最新整理湖北省荆州市2021年中考数学试卷和答案解析详解完整版
2021年湖北省荆门市(荆州市)数学中考试题(含答案)

4
24.(本题满分 12 分)如图甲,四边形 OABC 的边 OA、OC 分别在 x 轴、y 轴的正半轴上,顶点
在 B 点的抛物线交 x 轴于点 A、D,交 y 轴于点 E,连结 AB、AE、BE.已知 tan∠CBE=
1 3
,A(3,0),D(-1,0),E(0,3).
(1)求抛物线的解析式及顶点 B 的坐标。 (2)求证:CB 是△ABE 外接圆的切线。 (3)试探究坐标轴上是否存在一点 P,使以 D、E、P 为顶点的三角形与△ABE 相似,若存在, 直接写出点 P 的坐标。若不存在,请说明理由。 (4)设△AOE 沿 x 轴正方向平移 t 个单位长度(0<t≤3)时,△AOE 与△ABE 重叠部分的面积 为 s,求 s 与 t 之间的函数关系式,并指出 t 的取值范围.
二、填空题(每填对一题得 3 分,共 15 分)
13.-1 14. 1 2
15.75 3 +360 16.x=3 17.①③④
18.解:原式=1
a a
3 1
=
a
2 1
.…………………………………………………………5
分
当 a= 2 +1 时,原式= 2 = 2 .………………………………………………8 分 2 11
E
C
FC
H
B
AB G
αA
D
第 19 题图
20.(本题满分 10 分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某 食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别 用 A、B、C、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样 调查,并将调查情况绘制成如下两幅统计图(尚不完整).[来源:学*科*网Z*X*X*K]
荆州市2021年中考数学试卷及答案(Word解析版)

湖北省荆州市2021年中考数学试卷一、选择题〔本大题共10小题,每题只有唯一正确答案.每题3分,共30分〕1.〔3分〕〔2021•荆州〕假设□×〔﹣2〕=1,那么□内填一个实数应该是〔〕A.B.2C.﹣2 D.﹣考点:有理数的乘法分析:根据乘积是1的两个数互为倒数解答.解答:解:∵﹣×〔﹣2〕=1,∴□内填一个实数应该是﹣.应选D.点评:此题考查了有理数的乘法,是根底题,注意利用了倒数的定义.2.〔3分〕〔2021•荆州〕以下运算正确的选项是〔〕A.3﹣1=﹣3 B.=±3 C.〔ab2〕3=a3b6D.a6÷a2=a3考点:同底数幂的除法;算术平方根;幂的乘方与积的乘方;负整数指数幂分析:运用负整数指数幂的法那么运算,开平方的方法,同底数幂的除法以及幂的乘方计算.解答:解:A、3﹣1=≠3a,故A选项错误;B、=3≠±3,故B选项错误;C、〔ab2〕3=a3b6故C选项正确;D、a6÷a2=a4≠a3,故D选项错误.应选:C.点评:此题考查了负整数指数幂的运算,开平方,同底数幂的除法以及幂的乘方等知识,解题要注意细心.3.〔3分〕〔2021•荆州〕如图,AB∥ED,AG平分∠BAC,∠ECF=70°,那么∠FAG的度数是〔〕A.155°B.145°C.110°D.35°考点:平行线的性质.分析:首先,由平行线的性质得到∠BAC=∠ECF=70°;然后利用邻补角的定义、角平分线的定义来求∠FAG的度数.解答:解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.应选:B.点评:此题考查了平行线的性质.根据“两直线平行,内错角相等〞求得∠BAC的度数是解题的难点.4.〔3分〕〔2021•荆州〕将抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是〔〕A.y=〔x﹣4〕2﹣6 B.y=〔x﹣4〕2﹣2 C.y=〔x﹣2〕2﹣2 D.y=〔x﹣1〕2﹣3考点:二次函数图象与几何变换.专题:几何变换.分析:先把y=x2﹣6x+5配成顶点式,得到抛物线的顶点坐标为〔3,﹣4〕,再把点〔3,﹣4〕向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为〔4,﹣2〕,然后根据顶点式写出平移后的抛物线解析式.解答:解:y=x2﹣6x+5=〔x﹣3〕2﹣4,即抛物线的顶点坐标为〔3,﹣4〕,把点〔3,﹣4〕向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为〔4,﹣2〕,所以平移后得到的抛物线解析式为y=〔x﹣4〕2﹣2.应选B.点评:此题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.〔3分〕〔2021•荆州〕α是一元二次方程x2﹣x﹣1=0较大的根,那么下面对α的估计正确的选项是〔〕A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<3考点:解一元二次方程-公式法;估算无理数的大小.分析:先求出方程的解,再求出的范围,最后即可得出答案.解答:解:解方程x2﹣x﹣1=0得:x=,∵a是方程x2﹣x﹣1=0较大的根,∴a=,∵2<<3,∴3<1+<4,∴<<2,应选C.点评:此题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比拟典型的题目,难度适中.6.〔3分〕〔2021•荆州〕如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.以下添加的条件其中错误的选项是〔〕A.∠ACD=∠DAB B.A D=DE C.A D2=BD•CD D.A D•AB=AC•BD考点:相似三角形的判定;圆周角定理.分析:由∠ADC=∠ADB,根据有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似,即可求得答案;注意排除法在解选择题中的应用.解答:解:如图,∠ADC=∠ADB,A、∵∠ACD=∠DAB,∴△ADC∽△BDA,故本选项正确;B、∵AD=DE,∴=,∴∠DAE=∠B,∴△ADC∽△BDA,故本选项正确;C、∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故本选项正确;D、∵AD•AB=AC•BD,∴AD:BD=AC:AB,但∠ADC=∠ADB不是公共角,故本选项错误.应选D.点评:此题考查了相似三角形的判定以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用.7.〔3分〕〔2021•荆州〕如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,那么关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的选项是〔〕A.B.C.D.考点:一次函数与一元一次不等式;在数轴上表示不等式的解集.专题:数形结合.分析:观察函数图象得到当x>﹣1时,函数y=x+b的图象都在y=kx﹣1的图象上方,所以不等式x+b>kx﹣1的解集为x>﹣1,然后根据用数轴表示不等式解集的方法对各选项进行判断.解答:解:当x>﹣1时,x+b>kx﹣1,即不等式x+b>kx﹣1的解集为x>﹣1.应选A.点评:此题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于〔或小于〕0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上〔或下〕方局部所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.8.〔3分〕〔2021•荆州〕点P〔1﹣2a,a﹣2〕关于原点的对称点在第一象限内,且a为整数,那么关于x的分式方程=2的解是〔〕A.5B.1C.3D.不能确定考点:解分式方程;关于原点对称的点的坐标.专题:计算题.分析:根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.解答:解:∵点P〔1﹣2a,a﹣2〕关于原点的对称点在第一象限内,且a为整数,∴,解得:<a<2,即a=1,当a=1时,所求方程化为=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,那么方程的解为3.应选C点评:此题考查了解分式方程,解分式方程的根本思想是“转化思想〞,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.〔3分〕〔2021•荆州〕如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,那么第n个三角形中以A n为顶点的内角度数是〔〕A.〔〕n•75°B.〔〕n﹣1•65°C.〔〕n﹣1•75°D.〔〕n•85°考点:等腰三角形的性质.专题:规律型.分析:先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.解答:解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=〔〕2×75°,∠FA4A3=〔〕3×75°,∴第n个三角形中以A n为顶点的内角度数是〔〕n﹣1×75°.应选:C.点评:此题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.10.〔3分〕〔2021•荆州〕如图,圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,那么这圈金属丝的周长最小为〔〕A.4dm B.2dm C.2dm D.4dm考点:平面展开-最短路径问题.分析:要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短〞得出结果,在求线段长时,根据勾股定理计算即可.解答:解:如图,把圆柱的侧面展开,得到矩形,那么那么这圈金属丝的周长最小为2AC 的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=2,∴这圈金属丝的周长最小为2AC=4cm.应选A.点评:此题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,此题就是把圆柱的侧面展开成矩形,“化曲面为平面〞,用勾股定理解决.二、填空题〔本大题共8小题,每题3分,共24分〕11.〔3分〕〔2021•荆州〕化减×﹣4××〔1﹣〕0的结果是.考点:二次根式的混合运算;零指数幂.专题:计算题.分析:先把各二次根式化为最简二次根式,再根据二次根式的乘法法那么和零指数幂的意义计算得到原式=2﹣,然后合并即可.解答:解:原式=2×﹣4××1=2﹣=.故答案为.点评:此题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.12.〔3分〕〔2021•荆州〕假设﹣2x m﹣n y2与3x4y2m+n是同类项,那么m﹣3n的立方根是2.考点:立方根;合并同类项;解二元一次方程组.分析:根据同类项的定义可以得到m,n的值,继而求出m﹣3n的立方根.解答:解:假设﹣2x m﹣n y2与3x4y2m+n是同类项,∴,解方程得:.∴m﹣3n=2﹣3×〔﹣2〕=8.8的立方根是2.故答案为2.点评:此题考查了同类项的概念以及立方根的求法,解体的关键是根据定义求出对应m、n 的值.13.〔3分〕〔2021•荆州〕如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为〔0,1〕,那么点E的坐标是〔,〕.考点:位似变换;坐标与图形性质.分析:由题意可得OA:OD=1:,又由点A的坐标为〔1,0〕,即可求得OD的长,又由正方形的性质,即可求得E点的坐标.解答:解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,∴OA:OD=1:,∵点A的坐标为〔1,0〕,即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:〔,〕.故答案为:〔,〕.点评:此题考查了位似变换的性质与正方形的性质.此题比拟简单,注意理解位似变换与相似比的定义是解此题的关键.14.〔3分〕〔2021•荆州〕我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设=x,那么x=0.3+x,解得x=,即=.仿此方法,将化成分数是.考点:一元一次方程的应用.分析:设x=,那么x=0.4545…①,根据等式性质得:100x=45.4545…②,再由②﹣①得方程100x﹣x=45,解方程即可.解答:解:设x=,那么x=0.4545…①,根据等式性质得:100x=45.4545…②,由②﹣①得:100x﹣x=45.4545…﹣0.4545…,即:100x﹣x=45,解方程得:x=.故答案为.点评:此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.15.〔3分〕〔2021•荆州〕如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,那么任意闭合其中两个开关,小灯泡发光的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,那么小灯泡发光的有6种情况,∴小灯泡发光的概率为:=.故答案为:.点评:此题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.〔3分〕〔2021•荆州〕如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影局部是一个以格点为顶点的正方形〔简称格点正方形〕.假设再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,那么这个格点正方形的作法共有4种.考点:利用旋转设计图案;利用轴对称设计图案.分析:利用轴对称图形以及中心对称图形的性质与定义,进而得出符合题意的答案.解答:解:如下图:这个格点正方形的作法共有4种.故答案为:4.点评:此题主要考查了利用轴对称以及旋转设计图案,正确把握中心对称以及轴对称图形的定义是解题关键.17.〔3分〕〔2021•荆州〕如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.假设的长为,那么图中阴影局部的面积为.考点:切线的性质;平行四边形的性质;弧长的计算;扇形面积的计算.分析:求图中阴影局部的面积,就要从图中分析阴影局部的面积是由哪几局部组成的.很显然图中阴影局部的面积=△ACD的面积﹣扇形ACE的面积,然后按各图形的面积公式计算即可.解答:解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠CAD=45°,∴∠CAD=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACD=.故答案为:.点评:此题主要考查了扇形的面积计算方法,不规那么图形的面积通常转化为规那么图形的面积的和差.18.〔3分〕〔2021•荆州〕如图,点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=〔k<0〕上运动,那么k的值是﹣6.考点:反比例函数图象上点的坐标特征;等边三角形的性质;相似三角形的判定与性质;特殊角的三角函数值.专题:动点型.分析:连接OC,易证AO⊥OC,OC=OA.由∠AOC=90°想到构造K型相似,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,可证△AEO∽△OFC.从而得到OF=AE,FC=EO..