1.5正弦型函数图象的平移和伸缩变换

合集下载

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩 【2 】函数sin()y A x kωϕ=++的图象与函数sin y x=的图象之间可以经由过程变化A kωϕ,,,来互相转化.Aω,影响图象的外形,k ϕ,影响图象与x 轴交点的地位.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k引起的变换称高低平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换办法如下:先平移后伸缩 sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象.先伸缩后平移 sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象.xy sin =)3sin(π+=x y )32sin(π+=x y )32sin(3π+=x y 纵坐标不变 横坐标向左平移π/3 个单位 纵坐标不变 横坐标缩短为本来的1/2 横坐标不变 纵坐标伸长为本来的3倍例1 将sin y x =的图象如何变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. 解:(办法一)①把sin y x=的图象沿x轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到本来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到本来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. (办法二)①把sin y x=的图象的纵坐标伸长到本来的2倍,得2sin y x=的图象;②将所得图象的横坐标缩小到本来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.)32sin(3π+=x y xy sin =xy 2sin =)32sin(π+=x y 纵坐标不变 横坐标缩短为本来的1/2 纵坐标不变 横坐标向左平移π/6 个单位横坐标不变 纵坐标伸长为本来的3倍解释:无论哪种变换都是针对字母x而言的.由sin 2y x=的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到本来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭. 对于庞杂的变换,可引进参数求解.例2 将sin 2y x =的图象如何变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象. 剖析:应先经由过程引诱公式化为同名三角函数. 解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭, 在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭. 依据题意,有ππ22224x a x --=-,得π8a =-.所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.。

数学公式知识:三角函数图像的平移与缩放

数学公式知识:三角函数图像的平移与缩放

数学公式知识:三角函数图像的平移与缩放三角函数图像的平移与缩放是数学中常见的一个话题,也是高中数学课程中的重要内容。

三角函数是数学中的基本概念之一,在大学数学中被广泛应用到各种领域。

三角函数具有一定的规律性和对称性,三角函数图像的平移和缩放是基于这些规律性和对称性而实现的,因此掌握三角函数图像的平移和缩放是理解三角函数及其应用的前提。

一、三角函数图像的基本概念三角函数是指正弦函数、余弦函数和正切函数三种函数的统称,它们都是以角度或弧度为自变量的函数,其中正弦函数的函数值为对边与斜边之比,余弦函数的函数值为邻边与斜边之比,正切函数的函数值为对边与邻边之比。

