出x 、y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵0x +=,∴x +2=0,y -2=0,∴x =﹣2,y =2,∴220190192=12x y -æöæöç÷è=-ç÷èøø.故选:D .【点睛】本题主要考查了非负数的性质,明确实数绝对值和二次根式的非负性以及﹣1的奇次幂的性质是解题关键.练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果3y ,则2x y -的平方根是( )A .-7B .1C .7D .±1【答案】D【解析】【分析】根据二次根式的性质求出x 、y 的值,再代入求解即可.解:由题意可得:24020x x -+¹=,,解得:2x =,故3y =,则21x y -=,故2x y -的平方根是:±1.故选:D .【点睛】本题考查了关于二次根式的运算问题,掌握二次根式的性质、平方根的性质是解题的关键.练习3.(2021·全国·n 的值是( )A .0B .1C .2D .5【答案】D【解析】【分析】首先化简二次根式进而得出n 的最小值.【详解】=∴最小正整数n 的值是5.故选D .【点睛】本题考查了二次根式的定义,正确化简二次根式得出是解题的关键.例.(2022·全国·九年级专题练习)在函数1y =中,自变量x 的取值范围是( )A .x <2B .x ≥2C .x >2D .x ≠2【答案】C 【解析】◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

二次根式经典总结

1.二次根式:一般地,式子)0a (,a ≥叫做二次根式.注意:(1)若0a ≥这个条件不成立,则 不是二次根式;(2)是一个重要的非负数,即;≥0.2.重要公式:(1))0a (a )a (2≥=,(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ;注意使用)0a ()a (a 2≥=。

3.积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求。

4.二次根式的乘法法则:)0b ,0a (ab b a ≥≥=⋅.5.二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小.6.商的算术平方根:)0b ,0a (ba b a >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则:(1))0b ,0a (b a b a>≥=; (2))0b ,0a (b a b a >≥÷=÷;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

8.常用分母有理化因式:a a 与,b a b a +-与, b n a m b n a m -+与,它们也叫互为有理化因式。

9.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,① 被开方数的因数是整数,因式是整式,② 被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式。

10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题.11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.形如)0a (,a ≥的式子,叫做二次根式(1)二次根式中,被开方数必须是非负数。

二次根式的知识点汇总

二次根式的知识点汇总二次根式是指含有平方根(开方)的代数式。

学习和掌握二次根式的知识点,对于进一步理解和应用高等数学和物理学等学科内容至关重要。

以下是二次根式的知识点汇总:一、基本概念与性质:1.平方根与二次根式的概念:平方根的定义及其在代数中的性质,二次根式的定义与示例。

2.约分与化简:二次根式的约分、化简及约分规则。

3. 同类二次根式的合并与分解:同类二次根式的合并与分解法则,如$\sqrt{a} \pm \sqrt{b} = \sqrt{(\pm \sqrt{a})^2 + (\pm\sqrt{b})^2}$。

二、四则运算:1. 加减法:同类二次根式的加减法规则,如$\sqrt{a} \pm \sqrt{b} = \sqrt{(\pm \sqrt{a})^2 + (\pm \sqrt{b})^2}$。

