高中物理选修32楞次定律知识点归纳
物理人教版选修3-2 4.3楞次定律讲义

HCH
第 1 页 共 1 页 §4.3 楞次定律
一、基础知识
1、实验探究感应电流方向
图1分析:
图2分析:
图3分析:
图4分析:
结论:当穿过线圈的磁通量增加时,感应电流磁场与原磁场方向相反;磁通量减少时,感应电流磁场与原磁场方向相同。
2、楞次定律
感应电流具有这种方向,即感应电流的磁场总要阻碍引起感应电流磁通量的变化。
3、右手定则
适用于闭合回路部分导体切割磁感线。
二、学会做题
1、“阻碍”的推广
(1)、阻碍原磁通量的变化——“增反减同” ;
(2)、阻碍相对运动——“来拒去留” ;
(3)、使线圈面积扩大或缩小——“增缩减扩” ;
(4)、阻碍原电流的变化——“增反减同”(自感)
2、左手定则、右手定则和安培定则(右手螺旋定则)
(1)、左手定则:已知磁感应强度和电流方向,判断力,电流→运动,电动机 右手定则:已知磁感应强度和运动方向,判断电流,运动→电流,发电机 “左力右生”
(2)、因电生磁(B I →)→安培定则(右手螺旋定则)
因动生电(I B →、ν)→右手定则
因电受力(安、F B I →)→左手定则。
人教版高中物理选修3-2:楞次定律

五、对右手定则的理解和应用
【问题导思】 1.闭合回路中部分导体切割磁感线时,右手定则和楞次 定律是否都可以用来判断感应电流的方向? 2.能否用左手定则判断感应电流的方向?
1.右手定则与楞次定律的区别与联系
楞次定律
右手定则
研究 对象
整个闭合回路
闭合回路的一部分, 即做切割磁感线运动 的导体
(2)楞次定律 感应电流具有这样的方向,即感应电流的磁场总要阻碍 引 起感应电流的磁通量的 变化 .
2.思考判断 (1)感应电流的磁场总是与引起感应电流的磁场方向相 反.(×) (2)感应电流的磁场方向与引起感应电流的磁场方向可 能相同,也可能相反.(√) (3)楞次定律表明感应电流的效果总是与引起感应电流 的原因相对抗.(√)
甲
乙
丙
丁
①线圈内磁通量增加时的情况
图号
甲 乙
磁场 方向
向下
向上
感应电流 的方向
逆时针(俯视) 顺时针(俯视)
感应电流 的磁场方向
向上
向下
②线圈内磁通量减少时的情况
图号
丙 丁
磁场 方向
向下
向上
感应电流 的方向
顺时针(俯视)
逆时针(俯视)
感应电流的 磁场方向
向下
向下
③归纳结论 当线圈内磁通量增加时,感应电流的磁场与原磁场方向 相反, 阻碍 磁通量的增加;当线圈内磁通量减少时,感应 电流的磁场与原磁场方向相同, 阻碍 磁通量的减少.
3.探究交流 试归纳比较左手定则、右手定则、安培定则分别用来判 断哪个量的方向.
【提示】 左手定则用于判断安培力和洛伦兹力的方向, 右手定则用于判断闭合电路的部分导体切割磁感线时产生的 感应电流方向,安培定则用于判断电流的磁场方向.