三角函数关系着三角形中的几何关系,因此在三角形几何中也十分重要。

三角函数图像是把三角函数的函数值和自变量进行映射后得到的图像,它可以帮助我们更好的理解三角函数的性质和应用。

二、三角函数图像的平移平移是指在坐标系中把图形沿着固定的方向移动一定的距离,平移前后图形形状不会改变,只是位置改变了。

对于三角函数图像的平移,其实就是在自变量上加或减一个常数,或在函数值上加或减一个常数,使得图像整体向左、向右、向上或向下平移。

这样可以使得图像的位置在坐标系上发生变化,但是形状不会发生变化。

三角函数图像的平移可以用下列公式来描述:1、正弦函数图像的平移设f(x)为正弦函数,a为常数。

当a>0时, y=f(x- a)图像向右平移a个单位。

当a<0时, y=f(x+ a)图像向左平移a个单位。

2、余弦函数图像的平移设f(x)为余弦函数,a为常数。

当a>0时, y=f(x- a)图像向右平移a个单位。

当a<0时, y=f(x+ a)图像向左平移a个单位。

3、正切函数图像的平移设f(x)为正切函数,a为常数。

当a>0时, y=f(x- a)图像向右平移a个单位。

当a<0时, y=f(x+ a)图像向左平移a个单位。

三、三角函数图像的缩放缩放是指把图形沿着某个方向缩小或放大一定的比例,缩放后图形的形状和位置都会发生变化。

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩

3得 y =A sin(x +)的图象⎯向⎯上平(⎯移kk⎯个)或单向⎯位下长⎯(k度⎯)→ 得 y = A sin(x +)+k 的图象.y = sin x纵坐标不变横坐标向左平移 π/3 个单位 纵坐标不变 横坐标缩短 为原来的1/2y = sin(x + )y = sin(2 x + )横坐标不变纵坐标伸长为原 来的3倍先伸缩后平移纵坐标伸长(A 1)或缩短(0A 1)y =sin x 的图象 ⎯⎯⎯⎯⎯⎯⎯⎯⎯→y = 3sin(2x +三角函数图象的平移和伸缩函数y = A sin(x +) + k 的图象与函数 y = sin x 的图象之间可以通过变化 A ,,,k 来相互转 化. A ,影响图象的形状,,k 影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由引起的变 换称周期变换,它们都是伸缩变换;由引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都 是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 向左(>0)或向右(0)y = sin x 的图象⎯⎯平⎯移⎯个单⎯位长⎯度⎯→得 y = sin(x +)的图象横坐标伸长(0<<1)或缩短(>1)到原来的1(纵坐标不变)得 y = sin(x +)的图象 纵坐标伸长(A 1)或缩短(0<A <1) 为原来的A 倍(横坐标不变)横坐标伸长(01)或缩短(1)⎯⎯⎯⎯⎯⎯⎯⎯→ 到原来的1(纵坐标不变)向左(0)或向右(0)得 y = A sin(x ) 的图象 ⎯⎯⎯平移⎯个⎯单位⎯⎯→得 y = A sin x (x +)的图象⎯⎯平⎯移k ⎯个单⎯位长⎯度⎯→得 y = A sin(x +)+k 的图象.纵坐标不变 y = sin x横坐标缩短 为原来的1/2 纵坐标不变 横坐标向左平移 π/6 个单位横坐标不变y = 3sin(2x + )纵坐标伸长为原 3来的3倍例1 将y = sin x 的图象怎样变换得到函数y = 2sin2x + π+1的图象.解:(方法一)①把y = sin x 的图象沿x 轴向左平移π个单位长度,得y = sin x + π的图象;②将所得 图象的横坐标缩小到原来的1,得y =sin2x +π的图象;③将所得图象的纵坐标伸长到原来的 2 倍,得 y = 2sin2x + π的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.方法二)①把y = sin x 的图象的纵坐标伸长到原来的2倍,得y = 2sin x 的图象;②将所得图象的横坐标缩小到原来的1 ,得y = 2sin2x 的图象;③将所得图象沿x 轴向左平移π个单位长度得y = 2sin2x + π的2 8 8 图象;④最后把图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.得 y = A sin x 的图象y = sin2 xy = sin(2x + )说明:无论哪种变换都是针对字母x 而言的.由y =sin2x 的图象向左平移8π个单位长度得到的函数图象 的解析式是y = sin 2 x + π 而不是y = sin 2x + π ,把y = sin x + π 的图象的横坐标缩小到原来的1 ,得到 的函数图象的解析式是y = sin 2x + π 而不是y = sin 2 x + π .对于复杂的变换,可引进参数求解.例2 将y =sin2x 的图象怎样变换得到函数 y = cos 2x - π的图象.分析:应先通过诱导公式化为同名三角函数.=cos 2x -2a - π = cos 2 -2 - 2根据题意,有 2 x - 2a - π = 2 x - π ,得 a =-π .24 8 所以将y = sin 2x 的图象向左平移π 个单位长度可得到函数y = cos 2x - π 的图象.解: 有y = cos2( x - a ) - π y = sin2 x = cos在y =中以 x - a 代 x ,。

