三角函数的平移及伸缩变换(含答案)

合集下载

三角函数中的平移与伸缩变换

三角函数中的平移与伸缩变换

三角函数中的平移与伸缩变换三角函数是数学中的重要概念之一,通过平移和伸缩变换可以对三角函数图像进行调整和变化。

本文将探讨三角函数中的平移与伸缩变换,并说明它们对函数图像的影响。

一、平移变换平移变换是指将函数图像沿着坐标轴平行移动的过程。

在三角函数中,平移变换会改变函数的水平位置。

具体而言,对于三角函数y = f(x),平移变换可以表示为y = f(x ± b),其中b为平移量。

1. 正弦函数的平移变换正弦函数y = sin(x)在平移变换下,可以写作y = sin(x ± b)。

当b为正值时,图像向左平移;当b为负值时,图像向右平移。

平移量b的绝对值越大,图像平移的距离越远。

2. 余弦函数的平移变换余弦函数y = cos(x)的平移变换形式为y = cos(x ± b)。

与正弦函数类似,当b为正值时,图像向左平移;当b为负值时,图像向右平移。

平移量b的绝对值越大,图像平移的距离越远。

3. 正切函数的平移变换正切函数y = tan(x)在平移变换下,可以写作y = tan(x ± b)。

与正弦函数和余弦函数不同,正切函数的平移变换会导致图像的水平拉伸与压缩。

当b为正值时,图像向左平移;当b为负值时,图像向右平移。

平移量b的绝对值越大,图像平移的距离越远。

二、伸缩变换伸缩变换是指将函数图像在x轴或y轴上进行拉伸或压缩的过程。

在三角函数中,伸缩变换会改变函数图像的形状和振幅。

具体而言,对于三角函数y = f(x),伸缩变换可以表示为y = af(bx),其中a为纵向伸缩因子,b为横向伸缩因子。

1. 正弦函数的伸缩变换正弦函数y = sin(x)在伸缩变换下,可以写作y = a sin(bx)。

纵向伸缩因子a决定了函数图像的振幅,a越大,则振幅越大;a越小,则振幅越小。

横向伸缩因子b决定了函数图像的周期,b越大,则周期越短;b越小,则周期越长。

2. 余弦函数的伸缩变换余弦函数y = cos(x)的伸缩变换形式为y = a cos(bx)。

(完整版)三角函数的平移伸缩变换练习题

(完整版)三角函数的平移伸缩变换练习题

三角函数的平移伸缩变换题型一:已知开始和结果,求平移量ϕω【2016高考四川文科】为了得到函数sin()3y x π=+的图象,只需把函数y=sinx 的图象上所有的点( )(A )向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C ) 向上平行移动3π个单位长度 (D ) 向下平行移动3π个单位长度【】为了得到函数sin(1)y x =+的图象,只需把函数sin y x =的图象上所有的点( ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度【】要得到函数cos y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( )(A ).向右平移π6个单位 (B ).向右平移π3个单位 (C ).向左平移π3个单位 (D ).向左平移π6个单位【】要得到函数(21)y cos x =+的图象,只要将函数2y cos x =的图象( ) A .向左平移1个单位 B .向右平移1个单位 C .向左平移12个单位 D .向右平移12个单位【】要得到sin(2)3y x π=-的图象,只需将sin 2y x =的图象 ( )(A )向左平移3π个单位 (B )向右平移3π个单位 (C )向左平移6π个单位 (D )向右平移6π个单位【】.