(完整版)高中物理选修3-2知识点总结

高中物理选修3-2知识点总结第一章 电磁感应1.两个人物:a.法拉第:磁生电b.奥期特:电生磁2.产生条件:a.闭合电路b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b②产生感应电动势的那部分导体相当于电源。
③电源内部的电流从负极流向正极。
3.感应电流方向的叛定: (1).方法一:右手定则 (2).方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4. 感应电动势大小的计算: (1).法拉第电磁感应定律: a.内容:b.表达式:t n E ∆∆⋅=φ (2).计算感应电动势的公式 ①求平均值:t n E ∆∆⋅=φ_②求瞬时值:E=BLV (导线切割类) ③法拉第电机:ω221BL E =④闭合电路殴姆定律:)r (R I E +=感5.感应电流的计算: 平均电流:tr R r R E I ∆+∆=+=)(_φ 瞬时电流:rR BLVr R E I +=+=6.安培力计算: (1)平均值:tBLqt r )(R BL L I B F∆=∆+∆==φ__(2). 瞬时值:rR VL B BIL F +==227.通过的电荷量:rR q tI +∆=-=∆⋅φ注意:求电荷量只能用平均值,而不能用瞬时值。
8.互感:由于线圈A 中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B 中 激发了感应电动势。
这种现象叫互感。
9.自感现象:(1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。
(2)决定因素:线圈越长, 单位长度上的匝数越多, 截面积越大, 它的自感系数就越大。
另外, 有铁心的线圈的自感系数比没有铁心时要大得多。
(3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH ),微亨(μH )。
10.涡流及其应用(1)定义:变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。
高二物理楞次定律知识点

高二物理楞次定律知识点楞次定律是电磁感应中的基本定律之一,描述了磁感应强度与通过闭合回路的磁通量的关系。
它由法国物理学家楞次在1834年提出,是电磁学的重要基石之一。
本文将介绍高二物理楞次定律的相关知识点。
1. 楞次定律的表述楞次定律可以用以下公式表述:ε = -ΔΦ/Δt其中,ε代表感应电动势,ΔΦ代表磁通量变化,Δt代表时间变化。
2. 磁通量的概念磁通量Φ是描述磁场穿过一个平面的数量的物理量。
它的大小与磁场的强度和面积有关,可以用以下公式计算:Φ = B·A·cosθ其中,B代表磁场强度,A代表平面面积,θ代表磁场线与平面法线之间的夹角。
3. 楞次定律的基本原理楞次定律的基本原理是磁场变化引起感应电动势的产生。
当磁通量发生变化时,闭合回路中会产生感应电动势,进而产生感应电流。
4. 楞次定律的应用楞次定律在实际应用中具有广泛的意义,包括以下几个方面:1) 可以解释电磁感应现象,如电磁感应发电机的工作原理。
2) 可以解释变压器的工作原理,即利用楞次定律实现电压的升降。
3) 可以解释电磁铁的工作原理,即通过改变电磁铁中的电流产生磁场,实现吸附和释放物体。
5. 楞次定律的扩展楞次定律还可以扩展到电场变化引起的感应电动势。
当电场发生变化时,也会产生感应电动势。
这一扩展称为法拉第电磁感应定律。
6. 楞次定律的实验验证楞次定律可以通过一系列实验来验证,如改变磁场强度、改变磁场方向以及改变回路形状等。
实验结果与楞次定律的预测一致,进一步验证了该定律的准确性。
总结:高二物理学习中楞次定律是一个重要的知识点,它可以用来解释电磁感应现象,如电磁感应发电机、变压器和电磁铁的工作原理。
楞次定律的实验验证也进一步证明了其准确性。
通过学习楞次定律,我们可以更好地理解电磁学的基本原理和应用,为进一步的物理学习奠定基础。
沪教版高中物理选修3-2第3讲:楞次定律(教师版)——劲松郭伟

楞次定律____________________________________________________________________________________________________________________________________________________________________1、掌握楞次定律的内容,能运用楞次定律判断感应电流方向。
2、掌握右手定则,并理解右手定则实际上为楞次定律的一种具体表现形式。
3、知道磁通量的变化率的意义,并能区别,,。
4、理解法拉第电磁感应定律内容、数学表达式。
5、会用解决问题。
一、电磁感应现象1.产生感应电流的条件穿过闭合电路的磁通量发生变化。
2.产生感应电动势的条件无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那部分导体相当于电源。
3.电磁感应现象的实质产生感应电动势,如果电路闭合,则有感应电流;电路不闭合,则只有感应电动势而无感应电流。
二、感应电流方向的判定1.右手定则(1)内容:伸开右手,使拇指与其余四指垂直,并且都与手掌在同一平面内,让磁感线从手心垂直进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向。
(2)适用范围:适用于判断闭合电路中的部分导体切割磁感线产生感应电流的情况。
2.楞次定律(1)内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用情况:所有电磁感应现象。
三、法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
(2)表达式:(单匝线圈);(n匝线圈)题目类型:磁通量的计算例1. 如图所示,在磁感应强度为B的匀强磁场中有一面积为S的矩形线圈abcd,垂直于磁场方向放置,现使线圈以ab边为轴转180°,此过程磁通量的变化()A.0B.2BSC.2BS cosθD.2BS sinθ解析:由于,磁感应强度B为矢量,有方向,所以磁通量也有方向性,开始的磁通量为BS,旋转180度以后,磁通量为-BS,所以磁通量的变化为2BS.答案:B题目类型:电磁感应现象产生的条件例2.在右图所示的条件下,闭合矩形线圈中能产生感应电流的是()解析:产生感应电流的条件是,闭合电路的一部分导体做切割磁感线的运动,或者时穿过闭合回路的磁通量发生变化。
高中物理【电磁感应现象 楞次定律】知识点、规律总结

三、感应电流方向的判断 1.右手定则:伸开右手,使拇指与其余四个手指__垂__直__,并且都与 手掌在同一个平面内;让磁感线从掌心垂直进入,并使拇指指向 _导__线__运__动___的方向,这时四指所指的方向就是_感__应___电__流__的方向.如图 所示. 2.楞次定律:感应电流具有这样的方向,即感应电流的磁场总要 _阻__碍___引起感应电流的_磁__通__量___的变化.