2. 乘法:二次根式的乘法规则,如$(a+b)(c+d)=ac+ad+bc+bd$。

3. 除法:二次根式的除法规则,如$\frac{a+b}{c+d}=\frac{(a+b)(c-d)}{(c+d)(c-d)}$。

4.有理化方法:如分子、分母都有二次根式时的有理化方法,分别是乘以共轭式和有理化因式。

三、二次根式的化简与证明:1.合并同类项:在二次根式的化简中,将同类项合并为一个二次根式。

2.分解因式:在二次根式的化简中,将二次根式分解为若干个二次根式相乘的形式。

3.公因式提取:在二次根式的化简中,提取公因式使其化简为整数或其他形式。

四、二次根式的应用:1.代数方程的解:使用二次根式求解一元二次方程。

2.几何意义:二次根式在几何中的应用,例如计算三角形的边长、面积等。

3.物理问题:通过建立代数模型和运用二次根式,解决物理问题,如自由落体、速度、力等。

五、常见的二次根式:1. $\sqrt{a^2}=,a,$,其中$a$表示任意实数。

2. $\sqrt{a}\sqrt{b}=\sqrt{ab}$,其中$a$和$b$分别表示任意非负实数。

二次根式知识点

二次根式知识点1. 二次根式的定义二次根式指的是形如√a的数,其中a为非负实数。

a被称为被开方数,√a被称为二次根式,也可以叫做平方根。

2. 二次根式的基本性质① 非负性:二次根式必须为非负实数。

② 同根式的加减法:同一指数的二次根式可以进行加减法运算,结果等于指数不变时各自运算后相加减。

③ 同根式的乘法:同一指数的二次根式可以进行乘法运算,结果等于指数不变时各自运算后相乘。

④ 同底数的指数运算:同一被开方数的不同指数的二次根式,可以进行指数运算,结果等于底数相同时指数相加或相减后的二次根式。

⑤ 合并同类项:不同被开方数的二次根式不能进行加减运算,必须化为同一被开方数才能进行操作。

3. 二次根式的化简① 化简含有平方数的二次根式例如:√36 = √(6²)= 6② 化简含有分数的二次根式例如:√(1/4)= 1/√4= 1/2③ 化简含有根号的二次根式例如:√(128)= √(2*64)= 8√2④ 去除被开方数中的平方因子例如:√(80)= √(16*5)= 4√54. 二次根式的应用由于二次根式代表着平方根,所以在一些实际问题中,经常出现二次根式的应用。

例1:计算正方形对角线的长度设正方形边长为a,则对角线长度d = √(a²+a²)=a√2例2:炮弹落地问题假设炮弹以初速度v以角度α斜抛,落地时的水平距离为x,求炮弹所需的最小速度v。

根据物理学上的知识,可以得到:x = v²sin2α/g其中g为重力加速度,有g = 9.8m/s²,化简可得:v = √(gx/ sin2α)在实际问题中,二次根式的应用还有很多,比如在建筑设计中计算楼梯踏步和踏板的长度,计算圆周率的近似值等等。

5. 二次根式的拓展除了√a这种形式的二次根式外,还可以拓展为含有多个根号的形式。

例如:√(a±√b)化简时,可以拆分成两个二次根式相加或相减的形式:当加号为正号时,可拆分为:√(a+√b)+√(a-√b)当减号为负号时,可拆分为:√(a-√b)-√(a+√b)在拓展的形式中,二次根式的化简变得更为复杂,需要运用其他方法进行化简。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式
【知识总结】 1.二次根式:式子
a (a ≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:
二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:
(1)(a )2=a (a ≥0); (2)==a a 2
5.二次根式的运算:
(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.
(2)二次根式的加减: (一化,二找,三合并 )
(1)将每个二次根式化为最简二次根式; (2)找出其中的同类二次根式; (3)合并同类二次根式。

a (a >0)
a -(a <0)
0 (a =0);
(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.
(a≥0,b≥0);
=
b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.
【典型例题】
1、概念与性质
例1、下列各式
1
)-, 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围
(1)
x x --
+31
5;(2)2
2)-(x
例3、 在根式
1)

最简二次根式是( )A .1) 2) B .3) 4) C .1) 3) D .1) 4)
例4、已知:的值。

求代数式22,211881-+-+++-+-=x y
y x x y y x x x y
例5、已知数a ,b ,若2
()a b -=b -a ,则 ( )
A. a>b
B. a<b
C. a≥b
D. a≤b 2、二次根式的化简与计算 例1. 将
根号外的a 移到根号内,得 ( ) A.
; B. -
; C. -
; D.
例2. 把(a -b )
-1
a -
b 化成最简二次根式
例3、计算:
例4、先化简,再求值:
11()b a b b a a b ++++,其中a=512,b=512.
例5、如图,实数a 、b 在数轴上的位置,化简 :
222
()a b a b ---
4、比较数值 (1)、根式变形法
当0,0a b >>时,①如果a b >a b >a b <a b <。