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩

三角函数的图象及性质函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πs in 24y x ⎛⎫=+⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2sin2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.分析:应先通过诱导公式化为同名三角函数.解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭.根据题意,有ππ22224x a x --=-,得π8a =-.所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.二、三角函数的图象及性质【基础自测】1.【07全国Ⅱ】2.函数sin y x =的一个单调增区间是( C )A .()44ππ-, B .3()44ππ, C .3()2ππ,D .3(2)2ππ, 2. (08天津理)要得到2cos y x =的图象,只需将函数)42sin(2π+=x y 的图象上所有的点的( .C )A 、横坐标缩短到原来的12倍(纵坐标不变),再向左平行移动8π个单位长度 B 、横坐标缩短到原来的12倍(纵坐标不变),再向右平行移动4π个单位长度C 、横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动8π个单位长度 D 、横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动4π个单位长度3.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则( C )A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==点拨与提示:根据图象得出函数的周期与振幅,再将(1,1)坐标代入即可.4. 函数f(x)=sin(πx -π2)-1的奇偶性为___偶函数_____5.若函数f(x)=cos(ωx -π6)(ω>0)的最小正周期为π5,则ω=_ 106已知函数x b x a x f cos sin )(-=(a 、b 为常数,0≠a ,R x ∈)在4π=x 处取得最小值,则函数)43(x f y -=π是( D ) (A )偶函数且它的图象关于点)0,(π对称 (B )偶函数且它的图象关于点)0,23(π对称 (C )奇函数且它的图象关于点)0,23(π对称(D )奇函数且它的图象关于点)0,(π对称 7.定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为 ( D )(A )21- (B )21(C )23- (D )238.函数y = -x ·cosx 的部分图象是( D)9.(08浙江理)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x xy 的图象和直线21=y 的交点个数是___2___ 10.【07安徽】函数()3sin(2)f x x π=-3的图象为C , ①图象C 关于直线1112x π=对称; ②函数()f x 在区间5()1212ππ-,内是增函数;③由3sin 2y x =的图象向右平移3π个单位长度可以得到图象C .以上三个论断中,正确论断的个数是( C )A .0B .1C .2D .3【题例分析】12π3yx-π3 O例1.已知函数y =21cos 2x +23sin x cos x +1, x ∈R ,(I )当函数y 取最大值时,求自变量x 的集合;(II )该函数的图象可由y =sin x (x ∈R )的图象经过怎样的平移和伸缩变换得到?解:(I ) y =21cos 2x +23sin x cos x +1=41(2cos 2x -1)+41+43(2sin x cos x )+1=41cos2x +43sin2x +45=21(cos2x ·sin 6π+sin2x ·cos 6π)+45=21sin(2x +6π)+45.函数y 取最大值必须且只需2x +6π=2k π+2π, k ∈Z , 即x =k π+6π.∴自变量x 的集合是{x | x =k π+6π,k ∈Z }(II ) 把y =sin x 的图象依次进行如下的变换:① 把y =sin x 的图象向左平移6π个单位,得到函数y =sin(x +6π)的图象;② 再把图象是各点的横坐标缩小到原来的21倍(纵坐标不变),得到函数y =sin(2x +6π)的图象;③ 再把图象是各点的纵坐标缩小到原来的21倍(横坐标不变),得到函数y =21sin(2x +6π)的图象④ 最后把函数的图象向上平移45个单位,得到函数y =21sin(2x +6π)+45的图象。