将函数sin 2y x =的图象作平移变换,得到函数sin(2)6y x π=-的图象,则这个平移变换可以是 ( )A. 向左平移6π个单位长度 B. 向左平移12π个单位长度 C. 向右平移6π个单位长度 D. 向右平移12π个单位长度【】为了得到函数4sin(3)()4y x x R π=+∈的图象,只需把函数4sin()()4y x x R π=+∈的图象上所有点( )A 、横坐标伸长到原来的3倍,纵坐标不变B 、横坐标缩短到原来的13倍,纵坐标不变C 、纵坐标伸长到原来的3倍,横坐标不变D 、纵坐标缩短到原来的13倍,横坐标不变.【2015山东】要得到函数4y sin x =-(3π)的图象,只需要将函数4y sin x =的图象( ) (A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【】为了得到函数πsin 23y x ⎛⎫=- ⎪⎝⎭的图像,只需把函数πsin 26y x ⎛⎫=+ ⎪⎝⎭的图像A .向左平移π4个长度单位B .向右平移π4个长度单位C .向左平移π2个长度单位D .向右平移π2个长度单位【】要得到cos(2)4y x π=-的图像,只需将sin 2y x =的图像( )A 向左平移8π个单位B 向右平移8π个单位C 向左平移4π个单位D 向右平移4π个单位【】已知函数()sin 4πf x x ω⎛⎫=+ ⎪⎝⎭()R 0x ω∈>,的最小正周期为π,为了得到函数()cos g x x ω=的图象,只要将()y f x =的图象( )A .向左平移8π个单位长度 B .向右平移8π个单位长度 C .向左平移4π个单位长度D .向右平移4π个单位长度题型二:已知开始,平移量,求结果【】. 将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 (A )sin(2)10y x π=-(B )sin(2)5y x π=-(C )1sin()210y x π=- (D )1sin()220y x π=-【】函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) (A )sin(2),3y x x R π=-∈ (B )sin(),26x y x R π=+∈(C )sin(2),3y x x R π=+∈ (D )2sin(2),3y x x R π=+∈【】函数3sin(2)3y x π=+的图象,可由y sinx =的图象经过下述哪种变换而得到 ( )(A )向右平移3π个单位,横坐标缩小到原来的21倍,纵坐标扩大到原来的3倍(B )向左平移3π个单位,横坐标缩小到原来的21倍,纵坐标扩大到原来的3倍(C )向右平移6π个单位,横坐标扩大到原来的2倍,纵坐标缩小到原来的31倍(D )向左平移6π个单位,横坐标缩小到原来的21倍,纵坐标缩小到原来的31倍【】.将函数sin y x =的图象上各点的横坐标扩大为原来的2倍,纵坐标不变,再把所得图象上所有点向左平移3π个单位,所得图象的解析式是 . 【】. 将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是____________▲________________ .【】把函数sin(2)4y x π=+的图像向左平移8π个单位长度,再将横坐标压缩到原来的12,所得函数的解析式为( )。