设点A坐标为〔a,b〕那么ab=2,可得FC•OF=6.设点C坐标为〔x,y〕,从而有FC•OF=﹣xy=﹣6,即k=xy=﹣6.解答:解:∵双曲线y=关于原点对称,∴点A与点B关于原点对称.∴OA=OB.连接OC,如下图.∵△ABC是等边三角形,OA=OB,∴OC⊥AB.∠BAC=60°.∴tan∠OAC==.∴OC=OA.过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,∵AE⊥OE,CF⊥OF,OC⊥OA,∴∠AEO=∠FOC,∠AOE=90°﹣∠FOC=∠OCF.∴△AEO∽△OFC.∴==.∵OC=OA,∴OF=AE,FC=EO.设点A坐标为〔a,b〕,∵点A在第一象限,∴AE=a,OE=b.∴OF=AE=a,FC=EO=b.∵点A在双曲线y=上,∴ab=2.∴FC•OF=b•a=3ab=6设点C坐标为〔x,y〕,∵点C在第四象限,∴FC=x,OF=﹣y.∴FC•OF=x•〔﹣y〕=﹣xy=6.∴xy=﹣6.∵点C在双曲线y=上,∴k=xy=﹣6.故答案为:﹣6.点评:此题考查了等边三角形的性质、反比例函数的性质、相似三角形的判定与性质、点与坐标之间的关系、特殊角的三角函数值等知识,有一定的难度.由∠AOC=90°联想到构造K型相似是解答此题的关键.三、解答题〔本大题共7题,共66分〕19.〔7分〕〔2021•荆州〕先化简,再求值:〔〕÷,其中a,b满足+|b﹣|=0.考点:分式的化简求值;非负数的性质:绝对值;非负数的性质:算术平方根.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.解答:解:原式=[﹣]•=•=,∵+|b﹣|=0,∴,解得:a=﹣1,b=,那么原式=﹣.点评:此题考查了分式的化简求值,以及非负数的性质,熟练掌握运算法那么是解此题的关键.20.〔8分〕〔2021•荆州〕如图①,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF上,点C在△AEF内,那么有DF=BE〔不必证明〕.将正方形ABCD绕点A逆时针旋转一定角度α〔0°<α<90°〕后,连结BE,DF.请在图②中用实线补全图形,这时DF=BE还成立吗?请说明理由.考点:全等三角形的判定与性质;等腰直角三角形;正方形的性质.分析:根据旋转角求出∠FAD=∠EAB,然后利用“边角边〞证明△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF.解答:解:DF=BE还成立;理由:∵正方形ABCD绕点A逆时针旋转一定角度α,∴∠FAD=∠EAB,在△ADF与△ABE中∴△ADF≌△ABE〔SAS〕∴DF=BE.点评:此题考查了旋转的性质,正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记各性质求出三角形全等是解题的关键.21.〔8分〕〔2021•荆州〕钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B处北偏西44°方向.假设甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C处.〔参考数据:cos59°≈0.52,sin46°≈0.72〕考点:解直角三角形的应用-方向角问题.分析:作CD⊥AB于点D,由题意得:∠ACD=59°,∠DCB=44°,设CD的长为a海里,分别在Rt△ACD中,和在Rt△BCD中,用a表示出AC和BC,然后除以速度即可求得时间,比拟即可确定答案解答:解:如图,作CD⊥AB于点D,由题意得:∠ACD=59°,∠DCB=44°,设CD的长为a海里,∵在Rt△ACD中,=cos∠ACD,∴AC==≈1.92a;∵在Rt△BCD中,=cos∠BCD,∴BC==≈1.39a;∵其平均速度分别是20海里/小时,18海里/小时,∴1.92a÷20=0.096a.1.39a÷18=0.077a,∵a>0,∴0.096a>0.077a,∴乙先到达.点评:此题考查了解直角三角形的应用,解决此题的关键在于设出未知数a,使得运算更加方便,难度中等.22.〔9分〕〔2021•荆州〕我市某中学七、八年级各选派10名选手参加学校举办的“爱我荆门〞知识竞赛,计分采用10分制,选手得分均为整数,成绩到达6分或6分以上为合格,到达9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a,b.队别平均分中位数方差合格率优秀率七年级6.7 m 3.41 90% n八年级7.1 7.5 1.69 80% 10%〔1〕请依据图表中的数据,求a,b的值;〔2〕直接写出表中的m,n的值;〔3〕有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.考点:条形统计图;统计表;加权平均数;中位数;方差.专题:计算题.分析:〔1〕根据题中数据求出a与b的值即可;〔2〕根据〔1〕a与b的值,确定出m与n的值即可;〔3〕从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.解答:解:〔1〕根据题意得:a=5,b=1;〔2〕七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;优秀率为==20%,即n=20%;〔3〕八年级平均分高于七年级,方差小于七年级,成绩比拟稳定,故八年级队比七年级队成绩好.点评:此题考查了条形统计图,扇形统计图,以及中位数,平均数,以及方差,弄清题意是解此题的关键.23.〔10分〕〔2021•荆州〕我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.假设供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.〔1〕试确定月销售量y〔台〕与售价x〔元/台〕之间的函数关系式;并求出自变量x的取值范围;〔2〕当售价x〔元/台〕定为多少时,商场每月销售这种空气净化器所获得的利润w〔元〕最大?最大利润是多少?考点:二次函数的应用.分析:〔1〕根据题中条件销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.〔2〕用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w;解答:解:〔1〕根据题中条件销售价每降低10元,月销售量就可多售出50千克,那么月销售量y〔台〕与售价x〔元/台〕之间的函数关系式:y=200+50×,化简得:y=﹣5x+2200;供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,那么,解得:300≤x≤350.∴y与x之间的函数关系式为:y=﹣5x+2200〔300≤x≤350〕;〔2〕W=〔x﹣200〕〔﹣5x+2200〕,整理得:W=﹣5〔x﹣320〕2+72000.∵x=320在300≤x≤350内,∴当x=320时,最大值为72000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.点评:此题主要考查对于一次函数的应用和掌握,而且还应用到将函数变形求函数极值的知识.24.〔12分〕〔2021•荆州〕:函数y=ax2﹣〔3a+1〕x+2a+1〔a为常数〕.〔1〕假设该函数图象与坐标轴只有两个交点,求a的值;〔2〕假设该函数图象是开口向上的抛物线,与x轴相交于点A〔x1,0〕,B〔x2,0〕两点,与y轴相交于点C,且x2﹣x1=2.①求抛物线的解析式;②作点A关于y轴的对称点D,连结BC,DC,求sin∠DCB的值.考点:二次函数综合题.分析:〔1〕根据a取值的不同,有三种情形,需要分类讨论,防止漏解.〔2〕①函数与x轴相交于点A〔x1,0〕,B〔x2,0〕两点,那么x1,x2,满足y=0时,方程的根与系数关系.因为x2﹣x1=2,那么可平方,用x1+x2,x1x2表示,那么得关于a的方程,可求,并得抛物线解析式.②解析式那么可得A,B,C,D坐标,求sin∠DCB,须作垂线构造直角三角形,结论易得.解答:解:〔1〕函数y=ax2﹣〔3a+1〕x+2a+1〔a为常数〕,假设a=0,那么y=﹣x+1,与坐标轴有两个交点〔0,1〕,〔1,0〕;假设a≠0且图象过原点时,2a+1=0,a=﹣,有两个交点〔0,0〕,〔1,0〕;假设a≠0且图象与x轴只有一个交点时,令y=0有:△=〔3a+1〕2﹣4a〔2a+1〕=0,解得a=﹣1,有两个交点〔0,﹣1〕,〔1,0〕.综上得:a=0或﹣或﹣1时,函数图象与坐标轴有两个交点.〔2〕①∵函数与x轴相交于点A〔x1,0〕,B〔x2,0〕两点,∴x1,x2为ax2﹣〔3a+1〕x+2a+1=0的两个根,∴x1+x2=,x1x2=,∵x2﹣x1=2,∴4=〔x2﹣x1〕2=〔x1+x2〕2﹣4x1x2=〔〕2﹣4•,解得a=﹣〔函数开口向上,a>0,舍去〕,或a=1,∴y=x2﹣4x+3.②∵函数y=x2﹣4x+3与x轴相交于点A〔x1,0〕,B〔x2,0〕两点,与y轴相交于点C,且x1<x2,∴A〔1,0〕,B〔3,0〕,C〔0,3〕,∵D为A关于y轴的对称点,∴D〔﹣1,0〕.根据题意画图,如图1,过点D作DE⊥CB于E,∵OC=3,OB=3,OC⊥OB,∴△OCB为等腰直角三角形,∴∠CBO=45°,∴△EDB为等腰直角三角形,设DE=x,那么EB=x,∵DB=4,∴x2+x2=42,∴x=2,即DE=2.在Rt△COD中,∵DO=1,CO=3,∴CD==,∴sin∠DCB==.点评:此题考查了二次函数图象交点性质、韦达定理、特殊三角形及三角函数等知识,题目考法新颖,但内容常规根底,是一道非常值得考生练习的题目.25.〔12分〕〔2021•荆州〕如图①,:在矩形ABCD的边AD上有一点O,OA=,以O 为圆心,OA长为半径作圆,交AD于M,恰好与BD相切于H,过H作弦HP∥AB,弦HP=3.假设点E是CD边上一动点〔点E与C,D不重合〕,过E作直线EF∥BD交BC于F,再把△CEF沿着动直线EF对折,点C的对应点为G.设CE=x,△EFG与矩形ABCD 重叠局部的面积为S.〔1〕求证:四边形ABHP是菱形;〔2〕问△EFG的直角顶点G能落在⊙O上吗?假设能,求出此时x的值;假设不能,请说明理由;〔3〕求S与x之间的函数关系式,并直接写出FG与⊙O相切时,S的值.考点:圆的综合题;含30度角的直角三角形;菱形的判定;矩形的性质;垂径定理;切线的性质;切线长定理;轴对称的性质;特殊角的三角函数值.专题:压轴题.分析:〔1〕连接OH,可以求出∠HOD=60°,∠HDO=30°,从而可以求出AB=3,由HP∥AB,HP=3可证到四边形ABHP是平行四边形,再根据切线长定理可得BA=BH,即可证到四边形ABHP是菱形.〔2〕当点G落到AD上时,可以证到点G与点M重合,可求出x=2.〔3〕当0≤x≤2时,如图①,S=S△EGF,只需求出FG,就可得到S与x之间的函数关系式;当2<x≤3时,如图④,S=S△GEF﹣S△SGR,只需求出SG、RG,就可得到S与x之间的函数关系式.当FG与⊙O相切时,如图⑤,易得FK=AB=3,KQ=AQ﹣AK=2﹣2+x.再由FK=KQ即可求出x,从而求出S.解答:解:〔1〕证明:连接OH,如图①所示.∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,BC=AD,AB=CD.∵HP∥AB,∴∠ANH+∠BAD=180°.∴∠ANH=90°.∴HN=PN=HP=.∵OH=OA=,∴sin∠HON==.∴∠HON=60°∵BD与⊙O相切于点H,∴OH⊥BD.∴∠HDO=30°.∴OD=2.∴AD=3.∴BC=3.∵∠BAD=90°,∠BDA=30°.∴tan∠BDA===.∴AB=3.∵HP=3,∴AB=HP.∵AB∥HP,∴四边形ABHP是平行四边形.∵∠BAD=90°,AM是⊙O的直径,∴BA与⊙O相切于点A.∵BD与⊙O相切于点H,∴BA=BH.∴平行四边形ABHP是菱形.〔2〕△EFG的直角顶点G能落在⊙O上.如图②所示,点G落到AD上.∵EF∥BD,∴∠FEC=∠CDB.∵∠CDB=90°﹣30°=60°,∴∠CEF=60°.由折叠可得:∠GEF=∠CEF=60°.∴∠GED=60°.∵CE=x,∴GE=CE=x.ED=DC﹣CE=3﹣x.∴cos∠GED===.∴x=2.∴GE=2,ED=1.∴GD=.∴OG=AD﹣AO﹣GD=3﹣﹣=.∴OG=OM.∴点G与点M重合.此时△EFG的直角顶点G落在⊙O上,对应的x的值为2.∴当△EFG的直角顶点G落在⊙O上时,对应的x的值为2.〔3〕①如图①,在Rt△EGF中,tan∠FEG===.∴FG=x.∴S=GE•FG=x•x=x2.②如图③,ED=3﹣x,RE=2ED=6﹣2x,GR=GE﹣ER=x﹣〔6﹣2x〕=3x﹣6.∵tan∠SRG===,∴SG=〔x﹣2〕.∴S△SGR=SG•RG=•〔x﹣2〕•〔3x﹣6〕.=〔x﹣2〕2.∵S△GEF=x2,∴S=S△GEF﹣S△SGR=x2﹣〔x﹣2〕2.=﹣x2+6x﹣6.综上所述:当0≤x≤2时,S=x2;当2<x≤3时,S=﹣x2+6x﹣6.当FG与⊙O相切于点T时,延长FG交AD于点Q,过点F作FK⊥AD,垂足为K,如图④所示.∵四边形ABCD是矩形,∴BC∥AD,∠ABC=∠BAD=90°∴∠AQF=∠CFG=60°.∵OT=,∴OQ=2.∴AQ=+2.∵∠FKA=∠ABC=∠BAD=90°,∴四边形ABFK是矩形.∴FK=AB=3,AK=BF=3﹣x.∴KQ=AQ﹣AK=〔+2〕﹣〔3﹣x〕=2﹣2+x.在Rt△FKQ中,tan∠FQK==.∴FK=QK.∴3=〔2﹣2+x〕.解得:x=3﹣.∵0≤3﹣≤2,∴S=x2=×〔3﹣〕2=﹣6.∴FG与⊙O相切时,S的值为﹣6.点评:此题考查了矩形的性质、菱形的性质、切线的性质、切线长定理、垂径定理、轴对称性质、特殊角的三角函数值、30°角所对的直角边等于斜边的一半、等腰三角形的性质等知识,综合性非常强.。
荆州中考数学试题及答案解析

荆州中考数学试题及答案解析一、选择题(每小题4分,共40分)1. 设a,b,c是实数,若a > b > c, 则下列不等式中,正确的是()A. a^2 > b^2 > c^2B. a^3 > b^3 > c^3C. a^4 > b^4 > c^4D. a^5 > b^5 > c^5答案:A解析:由题意可知a > b > c,两边同时平方可得a^2 > b^2 > c^2,因此选项A是正确的。
2. 已知集合A = {x | x是方程x^2 - 5x + 6 = 0的根},则A的元素个数为()A. 0B. 1C. 2D. 3答案:C解析:方程x^2 - 5x + 6 = 0的两个根分别为2和3,因此集合A的元素个数为2,选项C是正确的。
3. 将正六边形ABCDMN按如图所示折叠,点N与点A重合,则点C与点M的连线所在区域的形状是()A. 三角形B. 正方形C. 梯形D. 平行四边形答案:A解析:将正六边形折叠后,点C与点M的连线形成一个三角形,因此选项A是正确的。
4. 下列哪一个数是最小的()A. 0.09B. \(\frac{1}{10}\)C. 10%D. \(\frac{1}{9}\)答案:D解析:将选项转换成小数形式进行比较,可得0.09 < 0.1 < 0.1 <0.1111...,因此选项D是最小的。
5. 若两个角的和为180°,且这两个角互余,则这两个角分别是()A. 锐角和钝角B. 临界角和对顶角C. 邻补角和对顶角D. 临界角和邻补角答案:C解析:两个角的和为180°,且互余,说明一个角是邻补角,另一个角是对顶角,因此选项C是正确的。
二、填空题(每小题4分,共40分)1. 已知集合A = {x | -2 < x ≤ 4},则A的元素个数是 \_\_\_\_\_\_ 个。
湖北省荆州市2021版中考数学试卷B卷

13. (1分) 如图是一个中心对称图形,A为对称中心,若∠C=90°,BC=4,A C=3,则BB'的长为________.
