高考数学概率统计知识点梳理
2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结2024高考数学压轴题——概率与统计的挑战与应对随着高考的临近,数学科目的复习也进入了关键阶段。
2024年的高考数学压轴题将会涉及到概率与统计的内容,这不仅考察学生的基本数学知识,更侧重于考察学生的逻辑思维能力、实际应用能力和问题解决能力。
本文将针对这一部分的常见题型、解题思路和知识点进行总结,希望能为广大考生提供一些帮助和指导。
一、常见题型的解题思路1、概率计算:在解决概率计算问题时,学生需要明确事件的独立性、互斥性和概率公式的应用。
尤其是古典概率和条件概率的计算,需要学生熟练掌握。
对于涉及多个事件的概率计算,学生需要理清事件的关联关系,采用加法、乘法或全概率公式进行计算。
2、随机变量及其分布:这部分要求学生掌握离散型和连续型随机变量的分布律及分布函数,理解并掌握几种常见的分布,如二项分布、泊松分布和正态分布等。
对于随机变量的数字特征,如期望、方差和协方差等,学生需要理解其含义并掌握计算方法。
3、统计推断:在统计推断问题中,学生需要掌握参数估计和假设检验的基本方法。
对于点估计,学生需要理解矩估计法和最大似然估计法的原理,并能够进行计算。
对于假设检验,学生需要理解显著性检验的原理,掌握单侧和双侧检验的方法。
4、相关与回归分析:相关与回归分析要求学生能够读懂散点图,理解线性相关性和线性回归的概念,掌握回归方程的拟合方法和拟合优度的评估方法。
二、概率与统计的相关知识点总结1、概率的基本概念:事件、样本空间、事件的概率、互斥事件、独立事件等。
2、随机变量及其分布:离散型随机变量和连续型随机变量,二项分布、泊松分布和正态分布等。
3、统计推断:参数估计、假设检验、点估计、置信区间、单侧和双侧检验等。
4、相关与回归分析:线性相关性和线性回归的概念,回归方程的拟合方法和拟合优度的评估方法。
三、示例分析下面我们通过一个具体的示例来演示如何分析和解决一道概率与统计的压轴题。
高考数学概率统计知识点总结(文理通用)

概率与统计知识点及专练(一)统计基础知识:1. 随机抽样:(1).简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.(2).系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).(3).分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.2. 普通的众数、平均数、中位数及方差: (1).众数:一组数据中,出现次数最多的数(2).平均数:常规平均数:12nx x x x n ++⋅⋅⋅+=(3).中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数(4).方差:2222121[()()()]n s x x x x x x n =-+-+⋅⋅⋅+-(5).标准差:s3 .频率直方分布图中的频率:(1).频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数; 频数=总数*频率(2).频率之和等于1:121n f f f ++⋅⋅⋅+=;即面积之和为1: 121n S S S ++⋅⋅⋅+=4. 频率直方分布图下的众数、平均数、中位数及方差: (1).众数:最高小矩形底边的中点(2).平均数:112233n n x x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+(3).中位数:从左到右或者从右到左累加,面积等于0.5时x 的值(4).方差:22221122()()()nn s x x f x x f x x f =-+-+⋅⋅⋅+-5.线性回归直线方程:(1).公式:ˆˆˆy bx a=+其中:1122211()()ˆ()n ni i i ii in ni ii ix x y y x y nxybx x x nx====---∑∑==--∑∑(展开)ˆˆa y bx=-(2).线性回归直线方程必过样本中心(,) x y(3).ˆ0:b>正相关;ˆ0:b<负相关(4).线性回归直线方程:ˆˆˆy bx a=+的斜率ˆb中,两个公式中分子、分母对应也相等;中间可以推导得到6. 回归分析:(1).残差:ˆˆi i ie y y=-(残差=真实值—预报值)分析:ˆie越小越好(2).残差平方和:2 1ˆ() ni iiy y =-∑分析:①意义:越小越好;②计算:222211221ˆˆˆˆ()()()() ni i n niy y y y y y y y =-=-+-+⋅⋅⋅+-∑(3).