三角函数的变换

三角函数的变换

三角函数的变换三角函数是数学中重要的概念,它描述了角度和三角形之间的关系。

在数学和物理领域,我们经常需要对三角函数进行变换,以便简化计算或者得到更加具体的结果。

以下将介绍三角函数的常见变换及其特点。

1. 平移变换平移变换是最常见的三角函数变换之一。

平移变换将函数图像沿着横轴或纵轴平移一定的单位。

对于正弦函数sin(x),平移变换可以表示为y = sin(x - c)或y = sin(x + c),其中c表示平移的单位。

这种变换改变了正弦函数的相位,使得图像在横向移动。

2. 伸缩变换伸缩变换是通过改变三角函数的振幅或周期来实现的。

对于正弦函数sin(x),伸缩变换可以表示为y = a*sin(bx),其中a和b分别表示振幅和周期的变化系数。

当a>1时,振幅增大;当0<a<1时,振幅减小。

当b>1时,周期缩短;当0<b<1时,周期延长。

伸缩变换可以使得函数图像在纵向或横向方向上发生变化。

3. 反转变换反转变换是将函数图像沿着横轴或纵轴进行镜像翻转。

对于正弦函数sin(x),反转变换可以表示为y = -sin(x)或y = sin(-x)。

这种变换改变了正弦函数的正负号,使得图像在纵向发生翻转。

4. 相位差变换相位差变换是通过改变角度值来实现的。

对于正弦函数sin(x),相位差变换可以表示为y = sin(x + d),其中d表示相位差。

相位差变换改变了正弦函数的起始位置,使得图像在横向发生移动。

5. 复合变换除了单独的平移、伸缩、反转和相位差变换,我们还可以将它们组合起来进行复合变换。

通过在函数的输入和输出上进行多次变换,可以得到更加复杂的函数图像。

例如,可以将平移和伸缩变换组合来实现在横向上平移并且改变振幅的效果。

三角函数的变换在数学和物理中有着广泛的应用。

它们可以用来描述周期性现象、波动传播以及信号处理等。

通过灵活运用变换的技巧,我们可以简化计算过程并得到更加准确的结果。

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象.xy sin =)3sin(π+=x y )32sin(π+=x y )32sin(3π+=x y 纵坐标不变 横坐标向左平移π/3 个单位 纵坐标不变 横坐标缩短为原来的1/2 横坐标不变 纵坐标伸长为原来的3倍先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象.例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐)32sin(3π+=x y xy sin =xy 2sin =)32sin(π+=x y 纵坐标不变 横坐标缩短为原来的1/2 纵坐标不变 横坐标向左平移π/6 个单位横坐标不变 纵坐标伸长为原来的3倍标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.分析:应先通过诱导公式化为同名三角函数.解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭.根据题意,有ππ22224x a x --=-,得π8a =-. 所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.。

复习三角函数图象的平移和伸缩

复习三角函数图象的平移和伸缩

三角函数图象的平移和伸缩函数s i n()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象 得sin()y x ϕ=+的图象得sin()y x ωϕ=+的图象 得sin()y A x ωϕ=+的图象 得sin()y A x k ϕ=++的图象.先伸缩后平移 sin y x =的图象 得sin y A x =的图象 得sin()y A x ω=的图象得sin ()y A x x ωϕ=+的图象 得sin()y A x k ωϕ=++的图象.例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.xy sin =)3s in(π+=x y )32sin(π+=x y )32sin(3π+=x y)32sin(3π+=x y xy sin =xy 2sin =)32sin(π+=x y例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.练习1.(2009山东卷理)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ). A.cos 2y x = B.22cos y x = C.)42sin(1π++=x y D.22sin y x =2.(2009天津卷理)已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象A 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度3.(07山东文)4.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( )A .向右平移π6个单位 B .向右平移π3个单位C .向左平移π3个单位 D .向左平移π6个单位 4.(06江苏卷)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点 (A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)5、(2010全国卷2理数)(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像(A )向左平移4π个长度单位 (B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位6、(2010辽宁文数)(6)设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是(A )23 (B ) 43(C )32(D ) 37(2010福建)将函数()()ϑω+=x x f sin 的图像向左平移2个单位,若所得图像与原图重合,则ω的值不可能是( )(A )423 (B ) 643 (C ) 832(D ) 12作业 1.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像( )(A )向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位2.函数f (x )=2sin x cos x 是( )(A)最小正周期为2π的奇函数 (B )最小正周期为2π的偶函数 (C)最小正周期为π的奇函数(D )最小正周期为π的偶函数3.设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是( )(A )23 (B ) 43 (C ) 32(D ) 34.将函数y=sin(x+π/6) (x 属于R)的图象上所有的点向左平行移动π/4个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为( )(A) y=sin(2x+5π/12) (x 属于R) (B) y=sin(x/2+5π/12) (x 属于R) (C) y=sin(x/2+π/12) (x 属于R) (D) y=sin(x/2+5π/24) (x 属于R)5.将函数y=sin(x-π/3)的图像上所有的点的横坐标伸长带原来的2倍(纵坐标不变),再将所得的图象向左平移π/3个单位,得到的图象对应的解析式为( )(A)y=sin(x/2)(B)y=sin(x/2-π/2)(C) y=sin(x/2-π/6) (D)sin(2x-π/6) 6.将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( )(A )sin(2)10y x π=-(B )sin(2)5y x π=- (C )1sin()210y x π=-(D )1sin()220y x π=-7.5yAsin x x R 66ππωϕ⎡⎤=∈⎢⎥⎣⎦右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的点( )12(A)向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变 (B) 向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变(C) 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变8、将函数y=sin2x 的图象向左平移π/4个单位,再向上平移1个单位所得到函数解析式( ) y=cos2x y=2(cosx)*(cosx) y=1+sin(2x+π/4) y=2(sinx)*(sinx)。