14. (1分) (2019八上·皇姑期末) 如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,BC=8,AB=10,则△FCD的面积为________.
20. (5分) (2016八上·平谷期末) 计算: .
21. (7分) (2015九上·宝安期末) 某同学报名参加学校秋季运动会,有以下5个项目可供选择:径赛项目:100m、200m、1000m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用T1、T2表示).
(1) 该同学从5个项目中任选一个,恰好是田赛项目的概率P为________;
A .
B .
C . 或
D . 或
10. (2分) (2017·岱岳模拟) 如图,将正方形纸片ABCD沿FH折叠,使点D与AB的中点E重合,则△FAE与△EBG的面积之比为( )
A . 4:9
B . 2:3
C . 3:4
DБайду номын сангаас. 9:16
二、 填空题: (共6题;共25分)
11. (1分) 计算:(﹣3)0+3﹣1= ________ .
(1) 请直接写出二次函数y=ax2+ x+c的表达式;
(2) 判断△ABC的形状,并说明理由;
(3) 若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;
(4) 若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.
湖北省荆州市2021版中考数学试卷(I)卷

湖北省荆州市2021版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、填空题 (共8题;共8分)1. (1分)已知|a|=1,|b|=2,且a、b异号,则3a+b=________.2. (1分) (2017八上·台州期末) 分解因式:m2﹣16=________.3. (1分) (2019八下·伊春开学考) 分式有意义的条件是________.4. (1分)(2014·韶关) 据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为________.5. (1分)(2018·井研模拟) 小明和他的爸爸、妈妈共3人站成一排拍照,他的爸爸、妈妈相邻的概率是________6. (1分) (2015七上·永定期中) 若a与b互为相反数,c与d互为倒数,则(a+b)3﹣3(cd)2015=________.7. (1分) (2017七下·邗江期中) 如图,已知DE∥BC,DC平分∠EDB,∠ADE=80°,则∠BCD=________°.8. (1分)满足﹣2x>﹣12的非负整数有________.二、选择题 (共10题;共20分)9. (2分)若x2+2(m﹣3)x+16是完全平方式,则m的值等于()A . 3B . -5C . 7D . 7或﹣110. (2分)下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是()A .B .C .D .11. (2分)(2018·陆丰模拟) 在一次数学测验中,甲、乙、丙、丁四位同学的分数分别是90、x、90、70,若这四个同学得分的众数与平均数恰好相等,则他们得分的中位数是()A . 100B . 90C . 80D . 7012. (2分)不等式组:的解集在数轴上表示正确的是()A .B .C .D .13. (2分) (2018八下·深圳月考) 如图,已知正比例函数y1=ax与一次函数y2= x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2 .其中正确的是()A . ①②B . ②③C . ①③D . ①④14. (2分)下列说法错误的是()A . 关于某直线对称的两个图形一定能完全重合B . 全等的两个三角形一定关于某直线对称C . 轴对称图形的对称轴至少有一条D . 线段是轴对称图形15. (2分)已知直线l与半径为2的⊙O的位置关系是相离,则点O到直线l的距离的取值范围表示正确的是()A . d>2B . 0<d<2C . d≥2D . 0≤d≤216. (2分)(2015·江岸) 方程x2+2x-4=0的两根为x1 , x2 ,则x1+x2的值为()A . 2B . -2C .D . -17. (2分)(2016·随州) 如图,直线a∥b,直线c分别与a、b相交于A、B两点,AC⊥AB于点A,交直线b于点C.已知∠1=42°,则∠2的度数是()A . 38°B . 42°C . 48°D . 58°18. (2分) (2016九上·微山期中) 如图,AB是⊙D的直径,AD切⊙D于点A,EC=CB.则下列结论:①BA⊥DA;②OC∥AE;③∠COE=2∠CAE;④OD⊥AC.一定正确的个数有()A . 4个B . 3个C . 2个D . 1个三、解答题 (共8题;共89分)19. (5分)(2017·丰台模拟) 计算:﹣(4﹣π)0+cos60°﹣| ﹣3|.20. (5分) (2017七下·靖江期中) 已知方程组和有相同的解,求a2﹣2ab+b2的值.21. (12分)(2018·柘城模拟) 综合题(1)【问题发现】如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE,填空:①∠AEB的度数为________ ;②线段AD、BE之间的数量关系是________ .(2)【拓展探究】如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)【解决问题】如图3,在正方形ABCD中,CD= .若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.22. (11分)(2017·河源模拟) 某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有________名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?23. (16分)如图,P是∠AOB的边OB上一点.(1)过点P画OA的垂线,垂足为H;(2)过点P画OB的垂线,交OA于点C;(3)点O到直线PC的距离是线段________的长度;(4)比较PH与CO的大小,并说明理由.24. (15分) (2018九上·江都月考) 问题提出图① 图②图③(1)如图①,在△ABC中,∠A=120°,AB=AC=5,求△ABC的外接圆半径R的值。
湖北省荆州市2021年中考数学试题 (1)

湖北省荆州市2021年中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.有理数2-的相反数是( )A .2B .12C .2-D .12- 2.下列四个几何体中,俯视图与其他三个不同的是( )A .B .C .D .3.在平面直角坐标系中,一次函数1y x =+的图象是( )A .B .C .D . 4.将一张矩形纸片折叠成如图所示的图形,若30CAB ︒∠=,则ACB ∠的度数是( )A .45︒B .55︒C .65︒D .75︒ 5.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x 千米/小时,则所列方程正确的是( )A .10x -102x =20B .102x -10x =20C .10x -102x =13D .102x -10x =136.若x 为实数,在)1x 的“”中添上一种运算符号(在+,-,×,÷中选择)后,其运算的结果是有理数,则x 不可能的是( )A 1B 1C .D .17.如图,点E 在菱形ABCD 的AB 边上,点F 在BC 边的延长线上,连接CE ,DF ,对于下列条件:①BE CF =;②,CE AB DF BC ⊥⊥;③CE DF =;④BCE CDF ∠=∠,只选其中一个添加,不能确定BCE CDF ∆≅∆的是( )A .①B .②C .③D .④8.如图,在平面直角坐标系中,Rt OAB 的斜边OA 在第一象限,并与x 轴的正半轴夹角为30度,C 为OA 的中点,BC=1,则A 点的坐标为( )A .B .)C .()2,1D .( 9.定义新运算a b *,对于任意实数a ,b 满足()()1a b a b a b *=+--,其中等式右边是通常的加法、减法、乘法运算,例如43(43)(43)1716*=+--=-=,若x k x *=(k 为实数) 是关于x 的方程,则它的根的情况是( )A .有一个实根B .有两个不相等的实数根C .有两个相等的实数根 D .没有实数根 10.如图,在66⨯ 正方形网格中,每个小正方形的边长都是1,点A ,B ,C 均在网格交点上,⊙O 是ABC 的外接圆,则cos BAC ∠的值是( )A B C .12 D二、填空题11.若()1012020,,32a b c π-⎛⎫=-=-=- ⎪⎝⎭,则a ,b ,c 的大小关系是_______.(用<号连接)12.若单项式32m x y 与3m n xy +_______________. 13.已知:ABC ,求作ABC 的外接圆,作法:①分别作线段BC ,AC 的垂直平分线EF 和MN ,它们交于点O ;②以点O 为圆心,OB 的长为半径画弧,如图⊙O 即为所求,以上作图用到的数学依据是___________________.14.若标有A ,B ,C 的三只灯笼按图示悬挂,每次摘取一只(摘B 先摘C ),直到摘完,则最后一只摘到B 的概率是___________.15.“健康荆州,你我同行”,市民小张积极响应“全民健身动起来”号召,坚持在某环形步道上跑步,已知此步道外形近似于如图所示的Rt ABC ∆,其中90︒∠=C ,AB 与BC 间另有步道DE 相连,D 地在AB 的正中位置,E 地与C 地相距1km ,若3tan ,454ABC DEB ︒∠=∠=,小张某天沿A C E B D A →→→→→路线跑一圈,则他跑了_______km .16.我们约定:(),,a b c 为函数2y ax bx c =++的关联数,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”,若关联数为(),2,2m m --的函数图象与x轴有两个整交点(m 为正整数),则这个函数图象上整交点的坐标为____________.三、解答题17.先化简,再求值2211121a a a a -⎛⎫-÷ ⎪++⎝⎭:其中a 是不等式组22213a a a a -≥-⎧⎨-<+⎩①②的最小整数解;18.阅读下列问题与提示后,将解方程的过程补充完整,求出x 的值.问题:解方程2250x x ++=(提示:可以用换元法解方程),()0t t =≥,则有222x x t +=,原方程可化为:2450t t +-=,续解:19.如图,将ABC 绕点B 顺时针旋转60度得到DBE ∆,点C 的对应点E 恰好落在AB 的延长线上,连接AD .(1)求证://BC AD ;(2)若AB=4,BC=1,求A ,C 两点旋转所经过的路径长之和.20.6月26日是“国际禁毒日”某中学组织七、八年级全体学生开展了“禁毒知识”网上竞赛活动,为了解竞赛情况,从两个年级各抽取10名学生的成绩(满分为100分),收集数据为:七年级90,95,95,80,85,90,85,90,85,100;八年级:85,85,95,80,95,90,90,90,100,90;整理数据:分析数据:根据以上信息回答下列问题:(1)请直接写出表格中a b c d ,,,的值 (2)通过数据分析,你认为哪个年级的成绩比较好?说明理由;(3)该校七八年级共600人,本次竞赛成绩不低于90分的为“优秀”估计这两个年级共多少名学生达到“优秀”?21.九年级某数学兴趣小组在学习了反比例函数的图像和性质后,进一步研究了函数2y x=的图像与性质,其探究过程如下: (1)绘制函数图像,如图1①列表;下表是x 与y 的几组对应值,其中______m =;②描点:根据表中各组对应值(x ,y)在平面直角坐标系中描出了各点;③连线:用平滑的曲线顺次连接各点,画出了部分图像,请你把图像补充完整;(2)通过观察图1,写出该函数的两条性质:①_______________;②_______________; (3)①观察发现:如图2,若直线y=2交函数2y x=的图像于A ,B 两点,连接OA ,过点B 作BC//OA 交x 轴于点C ,则________OABC S =;②探究思考:将①的直线y=2改为直线y=a(a>0),其他条件不变,则________OABC S =; ③类比猜想:若直线y=a(a>0)交函数(0)k y k x=>的图像于A ,B 两点,连接OA ,过点B 作BC//OA 交x 轴于C ,则________OABC S =;22.如图矩形ABCD 中,AB=20,点E 是BC 上一点,将ABE △沿着AE 折叠,点B 刚好落在CD 边上的点G 处,点F 在DG 上,将ADF 沿着AF 折叠,点D 刚好落在AG 上点H 处,此时:2:3GFH AFH SS =△. (1)求证:EGC GFH △△(2)求AD 的长;(3)求tan GFH ∠的值.23.