拟合度(相关指数):2 2121ˆ()1()ni iiniiy y Ry y==-∑=--∑分析:①.(]20,1R∈的常数;②.越大拟合度越高(4).相关系数:()()n ni i i ix x y y x y nx y r---⋅∑∑==分析:①.[1,1]r∈-的常数;②.0:r>正相关;0:r<负相关③.[0,0.25]r∈;相关性很弱;(0.25,0.75)r∈;相关性一般;[0.75,1]r∈;相关性很强7. 独立性检验:(1).2×2列联表(卡方图): (2).独立性检验公式①.22()()()()()n ad bc k a b c d a c b d -=++++②.上界P 对照表:(3).独立性检验步骤:①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++ ②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k③.下结论:0k k ≥即认为有P 的没把握、有1-P 以上的有把握认为两个量相关;0k k <:即认为没有1-P 以上的把握认为两个量是相关关系。
高考数学中的概率统计关键知识点总结

高考数学中的概率统计关键知识点总结在高考数学中,概率统计是一个重要的考点之一。
学习概率统计并掌握其关键知识点,不仅有助于我们在考试中拿到好成绩,还可以在日常生活中帮助我们更好地理解和运用概率统计知识。
本文将总结高考数学中概率统计的关键知识点,希望能对广大考生有所帮助。
一、基本概率知识概率是指某个事件在所有可能事件中发生的可能性大小,通常用一个介于0和1之间的小数来表示。
在概率计算中,我们需要掌握以下知识点:1.样本空间和事件:在一个随机试验中,所有可能结果构成的集合称为样本空间。
样本空间中的个体称为样本点。
事件是样本空间的一个子集,是由若干个样本点组成的。
2.事件的概率:事件A发生的概率P(A)定义为A中样本点数与样本空间中样本点总数之比。
3.互斥事件:如果两个事件A、B没有共同的样本点,则称它们是互斥事件。
4.独立事件:如果两个事件A、B的发生互不影响,则称它们是独立事件。
二、离散型随机变量离散型随机变量是指只能取一些有限或者可数个值的变量。
在学习离散型随机变量时,需要注意以下知识点:1.随机变量:设X是一个随机变量,其所有可能取值构成一个集合,称为随机变量X的全体取值,简称X的取值集。
2.概率函数:对于离散型随机变量X,其取值集为{x1,x2,...,xn},其概率函数为f(x)=P(X=xi),i=1,2,...n。
其中,f(x)满足以下两个条件:非负性,即f(x)>=0;归一性,即sum[f(xi)]=1。
3.数学期望:对于离散型随机变量X,其数学期望定义为:E(X)=sum[xi*f(xi)], i=1,2,...,n。
三、连续型随机变量连续型随机变量是指可以取得任意一个实数的变量。
学习连续型随机变量时,有以下知识点需要注意:1.概率密度函数:对于连续型随机变量X,其概率密度函数f(x)满足以下两个条件:非负性,即f(x)>=0;积分为1,即integral(f(x))dx=1。
高考复习概率与统计知识点归纳总结

概率与统计知识点总结(一)知识点思维导图(二)常用定理、公式及其变形1.用样本的数字特征估计总体的数字特征(1)样本本均值:nx x x x n +++= 21 (2)样本标准差:nx x x x x x s s n 222212)()()(-++-+-== (3)频率分布直方图估算样本众数、中位数、平均数①众数:最高小矩形中点值;②中位数:先确定中位数所在小组,设中位数为m ,由直线x=m 两侧小矩形面积之和等于0.5列方程求m . ③平均数:各小矩形中点值与其面积的积的和.2.随机事件的概率及概率的意义(1)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(2)概率定义:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=n n A为事件A 出现的频率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率.3.概率的基本性质(1)事件的包含、并事件、交事件、相等事件(2)若A∩B 为不可能事件,即A∩B=ф,那么称事件A 与事件B 互斥;(3)若A∩B 为不可能事件,A∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A∪B 为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)4.