感应电流的磁场方向 __向__下__ __向__上__
3.实验结论 表述一:当穿过线圈的磁通量增加时,感应电流的磁场与原磁场的方向_相__反___;当 穿过线圈的磁通量减少时,感应电流的磁场与原磁场的方向__相__同__. 表述二:当磁铁靠近线圈时,两者__相__斥__;当磁铁远离线圈时,两者_相__吸___.
四、电磁阻尼与电磁驱动
电磁阻尼
电磁驱动
由于导体在磁场中运动而产生感 由于磁场运动引起磁通量的变化而产
不 成因
应电流,从而使导体受到安培力 生感应电流,从而使导体受到安培力
同
安培力的方向与导体运动方向相 导体受安培力的方向与导体运动方向
点 效果
反,阻碍导体运动
相同,推动导体运动
电磁阻尼
电磁驱动
能量转化
第 1 讲 电磁感应现象 楞次定律
一、磁通量 1.概念:磁感应强度 B 与面积 S 的_乘__积___. 2.计算 (1)公式:Φ=__B_S___. (2)适用条件:①匀强磁场;②S 是_垂__直___磁场的有效面积. (3)单位:韦伯(Wb),1 Wb=___1__T_·_m_2_____. 3.意义:穿过某一面积的磁感线的__条__数__. 4.标矢性:磁通量是_标__量___,但有正、负.
由于电磁感应,磁场能转化为电能,通 导体克服安培力做功,其他形式的
完整版)高中物理选修3-2知识点总结

完整版)高中物理选修3-2知识点总结高中物理选修3-2知识点总结第一章电磁感应1.两个人物:XXX和XXX,分别研究磁生电和电生磁。
2.产生感应电动势的条件是闭合电路和磁通量发生变化。
注意,只具备磁通量发生变化的条件就可以产生感应电动势,而产生感应电动势的那部分导体相当于电源。
电源内部的电流从负极流向正极。
3.感应电流方向的确定可以用右手定则或楞次定律。
楞次律包含四种阻碍,分别是阻碍原磁通量的变化、阻碍导体间的相对运动、阻碍原电流的变化以及面积有扩大与缩小的趋势。
4.感应电动势大小的计算可以用法拉第电磁感应定律,公式为E=n*(ΔΦ/Δt)。
还有其他计算公式,如求平均值的公式E=n*(ΔΦ/Δt)和求瞬时值的公式E=BLV(导线切割类),以及法拉第电机和闭合电路欧姆定律。
5.感应电流的计算可以用平均电流公式I=E/(R+r)=ΔΦ/(R+r)Δt和瞬时电流公式I=BLV/(R+r)。
6.安培力的计算可以用平均值公式F=BLΔΦ/(R+r)Δt和瞬时值公式F=BIL=B2L2VR/(R+r)。
7.通过的电荷量的计算只能用平均值公式,不能用瞬时值公式。
8.互感是指由于线圈A中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B中激发了感应电动势的现象。
9.自感现象是指由于导体本身的电流发生变化而产生的电磁感应现象。
自感系数的大小取决于线圈的长度、单位长度上的匝数、截面积以及是否有铁心。
自感系数的单位是XXX、毫亨和微亨。
10.涡流是指变压器在工作时,在原、副线圈产生感应电动势的同时,变化的磁通量也会在铁芯中产生感应电流的现象。
涡流的应用包括新型炉灶和金属探测器。
第二章交变电流1.正弦交变电流有两个特殊的位置。
电电流,可以减小能量损失,提高输电效率。
2.高压输电的方式:目前主要采用的是交流输电,直流输电则主要用于海底电缆等特殊情况。
3.输电线路的构成:输电线路主要由导线、绝缘子、杆塔等组成。
其中导线又分为裸导线和绝缘导线。
高中物理第四章电磁感应第3节楞次定律讲义含解析新人教版选修3_2

第3节楞次定律1.楞次定律的内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
2.楞次定律可广义地表述为:感应电流的“效果”总是要反抗(或阻碍)引起感应电流的“原因”,常见的有三种:①阻碍原磁通量的变化(“增反减同”);②阻碍导体的相对运动(“来拒去留”);③通过改变线圈面积来“反抗”(“增缩减扩”)。
3.闭合导体回路的一部分做切割磁感线运动时,可用右手定则判断感应电流的方向。