为了抗击新冠疫情,我市甲乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨,这批防疫物资将运往A 地240吨,B 地260吨,运费如下:(单位:吨)(1)求甲乙两厂各生产了这批防疫多少吨?(2)设这批物资从乙厂运往A 地x 吨,全部运往A ,B 两地的总运费为y 元,求y 与x 之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费降低m 元,(0m 15<≤且m 为整数),按(2)中设计的调运方案运输,总运费不超过5200元,求m 的最小值.24.如图1,在平面直角坐标系中,()()2,1,3,1A B ---,以O 为圆心,OA 的长为半径的半圆O 交AO 的延长线于C ,连接AB ,BC ,过O 作ED//BC 分别交AB 和半圆O 于E ,D ,连接OB ,CD .(1)求证:BC 是半圆O 的切线;(2)试判断四边形OBCD 的形状,并说明理由;(3)如图2,若抛物线经过点D ,且顶点为E ,求此抛物线的解析式;点P 是此抛物线对称轴上的一动点,以E ,D ,P 为顶点的三角形与OAB ∆相似,问抛物线上是否存在点Q ,使得EPQ OAB S S ∆∆=,若存在,请直接写出Q 点的横坐标;若不存在,说明理由.参考答案1.A【分析】由相反数的定义可得答案.【详解】解:2的相反数是2.故选A.【点睛】本题考查的是相反数的定义,及求一个数的相反数,掌握以上知识是解题的关键.2.A【分析】根据几何体俯视图的判断方法判断即可.【详解】如图,棱锥的俯视图是三角形,圆柱、球的俯视图是都是圆,圆锥的俯视图是有圆心的圆,故选:A.【点睛】本题考查三视图,熟练掌握三视图的判断方法是解答的关键.3.D【分析】观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.【详解】∵一次函数y=x+1,其中k=1,b=1∴图象过一、二、三象限故选:D.【点睛】此题主要考查一次函数图象的性质,熟练掌握,即可解题.4.D【分析】根据平行线的性质和翻折的性质解答即可.【详解】解:如图所示:将一张矩形纸片折叠成如图所示的图形,//ED FA∴,EBC CBA∠=∠,EBC ACB∴∠=∠,30CAB DBA∠=∠=︒,180EBC CBA ABD∠+∠+∠=︒,30180ACB ACB∴∠+∠+︒=︒,75ACB∴∠=︒,故选:D.【点睛】本题考查了矩形的翻折变换,,熟记平行线的性质是解题的关键.5.C【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,10 x -102x=13,故选:C.【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.6.C【分析】根据题意填上运算符计算即可.【详解】A.))110-=,结果为有理数;B.))112+⋅= ,结果为有理数;C.无论填上任何运算符结果都不为有理数;D.)(112+=,结果为有理数; 故选C .【点睛】本题考查实数的运算,关键在于牢记运算法则.7.C【分析】根据菱形的性质和全等三角形的判定定理即可得到结论.【详解】 解:四边形ABCD 是菱形,BC CD ∴=,//AB CD ,B DCF ∴∠=∠, ①添加BE CF =,()BCE CDF SAS ∴∆≅∆, ②添加CE AB ⊥,DF BC ⊥,90CEB F ∴∠=∠=︒,()BCE CDF AAS ∴∆≅∆, ③添加CE DF =,不能确定BCE CDF ∆≅∆; ④添加BCE CDF ∠=∠,()BCE CDF ASA ∴∆≅∆,故选:C .【点睛】本题考查了菱形的性质,全等三角形的判定,正确的识别图形是解题的关键. 8.B【分析】根据题画出图形,再根据直角三角形斜边上的中线等于斜边的一半可得AB 的值,再根据勾股定理可得OB 的值,进而可得点A 的坐标.【详解】解:如图,过A 点作AD x ⊥轴于D 点,Rt OAB ∆的斜边OA 在第一象限,并与x 轴的正半轴夹角为30.30AOD ∴∠=︒,12AD OA ∴=, C 为OA 的中点,1AD AC OC BC ∴====,2OA ∴=,OD ∴=,则点A 的坐标为:1).故选:B .【点睛】本题考查了解直角三角形、坐标与图形性质、直角三角形斜边上的中线,解决本题的关键是综合运用以上知识.9.B【分析】将x k *按照题中的新运算方法展开,可得()()1x k x k x k *=+--,所以x k x *=可得()()1x k x k x +--=,化简得:2210x x k ---=,()()222141145k k ∆=--⨯⋅--=+,可得>0∆,即可得出答案.【详解】解:根据新运算法则可得:()()2211x k x k x k x k *=+--=--, 则x k x *=即为221x k x --=,整理得:2210x x k ---=,则21,1,1a b c k ==-=--,可得:()()222141145k k ∆=--⨯⋅--=+ 20k ≥,2455k ∴+≥;0∴∆>,∴方程有两个不相等的实数根;故答案选:B.【点睛】本题考查新定义运算以及一元二次方程根的判别式.注意观察题干中新定义运算的计算方法,不能出错;在求一元二次方程根的判别式时,含有参数的一元二次方程要尤其注意各项系数的符号.10.B【分析】作直径BD ,连接CD ,根据勾股定理求出BD ,根据圆周角定理得到∠BAC=∠BDC ,根据余弦的定义解答即可.【详解】解:如图,作直径BD ,连接CD ,由勾股定理得,BD ===在Rt △BDC 中,cos ∠BDC=,5CD BD == 由圆周角定理得,∠BAC=∠BDC ,∴cos ∠BAC=cos ∠BDC=5故选:B .【点睛】本题考查的是三角形的外接圆与外心,掌握勾股定理的应用,圆周角定理、余弦的定义是解题的关键.11.b a c <<【分析】分别计算零次幂,负整数指数幂,绝对值,再比较大小即可.【详解】解:()020201,a π=-=112,2b -⎛⎫=-=- ⎪⎝⎭ 33,c =-=∴ b a c <<.故答案为:b a c <<.【点睛】本题考查的是零次幂,负整数指数幂,绝对值的运算,有理数的大小比较,掌握以上知识是解题的关键.12.2【分析】先根据同类项的定义求出m 与n 的值,再代入计算算术平方根即可得.【详解】由同类项的定义得:13m m n =⎧⎨+=⎩解得12 mn=⎧⎨=⎩2===故答案为:2.【点睛】本题考查了同类项的定义、算术平方根,熟记同类项的定义是解题关键.13.线段的垂直平分线的性质【分析】利用线段垂直平分线的性质得到OA=OC=OB,然后根据点与圆的位置关系可判断点A、C 在⊙O上.【详解】解:如图,连接,OA OC,∵点O为AC和BC的垂直平分线的交点,∴OA=OC=OB,∴⊙O为ABC的外接圆.故答案为:线段的垂直平分线的性质.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.考查线段的垂直平分线的性质,确定圆的条件,掌握作图的原理是解题的关键.14.23【分析】画树状图得出所有的结果有3种,再找出最后一只摘到B 的结果数为2,由概率公式即可得出答案.【详解】解:依题意,画树状图如图:共有3个等可能的结果,最后一只摘到B 的结果有2个,∴最后一只摘到B 的概率为23; 故答案为:23. 【点睛】本题考查了列表法与树状图法以及概率公式;利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.画出树状图是解题的关键. 15.24【分析】过D 点作DF BC ⊥,设EF xkm =,则DF xkm =,43BF xkm =,在Rt BFD ∆中,根据勾股定理得到BD ,进一步求得AB ,再根据三角函数可求x ,可得8BC km =,6AC km =,10AB km =,从而求解.【详解】解:过D 点作DF BC ⊥,设EF xkm =, ∵3tan ,454ABC DEB ︒∠=∠=, ∴DF xkm =,43BF xkm =, 在Rt BFD ∆中,53BD xkm =, 4cos 5BF BC ABC BD AB ∴∠===, D 地在AB 正中位置,1023AB BD xkm ∴==, 又∵413BC BF FE EC x x km ⎛⎫=++=++ ⎪⎝⎭, ∴41431053x x x ++=, ∴8BC km =,10AB km = ∴3tan 864AC AB ABC km km =∠=⨯=, 小张某天沿A C E B D A →→→→→路线跑一圈,他跑了810624()km ++=. 故答案为:24.【点睛】此题考查了解直角三角形的应用,利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题. 16.()1,0或()2,0或()0,2【分析】将关联数为(),2,2m m --代入函数2y ax bx c =++得到:2(2)2y mx m x =+--+,由题意将y=0和x=0代入即可.【详解】解:将关联数为(),2,2m m --代入函数2y ax bx c =++得到: 2(2)2y mx m x =+--+,∵关联数为(),2,2m m --的函数图象与x 轴有两个整交点(m 为正整数),∴y=0,即2(2)20mx m x +--+=,因式分解得(2)(1)0mx x --=,又∵关联数为(),2,2m m --的函数图象与x 轴有两个整交点,即240b ac ∆=->∴m=1,∴232y x x =-+,与x 轴交点即y=0解得x=1或x=2,即坐标为()1,0或()2,0,与y 轴交点即x=0解得y=2,即坐标为()0,2,∴这个函数图象上整交点的坐标为()1,0或()2,0或()0,2;故答案为:()1,0或()2,0或()0,2.【点睛】此题考查二次函数相关知识,涉及一元二次方程判别式判断解的个数的关系及二次函数与坐标轴交点的求解办法,难度一般,计算较多.17.1a a +,32【分析】先利用分式的混合运算法则化简分式,再解不等式组的解集求出最小整数解,代入即可解之.【详解】解:原式=21(1)(1)(1)a a a a a -+⋅+-1a a +=,解不等式组22213a a a a -≥-⎧⎨-<+⎩①②, 解不等式①得:2a ≥,解不等式②得:4a <,∴不等式组的解集为24a ≤<,∴a 的最小值为2∴原式=21322+=. 【点睛】本题考查了分式的化简求值、解一元一次不等式组的解集,熟练掌握分式的混合运算法则,会求一元一次不等式组的整数解是解答的关键.18.11x =-21x =-.【分析】利用因式分解法解方程t 2+4t-5=0得到t 1=-5,t 2=11=,然后进行检验确定原方程的解.【详解】续解:()229t +=, 23t ∴+=±,解得11t =,25t =-(不合题意,舍去),1t ∴=,221x x +=,2(1)2x ∴+=,1211x x ∴=-=-,经检验都是方程的解.【点睛】本题考查了换元法解方程,涉及了无理方程及一元二次方程的解法.看懂提示是解决本题的关键.换元法的一般步骤:设元、换元、解元、还元.19.(1)见解析;(2)53π 【分析】 (1)先利用旋转的性质证明△ABD 为等边三角形,则可证60DAB ︒∠=,即,CBE DAB ∠=∠再根据平行线的判定证明即可.(2)利用弧长公式分别计算路径,相加即可求解.【详解】(1)证明:由旋转性质得:,60ABC DBE ABD CBE ︒∆≅∆∠=∠=,AB BD ABD ∴=∴∆是等边三角形所以60DAB ︒∠=,CBE DAB ∴∠=∠∴//BC AD ;(2)依题意得:AB=BD=4,BC=BE=1,所以A ,C 两点经过的路径长之和为60460151801803πππ⨯⨯+=. 【点睛】本题考查了旋转的性质、等边三角形的判定与性质、平行线的判定、弧长公式等知识,熟练掌握这些知识点之间的联系及弧长公式是解答的关键.20.(1)2,90,90,90a b c d ====;(2)八年级成绩较好,理由见解析;(3)390人【分析】(1)通过八年级抽取人数10人,即可得到a ,根据中位数、平均数、众数的定义得到b 、c 、d ;(2)由于中位数和众数相同,通过分析平均数和方差即可得到答案;(3)根据抽取的人中,不低于90分的比例即可得到两个年级共多少名学生达到“优秀”.【详解】解:(1)1012412a =----=,七年级成绩按从小到大顺序排列为80,85,85,85,90,90,90,95,95,100,∴中位数9090902b +==, 80185290495210019010c ⨯+⨯+⨯+⨯+⨯==, 八年级成绩90出现次数最多,因此众数90d =,∴2,90,90,90a b c d ====;(2)七八年级成绩的众数和中位数相同,但是八年级的平均成绩比七年级的高,且从方差看,八年级的成绩更稳定,综上八年级成绩较好.(3)七年级抽取的10人中,不低于90分的有6人,八年级抽取的10人中,不低于90分的有7人,6760039020+⨯=(人) 所以两个年级共390名学生达到“优秀”.【点睛】本题考查了中位数、众数、方差、平均数,以及样本估计总体,审清题中数据并了解基本的定义是解题的关键.21.(1)①1,②见解析,③见解析;(2)①函数的图象关于y 轴对称,②当0x <时,y 随x 的增大而增大,当0x >时,y 随x 的增大而减小;(3)①4,②4,③2k【分析】(1)根据表格中的数据的变化规律得出当0x <时,2xy =-,而当0x >时,2xy =,求出m 的值;补全图象;(2)根据(1)中的图象,得出两条图象的性质;(3)由图象的对称性,和四边形的面积与k 的关系,得出答案.