古典概型及随机数的产生(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性.(2)公式P (A )=总的基本事件个数包含的基本事件数A 5.几何概型及均匀随机数的产生(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A . 6.随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示.7.离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n .X 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列分布列性质:∪ p i ≥0, i =1,2, … ;∪ p 1 + p 2 +…+p n = 1.9.条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率公式:.0)(,)()()|(>=A P A P AB P A B P 10.相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件,)()()(B P A P B A P ⋅=⋅12.数学期望:一般地,若离散型随机变量ξ的概率分布为 则称 Eξ=x 1p 1+x 2p 2+…+x n p n 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量.13.方差:D(ξ)=(x 1-Eξ)2·P 1+(x 2-Eξ)2·P 2 +......+(x n -Eξ)2·P n 叫随机变量ξ的均方差,简称方差.14.正态分布:(1)定义:若概率密度曲线就是或近似地是函数 的图象,其中解析式中的实数0)μσσ>、(是参数,分别表示总体的平均数与标准差.则其分布叫正态分布(,)N μσ记作:,f( x )的图象称为正态曲线;(2)基本性质:∪曲线在x 轴的上方,与x 轴不相交;∪曲线关于直线x=对称,且在x=时位于最高点;∪当一定时,曲线的形状由确定.越大,曲线越“矮胖”;表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中;∪正态曲线下的总面积等于1.15.3原则:从上表看到,正态总体在 以外取值的概率只有4.6%,在 以外取值的概率只有0.3% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的.),(,21)(222)(+∞-∞∈=--x e x f x σμσπμμμσσσσ)2,2(σμσμ+-)3,3(σμσμ+-17.回归分析。
高考概率统计知识点总结

高考概率统计知识点总结高考数学中的概率统计是一个相对独立的模块,但在学生中有着较高的难度和考查比重。
掌握好概率统计知识点对于提升数学成绩以及应对高考是至关重要的。
本文将从概率和统计两个方面,对高考中常见的概率统计知识点进行总结。
一、概率概率是概率统计中最为核心也是较为抽象的概念之一。
在考试中,概率通常通过计算概率值、事件的互斥、独立以及条件概率作为考点出现。
1. 概率值的计算:概率指某件事情发生的可能性大小。
常见的概率计算方式有两种,一种是频率概率,另一种是几何概率。
频率概率指的是事件发生的次数与总次数之间的比值;几何概率指的是事件发生的可能性与总可能性之间的比值。
2. 互斥事件与对立事件:互斥事件是指在同一次试验中,事件A和事件B不能同时发生;对立事件是指在同一次试验中,事件A发生与事件A不发生是互相对立的。
了解互斥事件和对立事件的性质,能够帮助我们更好地理解概率的计算。
3. 独立事件与非独立事件:独立事件是指在试验之间没有相互影响;非独立事件是指在试验之间相互影响。
对于独立事件和非独立事件,学生需要通过条件概率计算来确定它们之间的关系。
二、统计统计是概率统计中的另一个重要部分,它主要研究如何收集、整理、分析和解释大量数据的方法和技巧。
在高考中,统计通常通过抽样方法、频数分布、统计图表以及样本与总体的关系作为考点出现。
1. 抽样方法:抽样是指从总体中选取个别样本以代表总体。
在高考中,常用的抽样方法有随机抽样、分层抽样和整群抽样等。
了解各种抽样方法及其应用场景,可以帮助我们更好地分析总体特征。