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩

3得 y =A sin(x +)的图象⎯向⎯上平(⎯移kk⎯个)或单向⎯位下长⎯(k度⎯)→ 得 y = A sin(x +)+k 的图象.y = sin x纵坐标不变横坐标向左平移 π/3 个单位 纵坐标不变 横坐标缩短 为原来的1/2y = sin(x + )y = sin(2 x + )横坐标不变纵坐标伸长为原 来的3倍先伸缩后平移纵坐标伸长(A 1)或缩短(0A 1)y =sin x 的图象 ⎯⎯⎯⎯⎯⎯⎯⎯⎯→y = 3sin(2x +三角函数图象的平移和伸缩函数y = A sin(x +) + k 的图象与函数 y = sin x 的图象之间可以通过变化 A ,,,k 来相互转 化. A ,影响图象的形状,,k 影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由引起的变 换称周期变换,它们都是伸缩变换;由引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都 是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 向左(>0)或向右(0)y = sin x 的图象⎯⎯平⎯移⎯个单⎯位长⎯度⎯→得 y = sin(x +)的图象横坐标伸长(0<<1)或缩短(>1)到原来的1(纵坐标不变)得 y = sin(x +)的图象 纵坐标伸长(A 1)或缩短(0<A <1) 为原来的A 倍(横坐标不变)横坐标伸长(01)或缩短(1)⎯⎯⎯⎯⎯⎯⎯⎯→ 到原来的1(纵坐标不变)向左(0)或向右(0)得 y = A sin(x ) 的图象 ⎯⎯⎯平移⎯个⎯单位⎯⎯→得 y = A sin x (x +)的图象⎯⎯平⎯移k ⎯个单⎯位长⎯度⎯→得 y = A sin(x +)+k 的图象.纵坐标不变 y = sin x横坐标缩短 为原来的1/2 纵坐标不变 横坐标向左平移 π/6 个单位横坐标不变y = 3sin(2x + )纵坐标伸长为原 3来的3倍例1 将y = sin x 的图象怎样变换得到函数y = 2sin2x + π+1的图象.解:(方法一)①把y = sin x 的图象沿x 轴向左平移π个单位长度,得y = sin x + π的图象;②将所得 图象的横坐标缩小到原来的1,得y =sin2x +π的图象;③将所得图象的纵坐标伸长到原来的 2 倍,得 y = 2sin2x + π的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.方法二)①把y = sin x 的图象的纵坐标伸长到原来的2倍,得y = 2sin x 的图象;②将所得图象的横坐标缩小到原来的1 ,得y = 2sin2x 的图象;③将所得图象沿x 轴向左平移π个单位长度得y = 2sin2x + π的2 8 8 图象;④最后把图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.得 y = A sin x 的图象y = sin2 xy = sin(2x + )说明:无论哪种变换都是针对字母x 而言的.由y =sin2x 的图象向左平移8π个单位长度得到的函数图象 的解析式是y = sin 2 x + π 而不是y = sin 2x + π ,把y = sin x + π 的图象的横坐标缩小到原来的1 ,得到 的函数图象的解析式是y = sin 2x + π 而不是y = sin 2 x + π .对于复杂的变换,可引进参数求解.例2 将y =sin2x 的图象怎样变换得到函数 y = cos 2x - π的图象.分析:应先通过诱导公式化为同名三角函数.=cos 2x -2a - π = cos 2 -2 - 2根据题意,有 2 x - 2a - π = 2 x - π ,得 a =-π .24 8 所以将y = sin 2x 的图象向左平移π 个单位长度可得到函数y = cos 2x - π 的图象.解: 有y = cos2( x - a ) - π y = sin2 x = cos在y =中以 x - a 代 x ,。

(完整版)三角函数图像平移变换

(完整版)三角函数图像平移变换

三角函数图像平移变换由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量"起多大变化,而不是“角变化”多少.途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象. 途径二:先周期变换(伸缩变换)再平移变换。

先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin (ωx +ϕ)的图象。

1。

为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A )A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位2.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( D )A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向左平移π6个单位3.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( B )(A )向右平移6π个单位长度 (B)向右平移3π个单位长度(C)向左平移6π个单位长度 (D)向左平移3π个单位长度4.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是CA sin(2)3y x π=-,x R ∈B sin()26x y π=+,x R ∈C sin(2)3y x π=+,x R ∈D sin(2)32y x π=+,x R ∈5.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像B(A)向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位6.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象AA 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度7。

三角函数的图像和变换以及经典习题和答案

三角函数的图像和变换以及经典习题和答案

3.4函数sin()y A x ωϕ=+的图象与变换【知识网络】1.函数sin()y A x ωϕ=+的实际意义;2.函数sin()y A x ωϕ=+图象的变换(平移平换与伸缩变换) 【典型例题】 [例1](1)函数3sin()226x y π=+的振幅是 ;周期是 ;频率是 ;相位是 ;初相是 .(1)32; 14π;26x π+;6π (2)函数2sin(2)3y x π=-的对称中心是 ;对称轴方程是;单调增区间是 . (2)(,0),26k k Z ππ+∈;5,212k x k Z ππ=+∈; ()5,1212k k k z ππππ⎡⎤-++∈⎢⎥⎣⎦(3) 将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A .sin()6y x π=+ B .sin()6y x π=- C .sin(2)3y x π=+D .sin(2)3y x π=- (3)C 提示:将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象所对应的解析式为sin ()6y x πω=+,由图象知,73()1262πππω+=,所以2ω=. (4) 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点 ( )(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (4)C 先将R x x y ∈=,sin 2的图象向左平移6π个单位长度,得到函数2sin(),6y x x R π=+∈的图象,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数R x x y ∈+=),63sin(2π的图像(5)将函数x x f y sin )(= 的图象向右平移4π个单位后再作关于x 轴对称的曲线,得到函数x y 2sin 21-=的图象,则)(x f 的表达式是 ( )(A )x cos (B )x cos 2 (C )x sin (D )x sin 2 (5)B 提示: 212sin cos 2y x x =-=的图象关于x 轴对称的曲线是cos 2y x =-,向左平移4π得cos 2()sin 24y x x π=-+=2sin cos x x =[例2]已知函数2()2cos 2,(01)f x x x ωωω=+<<其中,若直线3x π=为其一条对称轴。