【详解】解:(1)当0x <时,2xy =-,而当0x >时,2xy =,1m ∴=,故答案为:1;补全图象如图所示:(2)根据(1)中的图象可得:①函数的图象关于y 轴对称,②当0x <时,y 随x 的增大而增大,当0x >时,y 随x 的增大而减小;(3)如图,①由A ,B 两点关于y 轴对称,由题意可得四边形OABC 是平行四边形,且144242OAM OABC S S k k ∆==⨯==四边形, ②同①可知:24OABC S k ==四边形, ③22OABC S k k ==四边形,故答案为:4,4,2k .【点睛】本题考查反比例的图象和性质,列表、描点、连线是作函数图象的基本方法,利用图象得出性质和结论是解决问题的根本目的.22.(1)见解析;(2)12;(3)43【分析】(1)由矩形的性质得出∠B=∠D=∠C=90°,由折叠的性质得出∠AGE=∠B=90°,∠AHF=∠D=90°,证得∠EGC=∠GFH ,则可得出结论;(2)由面积关系可得出GH :AH=2:3,由折叠的性质得出AG=AB=GH+AH=20,求出GH=8,AH=12,则可得出答案;(3)由勾股定理求出DG=16,设DF=FH=x ,则GF=16-x ,由勾股定理得出方程()222816x x +=-,解出x=6,由锐角三角函数的定义可得出答案.【详解】(1)证明:因为四边形ABCD 是矩形所以90B D C ︒∠=∠=∠= 90GHF C ︒∠=∠=,90,AGE B ∠=∠=︒90EGC HGF ︒∠+∠=90GFH HGF ︒∠+∠=EGC GFH ∴∠=∠EGCGFH ∴ (2)解::2:3GFH AFH S S =△:2:3GH AH ∴=20AG GH AH AB =+==8,12GH AH ∴==12AD AH ∴==(3)解:在直角三角形ADG 中,16DG ===由折叠对称性知DF HF x ==,16GF x =-222GH HF GF +=2228(16)x x ∴+=-解得:x=6,所以:HF=6在直角三角形GHF 中,84tan 63GH GFH HF ∠===. 【点睛】 本题考查了矩形的性质,翻折变换,锐角三角函数,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.23.(1)200吨,300吨;(2)411000y x =-+,甲厂200吨全部运往B 地,乙厂运往A 地240吨,运往B 地60吨;(3)10.【分析】(1)设这批防疫物资甲厂生产了a 吨,乙厂生产了b 吨,根据题意列方程组解答即可; (2)根据题意得出y 与x 之间的函数关系式以及x 的取值范围,再根据一次函数的性质解答即可;(3)根据题意以及(2)的结论可得y=-4x+11000-500m ,再根据一次函数的性质以及列不等式解答即可.【详解】解:(1)设这批防疫物资甲厂生产了a 吨,乙厂生产了b 吨;则5002100a b a b +=⎧⎨-=⎩解得:200300a b =⎧⎨=⎩答:这批防疫物资甲厂生产了200吨,乙厂生产了300吨;(2)如图,甲、乙两厂调往,A B 两地的数量如下:20(240)25(40)1524(300)y x x x x ∴=-+-++-411000x =-+024003000400x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩ 40240x ∴≤≤当x=240时运费最小所以总运费的方案是:甲厂200吨全部运往B 地;乙厂运往A 地240吨,运往B 地60吨.(3)由(2)知:411000500y x m =-+-当x=240时, 424011000500=10040-500m y m =-⨯+-最小,100405005200m ∴-≤9.68m ∴≥所以m 的最小值为10.【点睛】本题考查了一次函数的应用,二元一次方程组的应用、一元一次不等式的应用,一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式求解.24.(1)见解析;(2)平行四边形,见解析;(3)抛物线的解析式为241()132y x =--,存在,Q 点的横坐标为236或176-或76或16- 【分析】(1)证得OE 是△ABC 的中位线,求得点E 的坐标,分别求得AB 、AC 、BC 的长,利用勾股定理的逆定理证得ABC ∆是直角三角形,从而证明结论;(2)求得OBCD 是平行四边形;(3)证明Rt △ODN ~Rt △OEM ,求得点D 的坐标,利用待定系数法可求得此抛物线的解析式;分△PED ~△OAB 和△DEP ~△OAB 两种情况讨论,利用相似三角形的性质求得PE 的长,再根据三角形的面积公式即可求得Q 点的横坐标.【详解】(1)如图1,设AB 与y 轴交于点M ,则AM=2,OM=1,AB=5,则OA=OC ===∵OE ∥BC ,∴OE 是△ABC 的中位线, ∴AE=12AB=52,BC=2EO , ∴点E 的坐标为(12,1-),ME=12,OM=1,∴==,∴∵(2222225AC BC AB +=+==, ABC ∆∴是直角三角形,即BC AC ⊥,所以BC 是半圆的O 的切线;(2)四边形OBCD 是平行四边形,由图知:∵OD ∥BC ,∴四边形OBCD 是平行四边形;(3)①由(2)知:E 为AB 的中点,过点D 作DN y ⊥轴,则DN//ME ,∴Rt △ODN ~Rt △OEM , ∴ON DN OD OM ME OE==,∴112ON DN ==∴2ON =,1DN =,∴点D 的坐标为(1-,2),∵抛物线经过点D(1-,2),且顶点为E(12,1-), ∴设此抛物线的解析式为21()12y a x =--, 则211122a ⎛⎫⋅---= ⎪⎝⎭ ∴43a =, ∴此抛物线的解析式为241()132y x =--, 即2442333y x x =--, 如图,设抛物线对称轴交AC 于F ,由(1)知:∠AOE=∠ACB=90︒,∠AEF=90︒, ∴∠OEF+∠AEO=90︒,∠A+∠AEO=90︒,∴∠OEF=∠A ,∵以E ,D ,P 为顶点的三角形与OAB ∆相似, ∴分△PED ~△OAB 和△DEP ~△OAB 两种情况讨论,当△PED ~△OAB 时,ED=OE+OD=22+=PE ED OA AB =25=, ∴32PE =, ∵EPQ OAB S S ∆∆=,设点Q 到PE 的距离为h , ∴11h 22PE AB OM ⋅=⋅,即3h 512=⨯, ∴10h 3=, ∴点Q 的横坐标为10123326+=或11017236-=-;当△DEP ~△OAB 时,ED=OE+OD=22+=PE ED AB OA =,即5PE =, ∴152PE =, ∵EPQ OAB S S ∆∆=,设点Q 到PE 的距离为1h , ∴111h 22PE AB OM ⋅=⋅,即15h 512=⨯, ∴2h 3=, ∴点Q 的横坐标为217326+=或121236-=-; ∴符合条件的Q 点的横坐标为236或176-或76或16-.【点睛】本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,圆的切线的判定,相似三角形的性质和判定,勾股定理的逆定理,平行四边形的判定等知识点的应用,此题综合性比较强,有一定的难度,对学生提出较高的要求.注意:不要漏解,分类讨论思想的巧妙运用.。
2021年荆州市中考数学试卷含答案解析

2021年荆州市中考数学试卷含答案解析2021年湖北省荆州市中考数学试卷一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.(3.00分后)以下代数式中,整式为()a.x+1b.c.d.2.(3.00分)如图,两个实数互为相反数,在数轴上的对应点分别是点a、点b,则下列说法正确的是()a.原点在点a的左边b.原点在线段ab的中点处为c.原点在点b的右边d.原点可以在点a或点b上3.(3.00分后)以下排序恰当的就是()a.3a24a2=a2b.a2?a3=a6c.a10÷a5=a2d.(a2)3=a64.(3.00分后)例如图,两条直线l1∥l2,rt△acb中,∠c=90°,ac=bc,顶点a、b分别在l1和l2上,∠1=20°,则∠2的度数就是()a.45°b.55°c.65°d.75°5.(3.00分)解分式方程3=时,去分母可得()a.13(x2)=4b.13(x2)=4c.13(2x)=4d.13(2x)=46.(3.00分)《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x两、y两,则可列方程组为()a.c.b.d.7.(3.00分)已知:将直线y=x1向上平移2个单位长度后得到直线y=kx+b,则以下关于直线y=kx+b的观点恰当的就是()a.经过第一、二、四象限b.与x轴处设(1,0)c.与y轴处设(0,1)d.y随x的减小而增大8.(3.00分)如图,将一块菱形abcd硬纸片固定后进行投针训练.已知纸片上ae⊥bc于e,cf⊥ad于f,sind=.若随意投出一针命中了菱形纸片,则命中矩形区域的概率是()a.b.c.d.9.(3.00分)荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()a.本次抽样调查的样本容量就是5000b.扇形图中的m为10%c.样本中选择公共交通出行的有2500人d.若“五一”期间至荆州观光的游客存有50万人,则挑选自驾游方式乘车的存有25万人10.(3.00分)如图,平面直角坐标系中,⊙p经过三点a(8,0),o(0,0),b (0,6),点d是⊙p上的一动点.当点d到弦ob的距离最大时,tan∠bod的值是()a.2b.3c.4d.5二、填空题(本大题共8小题,每小题3分后,共24分后)11.(3.00分后)排序:|2|+()1+tan45°=.12.(3.00分后)未知:∠aob,求作:∠aob的平分线.作法:①以点o为圆心,适度短为半径画弧,分别交oa,ob于点m,n;②分别以点m,n为圆心,大于mn的短为半径画弧,两弧在∠aob内部处设点c;③画射线oc.射线oc即为所求.上述作图使用了全等三角形的认定方法,这个方法就是.13.(3.00分)如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2021次输出的结果是.14.(3.00分后)荆州市滨江公园旁的万寿宝塔始创于明嘉靖年间,周边风景秀丽.现在塔底高于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面a处测得塔顶的仰角为30°,再向古塔方向前进a米后抵达b处为,在b处测得塔顶的仰角为45°(如图所示),那么a的值约为米(≈1.73,结果精确到0.1).15.(3.00分后)为了比较+1与的大小,可以结构如图所示的图形展开测算,+1.(填上其中∠c=90°,bc=3,d在bc上且bd=ac=1.通过计算可得“>”或“<”或“=”)16.(3.00分后)关于x的一元二次方程x22kx+k2k=0的两个实数根分别就是x1、x2,且x12+x22=4,则x12x1x2+x22的值就是.17.(3.00分)如图,将钢球放置到一个倒立的空心透明圆锥中,测得相关数据如图所示(图中数据单位:cm),则钢球的半径为cm(圆锥的壁厚忽略不计).18.(3.00分后)例如图,正方形abcd的对称中心在座标原点,ab∥x轴,ad、bc分别与x轴处设e、f,相连接be、df,若正方形abcd存有两个顶点在双曲线y=上,实数a满足用户a3a=1,则四边形debf的面积就是.三、解答题(本大题共7小题,共66分)19.(10.00分后)(1)谋不等式组的整数求解;(2)先化简,后求值(1)÷,其中a=+1.20.(8.00分后)为了出席“荆州市中小学生首届诗词大会”,某校八年级的两班学生展开了初选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:班级八(1)八(2)平均分85a中位数b85众数c85方差22.819.2(1)直接写出表中a,b,c的值;(2)根据以上数据分析,你指出哪个班前5名同学的成绩较好?表明理由.21.(8.00分后)例如图,对折矩形纸片abcd,并使ab与dc重合,获得折痕mn,将纸片展平;再一次卷曲,使点d落在mn上的点f处为,折痕ap交mn于e;缩短pf交ab于g.澄清:(1)△afg≌△afp;(2)△apg为等边三角形.22.(8.00分)探究函数y=x+(x>0)与y=x+(x>0,a>0)的相关性质.(1)小聪同学对函数y=x+(x>0)进行了如下列表、描点,请你帮他完成连线的步骤;观察图象可得它的最小值为,它的另一条性质为;xy……1223……(2)请用配方法求函数y=x+(x >0)的最小值;(3)猜想函数y=x+(x>0,a>0)的最小值为.23.(10.00分后)问题:未知α、β均为锐角,tanα=,tanβ=,谋α+β的度数.探究:(1)用6个大正方形结构如图所示的网格图(每个大正方形的边长均为1),恳请利用这个网格图求出来α+β的度数;延伸:(2)设经过图中m、p、h三点的圆弧与ah交于r,求的弧长.24.(10.00分)为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形abcd空地中,垂直于墙的边ab=xm,面积为ym2(如图).(1)谋y与x之间的函数关系式,并写下自变量x的值域范围;(2)若矩形空地的面积为160m2,谋x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.甲140.4乙161丙280.4单价(元/棵)合理用地(m2/棵)25.(12.00分)阅读理解:在平面直角坐标系中,若两点p、q的坐标分别是p(x1,y1)、q(x2,y2),则p、q这两点间的距离为|pq|=2),q(3,4),则|pq|==2..如p(1,。