2. 频数分布和统计图表:频数分布是指将一组数据按照数值大小进行整理和分类,以便观察数据的分布情况。
统计图表则是通过图像的方式将数据进行展示,包括直方图、折线图和饼图等。
掌握频数分布和统计图表的制作方法,可以更直观地观察数据特征。
3. 样本与总体的关系:样本是指从总体中选取的一部分数据,总体是指具有某种共同特征的个体或事物的集合。
高三知识点概率统计

高三知识点概率统计概率统计是数学中的一个重要分支,它研究事物发生的可能性和规律性。
在高三阶段,学生必须对概率统计有一定的了解和掌握,以便应对高考中对该知识点的考察。
本文将介绍几个高三阶段常见的概率统计知识点,帮助同学们更好地掌握和应用这些知识。
一、基本概念1. 试验与事件试验是指可以进行的某一行为或过程,事件是试验可能结果的一个集合,包括必然事件、不可能事件和随机事件。
2. 样本空间与样本点样本空间是试验所有可能结果的集合,样本点是样本空间中的元素,代表试验的一个结果。
3. 事件的关系事件之间可以有包含关系、互斥关系和对立关系。
二、概率的计算1. 古典概型古典概型是指试验结果均匀、互斥且有限的情况下的概率计算方法。
根据古典概型,事件A发生的概率为:P(A) = 事件A的基本结果数 / 样本空间的基本结果数。
2. 几何概型几何概型是指利用几何形状和图形来计算概率的方法,主要包括长方形模型、正方形模型和圆模型。
3. 相对频率与概率相对频率是指某事件发生的频率,概率是指事件发生的可能性。
在大量实验中,相对频率逐渐趋近于概率。
三、概率与事件的运算1. 事件的并、交和差事件的并是指两个事件中至少有一个事件发生的情况,事件的交是指两个事件同时发生的情况,事件的差是指一个事件发生而另一个事件不发生的情况。
2. 概率的加法和减法设事件A和事件B是两个相互独立的事件,那么事件A或事件B发生的概率为:P(A或B) = P(A) + P(B) - P(A和B)。
相应地,事件A和事件B的概率之差为:P(A和B) = P(A) + P(B) - P(A或B)。
四、条件概率1. 事件的独立性事件A和事件B相互独立,是指事件A的发生不受事件B的影响,事件B的发生也不受事件A的影响。
2. 事件的相互依赖事件A和事件B相互依赖,是指事件A的发生受到事件B的影响,事件B的发生也受到事件A的影响。
五、排列与组合1. 排列排列是指从若干个元素中,按照一定顺序选取一部分进行组合的方式。
高考统计概率知识点归纳总结大全

高考统计概率知识点归纳总结大全概率统计是高中数学考试的重要内容之一,也是高考中常考的一个知识点。
掌握好概率统计的知识,对提高数学成绩,甚至对生活中的决策问题都有着重要的意义。
本文将对高考概率统计的知识点进行归纳总结,希望对广大考生能够有所帮助。
1. 事件与概率概率统计的基本概念是事件和概率。
事件即我们所关注的问题,而概率则是描述这个事件发生可能性大小的数值。
事件通常用大写字母表示,如A、B,而概率用P(A)表示。
概率的取值范围是0到1之间。
2. 事件的运算事件之间有着不同的运算关系,包括和事件、积事件、差事件和补事件。
对于事件A和事件B,和事件表示同时发生的事件,用A∪B表示;积事件表示两个事件同时发生,用A∩B表示;差事件表示事件A发生而事件B不发生,用A-B表示;补事件表示事件A不发生的情况,用- A表示。
3. 概率的加法规则对于两个事件A和B,它们的和事件的概率计算公式为P(A∪B) = P(A) + P(B) - P(A∩B) ,即和事件的概率等于两个事件的概率之和减去积事件的概率。
4. 独立事件与互斥事件事件A和事件B独立指的是A事件的发生与否对B事件的发生没有影响,它们之间的概率关系为P(A∩B) = P(A) × P(B)。
而互斥事件指的是A事件和B事件不能同时发生,它们之间的概率关系为P(A∩B) = 0。
5. 条件概率与乘法法则条件概率是指在另一个事件已经发生的条件下,某个事件发生的概率。
条件概率的计算公式为P(A|B) = P(A∩B) / P(B)。
乘法法则是条件概率的推广,当某个事件发生的条件不再只有一个时,乘法法则可以用来计算多个事件同时发生的概率。
6. 伯努利试验与二项分布伯努利试验是指只有两种可能结果的一类实验,如抛硬币、掷骰子等。
二项分布是指在n次独立重复伯努利试验中,事件A出现k 次的概率分布。
二项分布的概率计算公式为P(X=k) = C(n, k) × P^k × (1-P)^(n-k),其中C(n, k)表示组合数。
高中概率统计知识点_高三概率知识点总结范文

《高中概率统计知识点总结》高中概率统计是数学中的重要组成部分,它不仅在高考中占据着重要的地位,而且在实际生活中也有着广泛的应用。