1.5函数的图像----图像的伸缩变换(课件PPT)

1.5函数的图像----图像的伸缩变换(课件PPT)

7
导—3min
3.作函数 ysinx,y12sinx的简图. 解:这两个函数的周期T=2.因此作它在[0, 2 ] 的图象,再 按周期扩展.
列 x0 表: sinx 0
2
1
3 2
2
0 -1 0
2sinx 0 2 0 -2 0
1 2
sinx
0
1 2
0
1 2
0
8
导—3min 2 y
描 点: 1
o
连 线:
列x
0
表:
1 2
x
0
sin 12x 0
2 3 4
2
3 2
2
1 0 -1 0
5
导—3min
作图:
y
1
x

o
2
-1
6
导—3min
—周期变换 y=sinx, xR(>0,1)的图象可以由y=sinx的图象所有
点的横坐标伸长(<1)或缩短(>1)原来的1/倍,纵坐标
不变得到。
作图:
y
1
o
-1
2
3
4 x
y 2sin(1 x)

23
变换为函数
15
展—7min 4.把f(x)的图象沿x轴向右平移 个单位,再把所得 8 图象上各点的横坐标缩短到原来的一半,恰好得到 y=cosx的图象,求函数f(x)的表达式。
16
评—7min
A ——振幅变换 y=Asinx, xR(A>0,A 1)的图象可以由y=sinx的图象所有点的 纵坐标伸长(A>1)或缩短(A<1)为原来的A倍,横坐标不变得到。 值域为[-A,A]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向右平移 个单位
y sin x
3
y
sin(x
3
)
纵坐标不变 横坐ห้องสมุดไป่ตู้变为原来的1

y sin(2x )
3
2
横坐标不变 总坐标变为原来的3倍
y 3sin(2x ) 向上平移1个单位
3
y 3sin(2x ) 1
3
法二:先伸缩( 变换)后平移( 变换):
纵坐标不变
y sin x 横坐标变为原来的1 倍 y sin 2x 2
函数y Asin(x ) b的图象
A是振幅:A变换也叫振幅变换;
T为周期:T 2 ,变换也叫周期变换;
f是频率:f 1 ; T
x 是相位:变换也叫相位变换; 是初相:x 0时的相位.
要得到y 3sin(2x ) 1的图象,需将y sin x的图象作怎样的变换?
3
法一:先平移( 变换)后伸缩( 变换):
向右平移 个单位 6
y sin(2x )
3
横坐标不变 总坐标变为原来的3倍
y 3sin(2x ) 向上平移1个单位
3
y 3sin(2x ) 1
3
总结:1.箭头图:起始→终止;
2. 四个数据,四个变换:先:, 后:A,b
相关文档
最新文档