湖北省荆州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

湖北省荆州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.分式的化简求值(共1小题)1.(2023•荆州)先化简,再求值:(﹣)÷,其中x =()﹣1,y=(﹣2023)0.二.解一元二次方程-配方法(共1小题)2.(2021•荆州)已知:a 是不等式5(a ﹣2)+8<6(a ﹣1)+7的最小整数解,请用配方法解关于x 的方程x 2+2ax +a +1=0.三.分式方程的应用(共1小题)3.(2023•荆州)荆州古城旁“荆街”某商铺打算购进A ,B 两种文创饰品对游客销售.已知1400元采购A 种的件数是630元采购B 种件数的2倍,A 种的进价比B 种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购B 种的件数不低于390件,不超过A 种件数的4倍.(1)求A ,B 饰品每件的进价分别为多少元?(2)若采购这两种饰品只有一种情况可优惠,即一次性采购A 种超过150件时,A 种超过的部分按进价打6折.设购进A 种饰品x 件,①求x 的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.四.反比例函数综合题(共1小题)4.(2022•荆州)小华同学学习函数知识后,对函数通过列表、描点、连线,画出了如图1所示的图象.x …﹣4﹣3﹣2﹣1﹣﹣﹣01234…y…1241﹣4﹣2﹣﹣1…请根据图象解答:(1)【观察发现】①写出函数的两条性质: ; ;②若函数图象上的两点(x1,y1),(x2,y2)满足x1+x2=0,则y1+y2=0一定成立吗? .(填“一定”或“不一定”)(2)【延伸探究】如图2,将过A(﹣1,4),B(4,﹣1)两点的直线向下平移n个单位长度后(n≥0),得到直线l与函数y=﹣(x≤﹣1)的图象交于点P,连接PA,PB.①求当n=3时,直线l的解析式和△PAB的面积;②直接用含n的代数式表示△PAB的面积.五.二次函数综合题(共2小题)5.(2023•荆州)已知:y关于x的函数y=(a﹣2)x2+(a+1)x+b.(1)若函数的图象与坐标轴有两个公共点,且a=4b,则a的值是 ;(2)如图,若函数的图象为抛物线,与x轴有两个公共点A(﹣2,0),B(4,0),并与动直线l:x=m(0<m<4)交于点P,连接PA,PB,PC,BC,其中PA交y轴于点D,交BC于点E.设△PBE的面积为S1,△CDE的面积为S2.①当点P为抛物线顶点时,求△PBC的面积;②探究直线l在运动过程中,S1﹣S2是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.6.(2021•荆州)已知:直线y=﹣x+1与x轴、y轴分别交于A,B两点,点C为直线AB 上一动点,连接OC,∠AOC为锐角,在OC上方以OC为边作正方形OCDE,连接BE,设BE=t.(1)如图1,当点C在线段AB上时,判断BE与AB的位置关系,并说明理由;(2)直接写出点E的坐标(用含t的式子表示);(3)若tan∠AOC=k,经过点A的抛物线y=ax2+bx+c(a<0)顶点为P,且有6a+3b+2c=0,△POA的面积为,当t=时,求抛物线的解析式.六.圆的综合题(共2小题)7.(2023•荆州)如图,在菱形ABCD中,DH⊥AB于H,以DH为直径的⊙O分别交AD,BD于点E,F,连接EF.(1)求证:①CD是⊙O的切线;②△DEF∽△DBA;(2)若AB=5,DB=6,求sin∠DFE.8.(2022•荆州)如图1,在矩形ABCD中,AB=4,AD=3,点O是边AB上一个动点(不与点A重合),连接OD,将△OAD沿OD折叠,得到△OED;再以O为圆心,OA的长为半径作半圆,交射线AB于G,连接AE并延长交射线BC于F,连接EG,设OA=x.(1)求证:DE是半圆O的切线:(2)当点E落在BD上时,求x的值;(3)当点E落在BD下方时,设△AGE与△AFB面积的比值为y,确定y与x之间的函数关系式;(4)直接写出:当半圆O与△BCD的边有两个交点时,x的取值范围.七.作图—复杂作图(共1小题)9.(2022•荆州)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC 有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.八.作图—应用与设计作图(共1小题)10.(2021•荆州)如图,在5×5的正方形网格图形中,小正方形的边长都为1,线段ED 与AD的端点都在网格小正方形的顶点(称为格点)上.请在网格图形中画图:(1)以线段AD为边画正方形ABCD,再以线段DE为斜边画等腰直角三角形DEF,其中顶点F在正方形ABCD外;(2)在(1)中所画图形基础上,以点B为其中一个顶点画一个新正方形,使新正方形的面积为正方形ABCD和△DEF面积之和,其它顶点也在格点上.九.几何变换综合题(共1小题)11.(2023•荆州)如图1,点P是线段AB上与点A,点B不重合的任意一点,在AB的同侧分别以A,P,B为顶点作∠1=∠2=∠3,其中∠1与∠3的一边分别是射线AB和射线BA,∠2的两边不在直线AB上,我们规定这三个角互为等联角,点P为等联点,线段AB为等联线.(1)如图2,在5×3个方格的纸上,小正方形的顶点为格点、边长均为1,AB为端点在格点的已知线段.请用三种不同连接格点的方法,作出以线段AB为等联线、某格点P 为等联点的等联角,并标出等联角,保留作图痕迹;(2)如图3,在Rt△APC中,∠A=90°,AC>AP,延长AP至点B,使AB=AC,作∠A的等联角∠CPD和∠PBD.将△APC沿PC折叠,使点A落在点M处,得到△MPC,再延长PM交BD的延长线于E,连接CE并延长交PD的延长线于F,连接BF.①确定△PCF的形状,并说明理由;②若AP:PB=1:2,BF=k,求等联线AB和线段PE的长(用含k的式子表示).一十.相似形综合题(共1小题)12.(2021•荆州)在矩形ABCD中,AB=2,AD=4,F是对角线AC上不与点A,C重合的一点,过F作FE⊥AD于E,将△AEF沿EF翻折得到△GEF,点G在射线AD上,连接CG.(1)如图1,若点A的对称点G落在AD上,∠FGC=90°,延长GF交AB于H,连接CH.①求证:△CDG∽△GAH;②求tan∠GHC.(2)如图2,若点A的对称点G落在AD延长线上,∠GCF=90°,判断△GCF与△AEF 是否全等,并说明理由.一十一.解直角三角形的应用-仰角俯角问题(共1小题)13.(2022•荆州)荆州城徽“金凤腾飞”立于古城东门外.如图,某校学生测量其高AB(含底座),先在点C处用测角仪测得其顶端A的仰角为32°,再由点C向城徽走6.6m到E 处,测得顶端A的仰角为45°.已知B,E,C三点在同一直线上,测角仪离地面的高度CD=EF=1.5m,求城徽的高AB.(参考数据:sin32°≈0.530,cos32°≈0.848,tan32°≈0.625).一十二.列表法与树状图法(共1小题)14.(2022•荆州)为弘扬荆州传统文化,我市将举办中小学生“知荆州、爱荆州、兴荆州”知识竞赛活动.某校举办选拔赛后,随机抽取了部分学生的成绩,按成绩(百分制)分为A ,B ,C ,D 四个等级,并绘制了如下不完整的统计图表.等级成绩(x )人数A90<x ≤100mB80<x ≤9024C70<x ≤8014Dx ≤7010根据图表信息,回答下列问题:(1)表中m = ;扇形统计图中,B 等级所占百分比是 ,C 等级对应的扇形圆心角为 度;(2)若全校有1400人参加了此次选拔赛,则估计其中成绩为A 等级的共有 人;(3)若全校成绩为100分的学生有甲、乙、丙、丁4人,学校将从这4人中随机选出2人参加市级竞赛.请通过列表或画树状图,求甲、乙两人至少有1人被选中的概率.湖北省荆州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.分式的化简求值(共1小题)1.(2023•荆州)先化简,再求值:(﹣)÷,其中x=()﹣1,y =(﹣2023)0.【答案】,2.【解答】解:原式=[﹣]•=(﹣)•=•=,∵x=()﹣1=2,y=(﹣2023)0=1,∴原式==2.二.解一元二次方程-配方法(共1小题)2.(2021•荆州)已知:a是不等式5(a﹣2)+8<6(a﹣1)+7的最小整数解,请用配方法解关于x的方程x2+2ax+a+1=0.【答案】x1=2+,x2=2﹣.【解答】解:解不等式5(a﹣2)+8<6(a﹣1)+7,得a>﹣3,∴最小整数解为﹣2,将a=﹣2代入方程x2+2ax+a+1=0,得x2﹣4x﹣1=0,配方,得(x﹣2)2=5.直接开平方,得x﹣2=±.解得x1=2+,x2=2﹣.三.分式方程的应用(共1小题)3.(2023•荆州)荆州古城旁“荆街”某商铺打算购进A,B两种文创饰品对游客销售.已知1400元采购A种的件数是630元采购B种件数的2倍,A种的进价比B种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购B种的件数不低于390件,不超过A种件数的4倍.(1)求A,B饰品每件的进价分别为多少元?(2)若采购这两种饰品只有一种情况可优惠,即一次性采购A种超过150件时,A种超过的部分按进价打6折.设购进A种饰品x件,①求x的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.【答案】(1)A种饰品每件的进价为10元,则B种饰品每件的进价为9元;(2)①120≤x≤210,且x为整数;②当采购A种饰品210件,B种饰品390件,商铺获利最大,最大利润为3630元.【解答】解:(1)设A种饰品每件的进价为a元,则B种饰品每件的进价为(a﹣1)元,由题意得:=×2,解得:a=10,经检验,a=10是所列方程的解,且符合题意,a﹣1=9,答:A种饰品每件的进价为10元,则B种饰品每件的进价为9元;(2)①由题意得:,解得:120≤x≤210,∴购进A种饰品件数x的取值范围为:120≤x≤210,且x为整数;②设采购A种饰品x件时的总利润为w元,当120≤x≤150时,w=15×600﹣10x﹣9(600﹣x)=﹣x+3600,∵﹣1<0,∴w随x的增大而减小,∴当x=120时,w有最大值是:﹣120+3600=3480,当150<x≤210时,w=15×600﹣[10×150+10×60%(x﹣150)]﹣9(600﹣x)=3x+3000,∵3>0,∴w随x的增大而增大,∴当x=210时,w有最大值是:3×210+3000=3630,∵3630>3480,∴w的最大值是3630,此时600﹣x=600﹣210=390,即当采购A种饰品210件,B种饰品390件,商铺获利最大,最大利润为3630元.四.反比例函数综合题(共1小题)4.(2022•荆州)小华同学学习函数知识后,对函数通过列表、描点、连线,画出了如图1所示的图象.x…﹣4﹣3﹣2﹣1﹣﹣﹣01234…y…12410﹣4﹣2﹣﹣1…请根据图象解答:(1)【观察发现】①写出函数的两条性质: 函数有最大值为4 ; 当x>0时,y随x的增大而增大 ;②若函数图象上的两点(x1,y1),(x2,y2)满足x1+x2=0,则y1+y2=0一定成立吗? 不一定 .(填“一定”或“不一定”)(2)【延伸探究】如图2,将过A(﹣1,4),B(4,﹣1)两点的直线向下平移n个单位长度后(n≥0),得到直线l与函数y=﹣(x≤﹣1)的图象交于点P,连接PA,PB.①求当n=3时,直线l的解析式和△PAB的面积;②直接用含n的代数式表示△PAB的面积.【答案】(1)①函数有最大值为4,当x>0时,y随x的增大而增大(答案不唯一);②不一定;(2)①直线l的解析式为y=﹣x,△PAB的面积为;②△PAB的面积为.【解答】解:(1)①由图象知:函数有最大值为4,当x>0时,y随x的增大而增大(答案不唯一);故答案为:函数有最大值为4,当x>0时,y随x的增大而增大(答案不唯一);②假设x1=﹣,则y1=1,∵x1+x2=0,∴x2=,∴y2=﹣8,∴y1+y2=0不一定成立,故答案为:不一定;(2)①设直线AB的解析式为y=kx+b,则,解得,∴直线AB的解析式为y=﹣x+3,当n=3时,直线l的解析式为y=﹣x+3﹣3=﹣x,设直线AB与y轴交于C,则△PAB的面积=△AOB的面积,∴S△AOB=S△AOC+S△BOC===,∴△PAB的面积为;②设直线l与y轴交于D,∵l∥AB,∴△PAB的面积=△ABD的面积,由题意知,CD=n,∴S△ABD=S△ACD+S△BCD==.