本文将对高中概率统计的知识点进行全面总结,帮助高三学生更好地掌握这部分内容。
一、随机事件与概率1. 随机事件随机事件是在一定条件下可能发生也可能不发生的事件。
必然事件是在一定条件下必然发生的事件,不可能事件是在一定条件下不可能发生的事件。
2. 概率的定义概率是对随机事件发生可能性大小的度量。
对于一个随机事件A,它的概率 P(A)满足0≤P(A)≤1。
当 P(A)=1 时,事件 A 为必然事件;当 P(A)=0 时,事件 A 为不可能事件。
3. 概率的基本性质(1)概率的加法公式:对于任意两个互斥事件 A 和 B,P(A∪B)=P(A)+P(B)。
(2)对立事件的概率:若事件 A 的对立事件为\(\overline{A}\),则 P(A)+P(\(\overline{A}\))=1。
二、古典概型1. 古典概型的特点(1)试验中所有可能出现的基本事件只有有限个。
(2)每个基本事件出现的可能性相等。
2. 古典概型的概率计算公式如果一次试验中共有 n 个基本事件,事件 A 包含其中的 m 个基本事件,则事件 A 的概率 P(A)=\(\frac{m}{n}\)。
三、几何概型1. 几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个。
(2)每个基本事件出现的可能性相等。
2. 几何概型的概率计算公式一般地,在几何区域 D 中随机地取一点,记事件“该点落在其内部一个区域 d 内”为事件 A,则事件 A 发生的概率P(A)=\(\frac{d 的测度}{D 的测度}\)。
这里测度可以是长度、面积、体积等。
四、互斥事件与独立事件1. 互斥事件若事件 A 与事件 B 不能同时发生,则称事件 A 与事件 B 为互斥事件。
互斥事件的概率加法公式为P(A∪B)=P(A)+P(B)(A、B 互斥)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学概率统计知识点梳理概率统计作为高中数学的重要组成部分,是高考中常见的考点之一。
掌握好概率统计的知识,对于考生来说至关重要。
下面将对高考数学
概率统计知识点进行梳理,帮助考生更好地复习和备考。
一、随机事件及其概率
在概率统计中,随机事件是指在相同条件下可以重复出现的试验结果。
概率是描述随机事件发生的可能性大小的数值。
常见的概率计算
方法包括:基本概率公式、加法原理、乘法原理等。
在高考中,常见
的随机事件概率计算题型有:求事件发生的可能性,计算联合概率、
条件概率等。
二、样本空间与事件
样本空间是指试验所有可能结果的集合,事件是样本空间的一个子集。
在概率统计中,常用样本空间和事件的关系来求解概率。
考生需
要掌握样本空间的求法,以及事件与样本空间的关系。
三、频率与概率
频率是指某个事件在重复试验中发生的次数与试验总次数的比值。
概率是指某个事件在理论上发生的可能性大小。
频率与概率之间存在
着紧密的联系,频率可以用来近似估算概率。
在高考中,考生需要理
解频率与概率的关系,并能够进行频率与概率之间的转换。
四、排列组合与概率
排列组合是概率统计中常用的计算方法。
排列是指从n个不同元素中取出m个元素进行顺序安排的方法数,组合是指从n个不同元素中取出m个元素进行不顺序的安排方法数。
在排列组合的基础上,结合概率的计算,考生需要能够解决排列组合与概率相结合的题型。
五、随机变量及其分布
随机变量是指随机试验结果的数值化描述,可以是离散的也可以是连续的。
随机变量的分布描述了随机变量每个可能值出现的概率。
常见的离散随机变量分布有:二项分布、泊松分布等;常见的连续随机变量分布有:正态分布、指数分布等。
在高考中,随机变量的概率计算题型经常出现,考生需要熟练掌握各种分布的特点和计算方法。
六、统计与抽样
统计是指对大量数据进行收集、整理和分析的过程。
抽样是统计的基本方法之一,是指从总体中选取一部分样本进行研究。
在高考中,常见的统计与抽样的题型有:调查设计、样本估计等。
考生需要能够理解统计与抽样的原理,并能够解决相应的题目。
七、参数估计与假设检验
参数估计是指根据样本信息对总体参数进行估计。
常见的参数估计方法有点估计和区间估计。
假设检验是对总体参数做出某种假设,并通过样本信息来判断这种假设是否成立。
在高考中,考生需要理解参数估计的原理和方法,掌握假设检验的步骤和要点。
综上所述,高考数学概率统计是一门重要的学科,考生需要系统地掌握其中的知识点。
通过对概率统计各个知识点进行梳理,希望能够帮助考生更好地备考和复习,取得优异的成绩。
祝愿所有参加高考的考生都能够顺利通过数学概率统计这一科目,实现自己的理想!。