一、楞次定律1.探究感应电流的方向(1)实验器材:条形磁铁、电流表、线圈、导线、一节干电池(用来查明线圈中电流的流向与电流表中指针偏转方向的关系)。
(2)实验现象:如图所示,在四种情况下,将实验结果填入下表。
(3)实验分析:①线圈内磁通量增加时的情况②线圈内磁通量减少时的情况表述一:当穿过线圈的磁通量增加时,感应电流的磁场与原磁场的方向相反;当穿过线圈的磁通量减少时,感应电流的磁场与原磁场的方向相同。
表述二:当磁铁靠近线圈时,两者相斥;当磁铁远离线圈时,两者相吸。
2.楞次定律感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
二、右手定则1.内容伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。
如图所示。
2.适用范围适用于闭合电路部分导体切割磁感线产生感应电流的情况。
1.自主思考——判一判(1)感应电流的磁场总与原磁场方向相反。
(×)(2)感应电流的磁场总是阻碍原磁场的磁通量。
(×)(3)感应电流的磁场有可能阻止原磁通量的变化。
(×)(4)导体棒不垂直切割磁感线时,也可以用右手定则判断感应电流方向。
(√)(5)凡可以用右手定则判断感应电流方向的,均能用楞次定律判断。
(√)(6)右手定则即右手螺旋定则。
(×)2.合作探究——议一议(1)楞次定律中“阻碍”与“阻止”有何区别?提示:阻碍不是阻止,阻碍只是延缓了磁通量的变化,但这种变化仍将继续进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理选修32楞次定律知识点归纳
楞次定律是高中物理学中的一个重要定律,下面是店铺给大家带来的高中物理选修32楞次定律知识点归纳,希望对你有帮助。
高中物理楞次定律知识点
1、内容:
感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化.在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。
A、从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。
B、从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。
又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。
磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。
C、从“阻碍自身电流变化”的角度来看,就是自感现象。
自感现象中产生的自感电动势总是阻碍自身电流的变化。
2、实质:能量的转化与守恒。
3、应用:对阻碍的理解:
(1)顺口溜“你增我反,你减我同”
(2)顺口溜“你退我进,你进我退”即阻碍相对运动的意思。
“你增我反”的意思是如果磁通量增加,则感应电流的磁场方向与原来的磁场方向相反。
“你减我同”的意思是如果磁通量减小,则感应电流的磁场方向与原来的磁场方向相同。
用以判断感应电流的方向,其步骤如下:
1)确定穿过闭合电路的原磁场方向;
2)确定穿过闭合电路的磁通量是如何变化的(增大还是减小);
3)根据楞次定律,确定闭合回路中感应电流的磁场方向; 4)应用安培定则,确定感应电流的方向。
高中物理学习技巧
一、联系实际,帮助理解
从初中物理到高中物理最大的变化就是知识要求的变化。
初中物理是通过现象认识规律,因此,初中物理主要的学习方法是“记忆”;高中物理则是通过对规律的认识理解来解决一些实际问题、解释一些自然现象,所以高中物理主要的学习方法是“理解”。
做到理解的基本步骤是:一练、二讲、三应用。
“一练”即要在老师的指导下进行适当的练习,通过对不同类型习题的练习,多方面、多角度地认识概念、认识规律、认识知识点、认识考点。