三角函数图象的平移和伸缩(后面有高考题练习)

三角函数图象的平移和伸缩(后面有高考题练习)

三角函数图象的平移和伸缩函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.sin y x =2sin 214y x =++ ⎪⎝⎭解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原1π⎛⎫π⎛⎫x+)﹣sin2x+、向左平移个单位个单位个单位个单位按向量A 、B 、C 、D 、3、将函数的图象按向量平移,得到y=f (x )的图象,则f (x )=( )A 、B 、C 、D 、sin (2x )+34、把函数y=(cos3x﹣sin3x)的图象适当变化就可以得到y=﹣sin3x的图象,这个变化可以是()A、沿x轴方向向右平移B、沿x轴方向向左平移C、沿x轴方向向右平移D、沿x轴方向向左平移5、为了得到函数y=的图象,可以将函数y=sin2x的图象()A、向右平移个单位长度B、向右平移个单位长度倍(纵坐标不变),然后个单位,则所得到图象对应的函数解析式为(、、、。

三角函数的基本变换平移伸缩和反射

三角函数的基本变换平移伸缩和反射

三角函数的基本变换平移伸缩和反射三角函数的基本变换:平移、伸缩和反射三角函数是数学中非常重要且广泛应用的概念之一。

它们在几何、物理、工程学等领域中起着关键作用。

在学习三角函数时,我们经常会遇到一些基本的函数变换,比如平移、伸缩和反射。

本文将介绍三角函数的这些基本变换,帮助读者更好地理解和应用这些概念。

一、平移变换平移是指图形在平面内沿着某个方向移动一段距离。

在三角函数中,平移变换是指将函数图像沿着横轴或纵轴方向移动,改变函数的位置。

对于正弦函数sin(x)来说,平移变换可以表示为sin(x-a),其中a为平移的距离和方向。

当a为正数时,函数图像向右平移 |a| 个单位;当a为负数时,函数图像向左平移 |a| 个单位。

对于余弦函数cos(x)来说,平移变换可以表示为cos(x-a),同样地,当a为正数时,函数图像向右平移 |a| 个单位;当a为负数时,函数图像向左平移 |a| 个单位。

二、伸缩变换伸缩是指图形的尺寸在某个方向上改变。

在三角函数中,伸缩变换是指将函数图像在横轴或纵轴方向上进行拉伸或压缩,改变函数的振幅和周期。

对于正弦函数sin(x)来说,伸缩变换可以表示为a*sin(x),其中a为正实数。

当a大于1时,函数图像在纵轴方向上被拉伸;当0 < a < 1时,函数图像在纵轴方向上被压缩。

对于余弦函数cos(x)来说,伸缩变换可以表示为a*cos(x),同样地,当a大于1时,函数图像在纵轴方向上被拉伸;当0 < a < 1时,函数图像在纵轴方向上被压缩。