例1、 比较35与3的大小。

(2)、平方法
当0,0a b >>时,①如果22a b >,则a b >;②如果22a b <,则a b <。

例2、比较323 (3)、分母有理化法
通过分母有理化,利用分子的大小来比较。

例331-21
-
(4)、分子有理化法
通过分子有理化,利用分母的大小来比较。

例4、比较1514-与1413-的大小。

(5)、倒数法
例5、比较76-与65-的大小。

(6)、作差比较法
在对两数比较大小时,经常运用如下性质: ①0a b a b ->⇔>;②0a b a b -<⇔< 例6、比较2131++与2
3
的大小。

5、规律性问题
例1. 观察下列各式及其验证过程:
, 验证:

验证:.
(1)按照上述两个等式及其验证过程的基本思路,猜想4
415
的变形结果,并进行验证;
(2)针对上述各式反映的规律,写出用n(n≥2,且n 是整数)表示的等式,并给出验证过程.
例3、已知a>b>0,a+b=6ab ,则a b
a b
-+的值为( ) A .
22 B .2 C .2 D .12
例4、甲、乙两个同学化简
时,分别作了如下变形:
甲:
=
=

乙:=。

其中( )A. 甲、乙都正确 B. 甲、乙都不正确 C. 只有甲正确 D. 只有乙正确
【基础训练】
1.化简:(1)72=__ __;(2)22
2524-=___ __
(3)61218⨯⨯=___ _;
(4)3275(0,0)x y x y ≥≥=___ _; (5)_______420
=-。

2.)化简
()
2
4-=_________。

3.计算4的结果是
A.2 B.±2 C.-2 D.4 4. 化简:(1)9的结果是 ; (2)123-的结果是 ;
(3)825-= (4))5x -2x =_____ _; (5)3+(5-3)=_________; (6) ; (7)
=________;
(8) .
5.计算28-的结果是( )
A 、6
B 、6
C 、2
D 、2 6
3的倒数是 。

7.下列计算正确的是 A . B .
C .
D .
8.下列运算正确的是 A 、4.06.1= B 、
()5.15.12
-=-
C 、39=-
D 、
3
294=
9.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是__________; 10. 比较大小:3
10。

11.使2x -有意义的x 的取值范围是 .
12.若式子5x +在实数范围内有意义,则x 的取值范围是( )
A.x >-5
B.x <-5
C.x ≠-5
D.x ≥-5
13. 函数
中,自变量的取值范围是 .
14.下列二次根式中,x 的取值范围是x ≥2的是( ) A 、2-x B 、x+2 C 、x -2 D 、1x -2
15.下列根式中属最简二次根式的是( )
A.21a +
B.
1
2
C.8
D.27 16.下列根式中不是最简二次根式的是( ) A .10 B .8 C .6 D .2 17.下列各式中与是同类二次根式的是( ) A .2
B .
C .
D .
18.下列各组二次根式中是同类二次根式的是( )
A .
2
112与
B .2718与
C .
3
13与
D .5445与
19.已知二次根式与
是同类二次根式,则的α值可以是
( ) A 、5 B 、6 C 、7 D 、8 20.若b a y b a x +=-=,,则xy 的值为( ) A .a 2 B .b 2 C .b a + D .b a -
21.若230a b --=,则
2a b -= .
22.如图,在数轴上表示实数15的点可能是( )
A .点P
B .点Q
C .点M
D .点N
23.若
,则的取值范围是( ) A .
B .
C .
D .
24.如图,数轴上两点表示的数分别为1和
,点关于点的
对称点为点,则点所表示的数是 A .
B .
C .
D .
25.计算: (1) (2)
(3). (4).
(5)27124148÷⎪⎭

⎝⎛+。

相关文档
最新文档