关于练习在物理中的重要性,我国物理学家严济慈先生有这样一段话,希望同学们记住严老的教诲:“做习题可以加深理解,融会贯通,锻练思考问题和解决问题的能力。
一道习题做不出来,说明你还没有真懂;即使所有的习题都做出来了,也不一定说明你全懂了,因为你做习题有时只是在凑公式而已。
如果知道自己懂在什么地方,不懂又在什么地方,还能设法去弄懂它,到了这种地步,习题就可以少做。
”严济慈先生的这段话充分说明了做练习对理解物理规律的重要作用;“二讲”即把自己对规律、对概念、对知识点的认识讲给同学,或者讲给假想的同学,在讲解时要多考虑如何讲对方才能听明白,如何讲对方才更容易接受。
一个概念、一条规律若能讲一次或讲清一个问题,自己对该概念或规律的认识和理解就会有一个较大的提高;“三应用”即试着用学过的规律去解释一些实际问题,若能做到这一点,才算真正的理解。
例如在学习摩擦力时,练习过程中经常会遇到“摩擦力既可做动力又可做阻力”这一说法,摩擦力做阻力现实中的例子很多,也很好理解。
但摩擦力做动力就不那么好理解,这时若能举一个传送带的例子,并能讲清楚,摩擦力做动力这一问题就能彻底解决,真正理解。
二、抓住课堂,提高效率
“堂上一分钟,堂下十分钟”这一老话充分说明了课堂的重要性,也充分说明了抓住课堂与提高效率的关系。
课堂是学习的主阵地,是获取知识的主要场所。
所以抓住了课堂也就守住了阵地,同时,只有
守住了这块阵地,才能真正提高学习效率,才能使我们的梦想成为现实。
所以说抓住课堂是学好物理的最基本的方法,也是最有效的方法。
如何才能抓住课堂?抓住课堂抓什么?一要动脑:即要积极思考让自己的思路跟上老师的思路,认真的听思路、听方法,听老师如何审题,如何找关键点,如何破题;二要动手:动手记重点和疑点,尤其是疑点,不仅要记下而且要抓住不放,利用课余时间问老师、问同学直到弄懂为止。
三要动口:动口回答老师提出的问题,这时千万不要有害怕答错而不敢开口的想法,一旦有了这种想法,自己的问题就不能被老师发现,问题也就难以得到解决,长此以往,就会被堆积的问题压跨。
因此一定要大胆开口答题,大胆开口质疑,使问题及时得到解决。
另外,高一物理中所涉及的一些内容在现实中难以找到实例,对这些内容的认识和理解就只有通过课堂这一途径来解决。
例如:高一教材中万有引力一章中有关天体运动的内容,在实际生活中不可能找到对应的实例来帮助我们理解,如果我们再抓不住课堂,那么这部分知识就不可能真正的理解。
三、注重实验,培养兴趣
我们常说“兴趣是最好的老师”;一旦我们有了学习物理的兴趣,就会获得巨大的动力,学习成绩就会突飞猛进。
兴趣的培养可以有多种渠道,结合物理学的特点,实验应该是最重要的一种方法。
在我们的物理课本中有许多实验,如演示实验、学生实验和课本中介绍的小实验等。
课本中的这些实验主要是用来验证规律的,但如果我们能认真研究并做好这些实验,我们的收获就不仅在于验证规律,它同时能使我们发现物理是有趣的,从而激发我们学习物理的兴趣。
例如:课本上“显示微小形变”的小实验,如果我们能动手做一下,并能认真分析一下其结果所反映的内容。
那么我们不仅能对微小形变有正确的认识,而且从中我们也可以体会到学习物理的乐趣。
所以培养学习物理的兴趣,认真观察、认真分析、努力做好实验是非常有用的一个方法。
四、灵活应用,举一反三
通常考试中经常出现这样的现象,即讲过的习题、练过的习题错误率却非常高。
究其原因有二:一是听讲不认真所致,二是不善于总结规律。
因此要真正学好物理,除前面提到的要认真听讲外,还要善于总结。
物理题中规律性的东西很多,在进行总结时,不仅要总结出规律而且要总结出变化,这样才算真正理解,才能灵活应用,才能举一反三。
例如在处理力学中共点力作用下物体平衡的问题时,最常用最基本的方法是正交分解法,但在练习中我们会发现,若是三力作用下的平衡问题用三角形法则更简单;再如解决匀变速直线运动问题时,减速到零的运动和反向的初速为零的匀加速(加速度不变)运动在求时间和位移时是等效的。
物理中类似的规律很多,只要我们处处留心,就会发现这些规律,在解题时有意识的进行应用,定能做到灵活应用,举一反三。