∴△PAB的面积为.五.二次函数综合题(共2小题)5.(2023•荆州)已知:y关于x的函数y=(a﹣2)x2+(a+1)x+b.(1)若函数的图象与坐标轴有两个公共点,且a=4b,则a的值是 0或2或﹣ ;(2)如图,若函数的图象为抛物线,与x轴有两个公共点A(﹣2,0),B(4,0),并与动直线l:x=m(0<m<4)交于点P,连接PA,PB,PC,BC,其中PA交y轴于点D,交BC于点E.设△PBE的面积为S1,△CDE的面积为S2.①当点P为抛物线顶点时,求△PBC的面积;②探究直线l在运动过程中,S1﹣S2是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.【答案】(1)2或0或﹣;(2)①6;②当m=时,S1﹣S2存在最大值,最大值为.【解答】解:(1)①当a﹣2=0时,即a=2时,y关于x的函数解析式为y=3x+,此时y=3x+与x轴的交点坐标为(﹣,0),与y轴的交点坐标为(0,);②当a﹣2≠0时,y关于x的函数为二次函数,∵二次函数图象抛物线与坐标轴有两个交点,∴抛物线可能存在与x轴有两个交点,其中一个交点为坐标原点或与x轴有一个交点与y轴一个交点两种情况.当抛物线与x轴有两个交点且一个为坐标原点时,由题意得b=0,此时a=0,抛物线为y=﹣2x2+x.当y=0时,﹣2x2+x=0,解得x1=0,x2=.∴其图象与x轴的交点坐标为(0,0)(,0).当抛物线与x轴有一个交点与y轴有一个交点时,由题意得,y=(a﹣2)x2+(a+1)x+b所对应的一元二次方程(a﹣2)x2+(a+1)x+b=0有两个相等实数根.∴Δ=(a+1)2﹣4(a﹣2)×a=0,解得a=﹣,此时y=﹣x2+x﹣,当x=0时,y=﹣,∴与y轴的交点坐标为(0,﹣),当y=0时,﹣x2+x﹣=0,解得x1=x2=,∴与x轴的交点坐标为(,0),综上所述,若y关于x的函数y=(a﹣2)x2+(a+1)x+b的图象与坐标轴有两个交点,则a可取的值为2,0,﹣,故答案为:2或0或﹣;(2)①如图,设直线l与BC交于点F,根据题意得,解得,∴抛物线的解析式为y=﹣x2+2x+8,当x=0时,y=8,∴C(0,8),∵y=﹣x2+2x+8=﹣(x﹣1)2+9,点P为抛物线顶点,∴P(1,9),∵B(4,0),C(0,8),∴直线BC的解析式为y=﹣2x+8,∴F(1,6),∴PF=9﹣6=3,∴△PBC的面积=OB•PF==6;②S1﹣S2存在最大值,理由:如图,设直线x=m交x轴于H,由①得,OB=4,AO=2,AB=6,OC=8,AH=2+m,P(m,﹣m2+2m+8),∴PH=﹣m2+2m+8,∵OD∥PH,∴△AOD∽△AHP,∴,∴,∴OD=8﹣2m,∵S1﹣S2=S△PAB﹣S△AOD﹣S△OBC==﹣3m2+8m=﹣3(m﹣)2+,∵﹣3<0,0<m<4,∴当m=时,S1﹣S2存在最大值,最大值为.6.(2021•荆州)已知:直线y=﹣x+1与x轴、y轴分别交于A,B两点,点C为直线AB 上一动点,连接OC,∠AOC为锐角,在OC上方以OC为边作正方形OCDE,连接BE,设BE=t.(1)如图1,当点C在线段AB上时,判断BE与AB的位置关系,并说明理由;(2)直接写出点E的坐标(用含t的式子表示);(3)若tan∠AOC=k,经过点A的抛物线y=ax2+bx+c(a<0)顶点为P,且有6a+3b+2c =0,△POA的面积为,当t=时,求抛物线的解析式.【答案】(1)见解答;(2)(﹣t,1﹣t)或(t,1+t);(3)y=﹣3x2+12x ﹣9或y=﹣x2+4x﹣3.【解答】解:(1)直线y=﹣x+1与x轴、y轴分别交于A,B两点,则点A、B的坐标分别为(1,0)、(0,1),则∠OBA=∠OAB=45°,∵∠AOC+∠BOC=90°,∠BOC+∠BOE=90°,∴∠AOC=∠BOE,∵AO=BO,OC=OE,∴△OAC≌△OBE(SAS),∴∠OBE=∠OAC=45°,AC=BE=t,∴∠EBA=∠EBO+∠OBA=∠OAC+∠OBA=45°+45°=90°,∴BE⊥AB;(2)①当点C在线段AB上时,如图1﹣1,过点E作EH⊥OB于点H,∵∠EBH=45°,∴BH=EH=BE=t,故点E的坐标为(﹣t,1﹣t);②当点C在线段BA的延长线上时,如图1﹣2,同理可得,点E的坐标为(t,1+t);综上,点E的坐标为(﹣t,1﹣t)或(t,1+t);(3)①当点C线段AB上时,如题图1﹣1,过点C作CN⊥OA于点N,当t=时,即AC=t=,则CN=AN=t=,则ON=OA﹣NA=1﹣=CN,故tan∠AOC==1=k,∵△POA的面积=×AO×y P=×1×y P==,解得y P=1=c﹣①,∵抛物线过点A(1,0),故a+b+c=0②,而6a+3b+2c=0③,联立①②③并解得,∴抛物线的表达式为y=﹣x2+4x﹣3;②抛物线过点A,则a+b+c=0,而6a+3b+2c=0,联立上述两式并解得:,故抛物线的表达式为y=a(x﹣2)2﹣a(a<0),则点P的坐标为(2,﹣a),则AC=BE=t=,则tan∠AOC=k==,故a=﹣3,故y=﹣3x2+12x﹣9.综上,y=﹣3x2+12x﹣9或y=﹣x2+4x﹣3.六.圆的综合题(共2小题)7.(2023•荆州)如图,在菱形ABCD中,DH⊥AB于H,以DH为直径的⊙O分别交AD,BD于点E,F,连接EF.(1)求证:①CD是⊙O的切线;②△DEF∽△DBA;(2)若AB=5,DB=6,求sin∠DFE.【答案】(1)①②证明见解答过程;(2)sin∠DFE=.【解答】(1)证明:①∵四边形ABCD是菱形,∴AB∥CD,∵DH⊥AB,∴∠CDH=∠DHA=90°,∴CD⊥OD,∵D为⊙O的半径的外端点,∴CD是⊙O的切线;②连接HF,∴∠DEF=∠DHF,∵DH为⊙O直径,∴∠DFH=90°,∴∠DHF=90°﹣∠BDH,∵∠DHB=90°,∴∠DBA=90°﹣∠BDH,∴∠DHF=∠DBA=∠DEF,∵∠EDF=∠BDA,∴△DEF∽△DBA;(2)解:连接AC交BD于G.∵菱形ABCD,BD=6,∴AC⊥BD,AG=GC,DG=GB=3,在Rt△AGB中,AG==4,∴AC=2AG=8,∵S菱形ABCD=AC•BD=AB•DH,∴DH==,由△DEF∽△DBA知:∠DFE=∠DAH,∴sin∠DFE=sin∠DAH===.8.(2022•荆州)如图1,在矩形ABCD中,AB=4,AD=3,点O是边AB上一个动点(不与点A重合),连接OD,将△OAD沿OD折叠,得到△OED;再以O为圆心,OA的长为半径作半圆,交射线AB于G,连接AE并延长交射线BC于F,连接EG,设OA=x.(1)求证:DE是半圆O的切线:(2)当点E落在BD上时,求x的值;(3)当点E落在BD下方时,设△AGE与△AFB面积的比值为y,确定y与x之间的函数关系式;(4)直接写出:当半圆O与△BCD的边有两个交点时,x的取值范围.【答案】(1)证明见解析部分;(2);(3)y=(0<x<);(4)<x<3或<x≤4.【解答】(1)证明:∵四边形ABCD是矩形,∴∠DAO=90°,∵将△OAD沿OD折叠,得到△OED,∴∠OED=∠DAO=90°,∴OE⊥DE,∵OE是半径,∴DE是⊙O的切线;(2)解:如图2中,当点E落在BD下方时,在Rt△ADB中,∠DAB=90°,AD=3,AB=4,∴BD===5,∵S△ADB=S△ADO+S△BDO,∴×3×4=×3×x+×5×x,∴x=.(3)解:图2中,当点E落在BD上时,∵DA=DE,OA=OE,∴OD垂直平分线段AE,∵•AD•AO=•DO•AJ,∴AJ=,∴AE=2AJ=,∵AG是直径,∴∠AEG=∠ABF=90°,∵∠EAG=∠BAF,∴△AEG∽△ABF,∴y==()2==(0<x<);(4)当⊙O与CD相切时,x=3,当⊙O经过点C时,x2=(4﹣x)2+32,∴x=,观察图象可知,当<x<3或<x≤4时,半圆O与△BCD的边有两个交点.七.作图—复杂作图(共1小题)9.(2022•荆州)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC 有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【答案】(1)(2)作图见解析部分.【解答】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.八.作图—应用与设计作图(共1小题)10.(2021•荆州)如图,在5×5的正方形网格图形中,小正方形的边长都为1,线段ED 与AD的端点都在网格小正方形的顶点(称为格点)上.请在网格图形中画图:(1)以线段AD为边画正方形ABCD,再以线段DE为斜边画等腰直角三角形DEF,其中顶点F在正方形ABCD外;(2)在(1)中所画图形基础上,以点B为其中一个顶点画一个新正方形,使新正方形的面积为正方形ABCD和△DEF面积之和,其它顶点也在格点上.【答案】(1)(2)作图见解析部分.【解答】解:(1)如图,正方形ABCD,△DEF即为所求.(2)如图,正方形BKFG即为所求.九.几何变换综合题(共1小题)11.(2023•荆州)如图1,点P是线段AB上与点A,点B不重合的任意一点,在AB的同侧分别以A,P,B为顶点作∠1=∠2=∠3,其中∠1与∠3的一边分别是射线AB和射线BA,∠2的两边不在直线AB上,我们规定这三个角互为等联角,点P为等联点,线段AB为等联线.(1)如图2,在5×3个方格的纸上,小正方形的顶点为格点、边长均为1,AB为端点在格点的已知线段.请用三种不同连接格点的方法,作出以线段AB为等联线、某格点P 为等联点的等联角,并标出等联角,保留作图痕迹;(2)如图3,在Rt△APC中,∠A=90°,AC>AP,延长AP至点B,使AB=AC,作∠A的等联角∠CPD和∠PBD.将△APC沿PC折叠,使点A落在点M处,得到△MPC,再延长PM交BD的延长线于E,连接CE并延长交PD的延长线于F,连接BF.①确定△PCF的形状,并说明理由;②若AP:PB=1:2,BF=k,求等联线AB和线段PE的长(用含k的式子表示).【答案】(1)作图见解答.(2)①△PCF是等腰直角三角形.理由见解答.②等联线AB=3k,线段PE=.【解答】解:(1)作图如下:(方法不唯一)(2)①△PCF是等腰直角三角形.理由为:如图,过点C作CN⊥BE交BE的延长线于N.由折叠得AC=CM,∠CMP=∠CME=∠A=90°,∠1=∠2,∵AC=AB,∠A=∠PBD=∠N=90°,∴四边形ABNC为正方形,∴CN=AC=CM,又∵CE=CE,∴Rt△CME≌Rt△CNE(HL),∴∠3=∠4,而∠1+∠2+∠3+∠4=90°,∠CPF=90°,∴∠PCF=∠2+∠3=∠CFP=45°,∴△PCF是等腰直角三角形.②如图,过点F作FQ⊥BE于Q,FR⊥PB交PB的延长线于R,则∠R=∠A=90°,∵∠1+∠5=∠5+∠6=90°,∴∠1=∠6,由△PCF是等腰直角三角形知:PC=PF,∴△APC≌△RFP(AAS),∴AP=FR,AC=PR,而AC=AB,∴AP=BR=FR,在Rt△BRF中,BR2+FR2=BF2,,∴AP=BR=FR=k,∴PB=2AP=2k,∴AB=AP+PB=BN=3k,∵BR=FR,∠QBR=∠R=∠FQB=90°,∴四边形BRFQ为正方形,BQ=OF=k,∵FQ⊥BN,CN⊥BN,∴FQ∥CN,∴,而QE=BN﹣NE﹣BQ=3k﹣NE﹣k=2k﹣NE,∴,解得:k,由①知:PM=AP=k,,∴,答:等联线AB=3k,线段PE=.一十.相似形综合题(共1小题)12.(2021•荆州)在矩形ABCD中,AB=2,AD=4,F是对角线AC上不与点A,C重合的一点,过F作FE⊥AD于E,将△AEF沿EF翻折得到△GEF,点G在射线AD上,连接CG.(1)如图1,若点A的对称点G落在AD上,∠FGC=90°,延长GF交AB于H,连接CH.①求证:△CDG∽△GAH;②求tan∠GHC.(2)如图2,若点A的对称点G落在AD延长线上,∠GCF=90°,判断△GCF与△AEF 是否全等,并说明理由.【答案】(1)①证明过程见解答;②;(2)不全等,理由见解答.【解答】(1)如图1,①证明:∵四边形ABCD是矩形,∴∠D=∠GAH=90°,∴∠DCG+∠DGC=90°,∵∠FGC=90°,∴∠AGH+∠DGC=90°,∴∠DCG=∠AGH,∴△CDG∽△GAH.②由翻折得∠EGF=∠EAF,∴∠AGH=∠DAC=∠DCG,∵CD=AB=2,AD=4,∴=tan∠DAC==,∴DG=CD=×2=1,∴GA=4﹣1=3,∵△CDG∽△GAH,∴,∴tan∠GHC==.(2)不全等,理由如下:∵AD=4,CD=2,∴AC==,∵∠GCF=90°,∴=tan∠DAC=,∴CG=AC=×2=,∴AG==5,∴EA=AG=,∴EF=EA•tan∠DAC==,∴AF==,∴CF=2=,∵∠GCF=∠AEF=90°,而CG≠EA,CF≠EF,∴△GCF与△AEF不全等.一十一.解直角三角形的应用-仰角俯角问题(共1小题)13.(2022•荆州)荆州城徽“金凤腾飞”立于古城东门外.如图,某校学生测量其高AB(含底座),先在点C处用测角仪测得其顶端A的仰角为32°,再由点C向城徽走6.6m到E 处,测得顶端A的仰角为45°.已知B,E,C三点在同一直线上,测角仪离地面的高度CD=EF=1.5m,求城徽的高AB.