伸缩变换还可以改变函数的周期。

对于正弦函数和余弦函数来说,原本的周期是2π。

通过伸缩变换,可以改变函数的周期为2π/a,其中a为正实数。

三、反射变换反射变换是指图形关于某个轴线对称。

在三角函数中,反射变换是指将函数图像关于横轴或纵轴进行翻转,改变函数的正负号。

对于正弦函数sin(x)来说,反射变换可以表示为-sin(x)。

三角函数的平移与伸缩变换-整理

三角函数的平移与伸缩变换-整理

)(A > 0,3> 0) ,x € [0,+ s)表示一个振动量时,A1图像的纵坐标不变,横坐标变为原来的-,得到函数)图像的横坐标不变, 纵坐标向上(k 0)或向下(k 0),要特别注意,若由y sin x 得到y sin x 的图像,则向左或向右平移应平 移|—|个单位。

对y sin (x )图像的影响一般地,函数y sin (x )的图像可以看做是把正弦函数曲线上所有的点向 ____ 当>0时)或向 ______ 当 <0时)平移| |个单位长度得到的 注意:左右平移时可以简述成“ _____________ ”_ 对y sin x 图像的影响函数y sin x x R ( 0且 1),的图像可以看成是把正弦函数上所有的点的1横坐标 ______ 1)或 _____ 0 1)到原来的一倍(纵坐标不变)。

A 对y A sin x 的影响函数y A sinx , x R(A 0且 A 1)的图像可以看成是把正弦函数上所有的点 的纵坐标 ______ (A 1)或 ________ _0 A 1)到原来的A 倍得到的函数 y A sin( x)的图像2 称为振幅,T = 一-称为频率,x 称为相位,称为初相。

T(2)函数 y Asin( x)k 的图像与ysin x 图像间的关系:① 函数y sin x 的图像纵坐标不变, 横坐标向左(>0 )或向右(<0 )平移||个(1)物理意义:y Asin ( x② 函数y sin xy sin x的图像;③ 函数ysin xy As in( x)的图像;④ 函数y Asin( x得到 y Asi n x图像的横坐标不变,纵坐标变为原来的 A 倍,得到函数k 的图像。