(参考数据:sin32°≈0.530,cos32°≈0.848,tan32°≈0.625).【答案】城徽的高AB约为12.5米.【解答】解:延长DF交AB于点G,则∠AGF=90°,DF=CE=6.6米,CD=EF=BG=1.5米,设FG=x米,∴DG=FG+DF=(x+6.6)米,在Rt△AGF中,∠AFG=45°,∴AG=FG•tan45°=x(米),在Rt△AGD中,∠ADG=32°,∴tan32°==≈0.625,∴x=11,经检验:x=11是原方程的根,∴AB=AG+BG=11+1.5=12.5(米),∴城徽的高AB 约为12.5米.一十二.列表法与树状图法(共1小题)14.(2022•荆州)为弘扬荆州传统文化,我市将举办中小学生“知荆州、爱荆州、兴荆州”知识竞赛活动.某校举办选拔赛后,随机抽取了部分学生的成绩,按成绩(百分制)分为A ,B ,C ,D 四个等级,并绘制了如下不完整的统计图表.等级成绩(x )人数A 90<x ≤100mB 80<x ≤9024C 70<x ≤8014D x ≤7010根据图表信息,回答下列问题:(1)表中m = 12 ;扇形统计图中,B 等级所占百分比是 40% ,C 等级对应的扇形圆心角为 84 度;(2)若全校有1400人参加了此次选拔赛,则估计其中成绩为A 等级的共有 280 人;(3)若全校成绩为100分的学生有甲、乙、丙、丁4人,学校将从这4人中随机选出2人参加市级竞赛.请通过列表或画树状图,求甲、乙两人至少有1人被选中的概率.【答案】(1)12,40%,84;(2)280;(3).【解答】解:(1)抽取的学生人数为:10÷=60(人),∴m=60﹣24﹣14﹣10=12,扇形统计图中,B等级所占百分比是:24÷60×100%=40%,C等级对应的扇形圆心角为:360°×=84°,故答案为:12,40%,84;(2)估计其中成绩为A等级的共有:1400×=280(人),故答案为:280;(3)画树状图如下:共有12种等可能的结果,其中甲、乙两人至少有1人被选中的结果有10种,∴甲、乙两人至少有1人被选中的概率为=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年湖北省荆州市中考数学真题及答案一、选择题(本大题共有10个小题,每小题3分,共30分)1.在实数﹣1,0,,中,无理数是()A.﹣1 B.0 C.D.2.如图是由一个圆柱和一个长方体组成的几何体,则该几何体的俯视图是()A.B.C.D.3.若等式2a2•a+□=3a3成立,则□填写单项式可以是()A.a B.a2C.a3D.a44.阅读下列材料,其①~④步中数学依据错误的是()如图:已知直线b∥c,a⊥b,求证:a⊥c.证明:①∵a⊥b(已知)∴∠1=90°(垂直的定义)②又∵b∥c(已知)∴∠1=∠2(同位角相等,两直线平行)③∴∠2=∠1=90°(等量代换)④∴a⊥c(垂直的定义)A.①B.②C.③D.④5.若点P(a+1,2﹣2a)关于x轴的对称点在第四象限,则a的取值范围在数轴上表示为()A.B.C.D.6.已知:如图,直线y1=kx+1与双曲线y2=在第一象限交于点P(1,t),与x轴、y轴分别交于A,B两点,则下列结论错误的是()A.t=2 B.△AOB是等腰直角三角形C.k=1 D.当x>1时,y2>y17.如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA的延长线上,若A(2,0),D(4,0),以O为圆心、OD长为半径的弧经过点B,交y轴正半轴于点E,连接DE,BE,则∠BED的度数是()A.15°B.22.5°C.30°D.45°8.如图,在△ABC中,AB=AC,∠A=40°,点D,P分别是图中所作直线和射线与AB,CD 的交点.根据图中尺规作图痕迹推断,以下结论错误的是()A.AD=CD B.∠ABP=∠CBP C.∠BPC=115°D.∠PBC=∠A9.如图,在菱形ABCD中,∠D=60°,AB=2,以B为圆心、BC长为半径画,点P为菱形内一点,连接PA,PB,PC.当△BPC为等腰直角三角形时,图中阴影部分的面积为()A.B.C.2πD.10.定义新运算“※”:对于实数m,n,p,q.有[m,p]※[q,n]=mn+pq,其中等式右边是通常的加法和乘法运算,例如:[2,3]※[4,5]=2×5+3×4=22.若关于x的方程[x2+1,x]※[5﹣2k,k]=0有两个实数根,则k的取值范围是()A.k<且k≠0 B.k C.k且k≠0 D.k≥二、填空题(本大题共6个小题,每小题3分,共18分)11.已知:a=()﹣1+(﹣)0,b=(+)(﹣),则=.12.有两把不同的锁和四把钥匙,其中两把钥匙分别能打开这两把锁,另外两把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是.13.如图,AB是⊙O的直径,AC是⊙O的弦,OD⊥AC于D,连接OC,过点D作DF∥OC交AB 于F,过点B的切线交AC的延长线于E.若AD=4,DF=,则BE=.14.如图1是一台手机支架,图2是其侧面示意图,AB,BC可分别绕点A,B转动,测量知BC=8cm,AB=16cm.当AB,BC转动到∠BAE=60°,∠ABC=50°时,点C到AE的距离为cm.(结果保留小数点后一位,参考数据:sin70°≈0.94,≈1.73)15.若关于x的方程+=3的解是正数,则m的取值范围为.16.如图,过反比例函数y=(k>0,x>0)图象上的四点P1,P2,P3,P4分别作x轴的垂线,垂足分别为A1,A2,A3,A4,再过P1,P2,P3,P4分别作y轴,P1A1,P2A2,P3A3的垂线,构造了四个相邻的矩形.若这四个矩形的面积从左到右依次为S1,S2,S3,S4,OA1=A1A2=A2A3=A3A4,则S1与S4的数量关系为.三、解答题(本大题共有8个小题,共72分)17.(8分)先化简,再求值:÷(1+),其中a=2.18.(8分)已知:a是不等式5(a﹣2)+8<6(a﹣1)+7的最小整数解,请用配方法解关于x的方程x2+2ax+a+1=0.19.(8分)如图,在5×5的正方形网格图形中,小正方形的边长都为1,线段ED与AD的端点都在网格小正方形的顶点(称为格点)上.请在网格图形中画图:(1)以线段AD为边画正方形ABCD,再以线段DE为斜边画等腰直角三角形DEF,其中顶点F在正方形ABCD外;(2)在(1)中所画图形基础上,以点B为其中一个顶点画一个新正方形,使新正方形的面积为正方形ABCD和△DEF面积之和,其它顶点也在格点上.20.(8分)高尔基说:“书,是人类进步的阶梯.”阅读可以启智增慧,拓展视野,…为了解学生寒假阅读情况,开学初学校进行了问卷调查,并对部分学生假期(24天)的阅读总时间作了随机抽样分析.设被抽样的每位同学寒假阅读的总时间为t(小时),阅读总时间分为四个类别:A(0≤t<12),B(12≤t<24),C(24≤t<36),D(t≥36),将分类结果制成两幅统计图(尚不完整).根据以上信息,回答下列问题:(1)本次抽样的样本容量为;(2)补全条形统计图;(3)扇形统计图中a的值为,圆心角β的度数为;(4)若该校有2000名学生,估计寒假阅读的总时间少于24小时的学生有多少名?对这些学生用一句话提一条阅读方面的建议.21.(8分)小爱同学学习二次函数后,对函数y=﹣(|x|﹣1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:;②方程﹣(|x|﹣1)2=﹣1的解为:;③若方程﹣(|x|﹣1)2=a有四个实数根,则a的取值范围是.(2)延伸思考:将函数y=﹣(|x|﹣1)2的图象经过怎样的平移可得到函数y1=﹣(|x﹣2|﹣1)2+3的图象?写出平移过程,并直接写出当2<y1≤3时,自变量x的取值范围.22.(10分)小美打算买一束百合和康乃馨组合的鲜花,在“母亲节”祝福妈妈.已知买2支百合和1支康乃馨共需花费14元,3支康乃馨的价格比2支百合的价格多2元.(1)求买一支康乃馨和一支百合各需多少元?(2)小美准备买康乃馨和百合共11支,且百合不少于2支.设买这束鲜花所需费用为w 元,康乃馨有x支,求w与x之间的函数关系式,并设计一种使费用最少的买花方案,写出最少费用.23.(10分)在矩形ABCD中,AB=2,AD=4,F是对角线AC上不与点A,C重合的一点,过F作FE⊥AD于E,将△AEF沿EF翻折得到△GEF,点G在射线AD上,连接CG.(1)如图1,若点A的对称点G落在AD上,∠FGC=90°,延长GF交AB于H,连接CH.①求证:△CDG∽△GAH;②求tan∠GHC.(2)如图2,若点A的对称点G落在AD延长线上,∠GCF=90°,判断△GCF与△AEF 是否全等,并说明理由.24.(12分)已知:直线y=﹣x+1与x轴、y轴分别交于A,B两点,点C为直线AB上一动点,连接OC,∠AOC为锐角,在OC上方以OC为边作正方形OCDE,连接BE,设BE=t.(1)如图1,当点C在线段AB上时,判断BE与AB的位置关系,并说明理由;(2)直接写出点E的坐标(用含t的式子表示);(3)若tan∠AOC=k,经过点A的抛物线y=ax2+bx+c(a<0)顶点为P,且有6a+3b+2c =0,△POA的面积为,当t=时,求抛物线的解析式.2021年湖北省荆州市中考数学试卷参考答案与试题解析一、选择题1.D.2.A.3.C.4.B.5. C.6.D.7. C.8. D.9. A.10.C.二、填空题(本大题共6个小题,每小题3分,共18分)11. 2.12..13..14. 6.3.15. m>﹣7且m≠﹣3.16. S1=4S4.三、解答题(本大题共有8个小题,共72分)17.(8分)先化简,再求值:÷(1+),其中a=2.解:÷(1+)=÷==,当a=2时,原式==.18.解:解不等式5(a﹣2)+8<6(a﹣1)+7,得a>﹣3,∴最小整数解为﹣2,将a=﹣2代入方程x2+2ax+a+1=0,得x2﹣4x﹣1=0,配方,得(x﹣2)2=5.直接开平方,得x﹣2=±.解得x1=2+,x2=2﹣.19.解:(1)如图,正方形ABCD,△DEF即为所求.(2)如图,正方形BKFG即为所求.20.解:(1)本次抽样的人数为(人),∴样本容量为60,故答案为60;(2)C组的人数为40%×60=24(人),统计图如下:(3)A组所占的百分比为,∴a的值为20,β=40%×360°=144°,故答案为20,144°;(4)总时间少于24小时的学生的百分比为,∴全校寒假阅读的总时间少于24小时的学生有2000×50%=1000(名),建议:读书是人类文明进步的阶梯,建议每天读书至少1小时.21.解:(1)观察探究:①该函数的一条性质为:函数关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=a有四个实数根,则a的取值范围是﹣1<a<0.故答案为函数关于y轴对称;x=﹣2或x=0或x=2;﹣1<a<0.(2)将函数y=﹣(|x|﹣1)2的图象向右平移2个单位,向上平移3个单位可得到函数y1=﹣(|x﹣2|﹣1)2+3的图象,当2<y1≤3时,自变量x的取值范围是0<x<4.22.解:(1)设买一支康乃馨需x元,买一支百合需y元,则根据题意得:,解得:,答:买一支康乃馨需4元,买一支百合需5元;(2)根据题意得:w=4x+5(11﹣x)=﹣x+55,∵百合不少于2支,∴11﹣x≥2,解得:x≤9,∵﹣1<0,∴w随x的增大而减小,∴当x=9时,w最小,即买9支康乃馨,买11﹣9=2支百合费用最少,w min=﹣9+55=46(元),答:w与x之间的函数关系式:w=﹣x+55,买9支康乃馨,买2支百合费用最少,最少费用为46元.23.(1)如图1,①证明:∵四边形ABCD是矩形,∴∠D=∠GAH=90°,∴∠DCG+∠DGC=90°,∵∠FGC=90°,∴∠AGH+∠DGC=90°,∴∠DCG=∠AGH,∴△CDG∽△GAH.②由翻折得∠EGF=∠EAF,∴∠AGH=∠DAC=∠DCG,∵CD=AB=2,AD=4,∴=tan∠DAC==,∴DG=CD=×2=1,∴GA=4﹣1=3,∵△CDG∽△GAH,∴,∴tan∠GHC==.(2)不全等,理由如下:∴AC==,∵∠GCF=90°,∴=tan∠DAC=,∴CG=AC=×2=,∴AG==5,∴EA=AG=,∴EF=EA•tan∠DAC==,∴AF==,∴CF=2=,∵∠GCF=∠AEF=90°,而CG≠EA,CF≠EF,∴△GCF与△AEF不全等.24.解:(1)直线y=﹣x+1与x轴、y轴分别交于A,B两点,则点A、B的坐标分别为(1,0)、(0,1),则∠OBA=∠OAB=45°,∵∠AOC+∠BOC=90°,∠BOC+∠BOE=90°,∴∠AOC=∠BOE,∴△OAC≌△OBE(SAS),∴∠OBE=∠OAC=45°,AC=BE=t,∴∠EBA=∠EBO+∠OBA=∠OAC+∠OBA=45°+45°=90°,∴BE⊥AB;(2)过点E作EH⊥OB于点H,∵∠EBH=45°,∴BH=EH=BE=t,故点E的坐标为(﹣t,1﹣t);(3)如上图,过点C作CN⊥OA于点N,当t=时,即AC=t=,则CN=AN=t=,则ON=OA﹣NA=1﹣=CN,故tan∠AOC==1=k,∵△POA的面积=×AO×y P=×1×y P==,解得y P=1=c﹣①,∵抛物线过点A(1,0),故a+b+c=0②,而6a+3b+2c=0③,联立①②③并解得,故抛物线的表达式为y=﹣x2+4x﹣3.。