单位得y sin x 的图像;由y si nx到y A si n( x )的图像变换先平移后伸缩:先伸缩后平移:【典型例题】例1 将y sin x的图象怎样变换得到函数y 2sin 2x n1的图象.4练习:将y cosx的图象怎样变换得到函数y cos 2x」的图象.44例2、把y 3cos(2x )作如下变换:(1)向右平移一个单位长度;21(2)纵坐标不变,横坐标变为原来的-;33(3)横坐标不变,纵坐标变为原来的;4(4)________________________________________________ 向上平移1.5个单位长度,则所得函数解析式为_____________________________ .4练习:将y 2sin(2x ) 2做下列变换:(1)向右平移—个单位长度;2(2)横坐标缩短为原来的一半,纵坐标不变;(3)纵坐标伸长为原来的4倍,横坐标不变;(4)沿y轴正方向平移1个单位,最后得到的函数y f(x) ________________ . 例3、把y f (x)作如下变换:(1)横坐标伸长为原来的1.5倍,纵坐标不变;(2)向左平移—个单位长度;33(3)纵坐标变为原来的-,横坐标不变;53 3(4)沿y轴负方向平移2个单位,最后得到函数y —sin(—x -),求y f (x).练习1 :将y4sin( x8 才)作何变换可以得到y sinx. 练习2:对于y 3sin(63|x)作何变换可以得到y si nx.例4、把函数y sin( x )(0,112)的图象向左平移 A. 1,B.61, -6C.2,—D.2, —33练习:7、 右图是函数 y Asin( x )(x R)在区间5(-,—)上的图象,只要将 6 6(1) y si nx 的图象经过怎样的变换?(2) y cos2x 的图象经过怎样的变换?【课堂练习】1、为了得到函数y sin(3x —)的图象,只需把函数y sin 3x 的图象曲线的一部分图象如图所示,则() 3个单位长度,所得3、要得到函数y sinx 的图象,只需将函数y cos x —的图象( )A 、向右平移-个单位B 、向右平移-个单位C 、向左平移-个单位D 、向 左平移-个单位4、为了得到函数y sin(2x )的图象,可以将函数y cos2x 的图象( )6A 、向右平移-个单位长度B 、向右平移-个单位长度63C 、向左平移-个单位长度D 、向左平移-个单位长度636、为了得到函数y sin(2x —)的图像,只需把函数y sin(2x —)的图像()g(x) cos x 的图象,只要将y f (x)的图象 ( )A 、向左平移6B 向左平移18C 向右平移云D 、向右平移182、为得到函数yncos 2x3的图像'只需将函数ysin 2x 的图像(A 、向左平移55个长度单位12C 、向左平移 乞个长度单位6B 、向右平移55个长度单位12D 、向右平移55个长度单位65、把函数y sin x ( x所得图象上所有点的横坐标缩短到原来的 示的函数是()A 、y sin(2 x) , x R 3C 、 y sin(2x ) , x R 3 R )的图象上所有点向左平行移动个单位长度,再把312倍(纵坐标不变),得到的图象所表xB 、y sin( ) , x R2 6 2D 、 y sin(2x ) , x R3A 、向左平移-个长度单位4 C 、向左平移-个长度单位27、已知函数 f (x) sin( x )(x R,4B 、向右平移-个长度单位4 D 、向右平移-个长度单位20)的最小正周期为,为了得到函数A 、 向左平移-个单位长度8B 、 向右平移一个单位长度8C 、 向左平移一个单位长度4D 、 向右平移一个单位长度48.将函数 y=s inx 的图象向左平移 (0V 2)的单位后,得到函数y=sin (x -)的图象,则等于()A.—B. 5C. 7D.116 6 6 6专练:1. (2009山东卷理)将函数y sin2x 的图象向左平移;个单位,再向上平移1个 单位,所得图象的函数解析式是( ).A. y cos2xB. y cos2x 1C. y 1 sin (2x )4D. y 2sin 2 x2. (2009天津卷理)已知函数f (x ) sin ( x -)(x R, 0)的最小正周期为4 为了得到函数g (x ) cos x 的图象,只要将y f (x )的图象A 、向右平移—个单位B 、向右平移—个单位C 、向左平移—个单位D 、向左平移—个单位4( ( 10江苏卷)为了得到函数y 2sin (Z ),x R 的图像,只需把函数3 6y 2 si nx,x R 的图像上所有的点A 、向左平移-个单位长度,再把所得各点的横坐标缩短到原来的-倍(纵坐63标不变)A 向左平移一个单位长度8 C 向左平移一个单位长度4B 向右平移一个单位长度8 D 向右平移一个单位长度43.(09山东)要得到函数y sin x 的图象,只需将函数y cos x 的图象()B、向右平移—个单位长度,再把所得各点的横坐标缩短到原来的-倍(纵坐6 3标不变)C、向左平移-个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)D、向右平移-个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵6坐标不变)5、(2010全国卷2理数)(7)为了得到函数y sin(2x -)的图像,只需把函3数y sin(2x -)的图像A、向左平移一个长度单位4C、向左平移一个长度单位26、( 2010辽宁)设0,函数y sin(原图像重合,则的最小值是A、-3 B、-3B、向右平移一个长度单位4D、向右平移-个长度单位2x -) 2的图像向右平移—个单位后与3 3C、-D、 32。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的平移及伸缩变换
一、单选题(共8道,每道12分)
1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换
2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整
个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y =f(x)的表达式时( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换
3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( )
A.2
B.3
C.4
D.5
答案:C
解题思路:
试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换
4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换
5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( )
A.1
B.2
C.3
D.4
答案:B
解题思路:
试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换
6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a >0),所得图象关于原点对称,则实数a的最小值是( )
A.π
B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换
7.函数的图象如图所示,为了得到
的图象,则只要将f(x)的图象( )
A.向左平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向右平移个单位长度
答案:C
解题思路:
试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换
8.将函数的图象向左平移个单位,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换。

相关文档
最新文档